

AN/UYK-7 COMPUTER REPERTOIRE OF INSTRUCTIONS

CENTRAL PROCESSOR COMMANDS

Code	Mnemonic	NAME	DESCRIPTION	-	F	CA	R	UF	Time µS
00	ILLEGAL								
	OR	Inclusive OR (Selective Set A)	(Y) ⊕ (A _a)→A _a		II	Y	Y	2	1.5
01.1	SC	Selective Clear A	$(A_a) \circ (Y)' \rightarrow A_a$		II	Y	Y	2	1.5
012	MS	Selective Substitute	$(Y)_{n} \rightarrow (A_{n+1})_{n}$ for all $(A_{n})_{n} = 1$: $(A_{n})_{i} = (A_{n})_{f}$	- 1	II	Y	Y	2	1.5
013	XOR	Exclusive OR (Sel. Comp. A)	$(Y) \oplus (A_n) \rightarrow A_n$: $(A_n)_n' \rightarrow (A_n)$ for $(Y)_n = 1$	1	II	Y	Y	2	1.5
014	ALP	Add Logical Product	$(Y) = (A_a) \rightarrow A_a; (A_a)_n' \rightarrow (A_a) \text{ for } (Y)_n = 1$ $(A_{a+1}) + (Y) \odot (A_a) \rightarrow A_{a+1}; (A_a)_i = (A_a)_i$		ii	Y	Y	2	1.5
015	LLP	Load Logical Product	(Y) ⊝ (A _a)→A _a		11	Y	Y	2	1.5
016	NLP	Load Logical Froduct	(1) © (Ma) - Ma						
		Subtract Logical Product	$(A_{a+1}) - (Y) \odot (A_{a}) \rightarrow A_{a+1}; (A_{a})_{i=1} (A_{a})_{f}$		II	Y	Y	2	1.5
017	LLPN	Load Logical Product Next	$(Y) \odot (A_8) \rightarrow A_{8+1}; (A_8)_i = (A_8)_f$		H	Y	Y	2	1.5
020	CNT	Count Ones	No. of Bits Set in (Y)→A _B	- 0	11	Y	Y	2	7.51
02.1	ILLEGAL							-	
02.2	XR	Execute Remote	(Y)→U. Execute (Y) _U only of two half words.	- 1	н	N	N	8	1.5
023	XRL	Execute Remote Lower							
			(Y) _L →U	1	II	N	N	8	1.5
024	SLP	Store Logical Product	$(A_{a+1}) \circ (A_a) \rightarrow Y; (A_a)_i = (A_a)_i;$						
			$(A_{a+1})_{i=}(A_{a+1})_{f}$	- 1	11	Y	Y	2	1.5
02.5	SSUM	Store Sum			II	Y	Y	2	2.0
02.6	SDIF	Store Difference	$(A_a)^+ (A_a + 1)^{-a} A_a + 1 & T; (A_a)^- = (A_a)^- + (A_a + 1)^{-a} A_a + 1 & T; (A_a)^- = (A_a)^- + (A_a + 1)^- + (A_a)^- + (A_a)^$		II	Y	Y	2	2.0
02 711	DS	Double Store A	(Aa + 17 - (Aa) - (Aa + 160) , (Aa) - (Aa)		ii .	N	N	2	3.0
			(Aa+1, Aa) + 1, T				N	2	3.0
03 0	ROR	Replace Inclusive OR	(Y) ⊕ (A _a)→A _a & Y		11	Y	Y	2	2.5
03 1	RSC	Replace Selective Clear	(Y) ⊕ (A ₃)→A ₃ & Y (A ₃) ⊙ (Y)'→A ₃ & Y	- 1	11	Y	Y	2	2.5
03.2	RMS	Replace Selective Substitute	$(Y)_n \rightarrow (A_{a+1})_n \text{ for all } (A_a)_n = 1;$						
			Then $(A_{a+1}) \rightarrow Y$; $(A_a)_i = (A_a)_f$	1	11	V	v	2	25
03.3	RXOR	Poplace Evaluaire OP	(V) = (A) + A & V (A) ' + A & V (- V)		ii	NI	Y	2	2.5
		Replace Exclusive OR	$(Y) \equiv (A_a) \rightarrow A_a \& Y; (A_a)_n' \rightarrow A_a \& Y \text{ for } Y_n = 1$			N			
03 4	RALP	Replace A + Logical Product	$(A_{3+1}) + (Y) \odot (A_{3}) \rightarrow A_{3+1} & Y; (A_{3})_{i} = (A_{3})_{f}$		II	Y	Y	2	2.5
03 5	RLP	Replace Logical Product	$(Y) \circ (A_a) \rightarrow Y \& A_{a+1}; (A_a)_i = (A_a)_f$		II	Y	Y	2	2.5
036	RNLP	Replace A - Logical Product	$(A_{a+1})-(Y) \odot (A_a) \rightarrow A_{a+1} & Y; (A_a)_i = (A_a)_i$	1	II	Y	Y	2	2.5
03 7	TSF	Test and Set Flag	$(A_{8+1})-(Y) \odot (A_{8}) \rightarrow A_{8+1} \& Y; (A_{8})_{i} = (A_{8})_{f}$ If $(Y)_{31}=0$, CD Set EQUAL. $1 \rightarrow Y_{31}$		II	N	Y	8	2.5
1000	-		If (Y)31 = 1, CD Set UNEQUAL. This instruction		100	1000		-	2.5
			cannot use indirect addressing.						
			carriot use indirect addressing.						
04 X	ILLEGAL					-			
05 011	DL	Double Load A	$(Y+1,Y)\rightarrow A_{a+1}, A_{a}$		11	N	N	2	3.0
05 111	DA	Double Add A		1	11	N	N	2	3.0
05 211	DAN	Double Subtract A	$(A_0 + 1, A_0) - (Y + 1, Y) \rightarrow A_0 + 1, A_0$	- 1	11	N	N	2	3.0
05311	DC	Double Compare	(A ₈ + 1, A ₈) − (Y + 1, Y) → A ₈ + 1, A ₈ Compare (A ₈ + 1, A ₈) to (Y + 1, Y), Set CD		11	N	N	2	3.0
054	LBMP	Load Base and Memory	(V) = 0 = C : (V + 1) = 0 = CDD : V = CD		"	N	N	2	5.75
UU 4	LOWIF		$(Y)_{17.0} \rightarrow S_a$; $(Y+1)_{20.0} \rightarrow SPR_a$; $Y \rightarrow SIR_a$ Privileged if: ASR bit $8=0$, $s\neq 7$ or $a=7$.	, U		IN	IA	2	5.75
		Protection	Privileged if: ASR bit 8=0, s≠7 or a=7.						
			Illegal if $y + (B_b) = odd$.						
05.5	ILLEGAL								
056	ILLEGAL								
05.7	ILLEGAL								
06 011	FA	Floating-point Add	Shift (A_{B+1}) or $(Y+1)$ Right such that $(A_{B}) = (Y)$	-	II	N	N	2	6.25
00 011	FA	rioating-point Add	$(A_{a+1}) + (Y+1) \rightarrow A_{a+1}$; Normalize		11	IN	14	2	0.25
06 111	FAN	Desire and Charles	Children And Annual Control of the C		11	N	N	2	6.25
06 111	PAN	Floating-point Subtract	Shift (A_{a+1}) or $(Y+1)$ Right such that $(A_a) = (Y)$	- 11	.1	N	N	2	0.25
			$(A_{a+1})-(Y+1)\rightarrow A_{a+1}$; Normalize						
06 211	FM	Floating-point Multiply	$(A_B) + (Y) \rightarrow (A_B)$		H	N	N	2	10.01
			$(A_{n+1}) \bullet (Y+1) \rightarrow A_{n+1}$: Normalize						
06311	FD	Floating-point Divide	$(A_a) - (Y) \rightarrow (A_a)$		11	N	N	2	17.01
00011		riodding point bivide	$(A_{a+1}) + (Y+1) \rightarrow A_{a+1}$; Normalize					-	17.01
06.411	FAR	From the Automotive Board	(Aa + 1) - (1 + 1) - Aa + 1, Normalize		11	N	N	2	6.25
		Floating-point Add with Round	Same as FA with (A _{a+1}) rounded						
06 511	FANR	Floating-point Subtract w/Rd.	Same as FAN with (A _{a+1}) rounded		H.	N	N	2	6.25
06 611	FMR	Floating-point Multiply w/Rd.	Same as FM with (A _{a+1}) rounded		H	N	N	2	10.01
06 711	FDR	Floating-point Divide w/Rd.	Same as FD with (A _{a+1}) rounded	- 7	H	N	N	2	17.0
070a=0		Enter Executive State	sy + (B _b)→CMR 156; Enter class IV(Executive)		11	N	N	11	4.0
07 0* a = 1	IDI	Interprocessor Interrupt	Send Class II interrupt to processors n (0-7)		II	N		11	4.0
070 a-1	IEI	interprocessor interrupt	Send Class II interrupt to processors if (017)		11	14	14	1.1	4.0
			IF bit n of sy $+$ (B _b) = 1. Prevent self-						
			interrupt if sy + (B_b) bit $15 = 1$.						
07 1**	AFI	Allow Enable Interrupt	Allow Monitor interrupts from IOC a on						
0,1	SEI	Anow Enable Interrupt	Channels at IE his a et a (D.)		11			-	
			Channels n; IF bit n of sy + (B_b) = 1:		H	N	N	6	2.0
			Bit 25 is ignored						
072**	PEI	Prevent Enable Interrupt	Prevent Monitor interrupts from IOC a on						
			Channels n; IF bit n of sy + (B_b) = 1:		II	N	N	6	2.0
			Bit 25 is ignored			2.70	**	-	2.0
073**	LIM	Load IOC Monitor Clock	au + (P) I-+IOC - MON CI K	9	ii .	N	N	6	3.0
07 3			sy+(B _b)→IOC a MON CLK						
07 4**	10	Initiate I/O	Initiate IOC a at address Y		II	N	N	2	3.5
075*	IR	Interrupt Return	Return from highest State Specified		11	N	N	9	3.0
			by ASR bits 19-16.						
076	RP	Repeat	Repeat N.I.By Times; sy sign extended						
70000			of Repeat added to B _b of N.I. after		11	N	N	6	1.5
			each cycle. See Repeat Conditions			14	1.4	0	1.5
			Illegal if in N.I. $i = 1$ and $c = 00$.						
07 7	ILLEGAL								
10	LA	Load A	<u>Y</u> →A _a		1	Y	Y	1	1.5
1111	LXB	Load A and Index B	$\underline{\underline{Y}} \rightarrow A_a$; $(B_b + 1 \rightarrow B_b$. Illegal if $i = 1$		1	Y	N	1	1.5
			and cc = 00.						-
	LDIF	Load Difference	V-(A-)A(A-)- = (A-)-		1	V	Y	1	1.5
			$Y - (A_a) \rightarrow A_{a+1}; (A_a)_i = (A_a)_f$			1			
	ANA	Subtract A	$(A_a) - \underline{Y} \rightarrow A_a$		1	Y	Y	1	1.5
13	AA	Add A	$(A_a) + \underline{Y} \rightarrow A_a$		F	Y	Y	1	1.5
13 14	LSUM	Load Sum	$(A_a) + Y \rightarrow A_{a+1}; (A_a)_i = (A_a)_f$		1	Y	Y	1	1.5
13 14		Load Negative	<u>Y</u> '→A _a		Ĭ.	Y	Y	1	1.5
13 14 15	LNA	Load Magnitude	<u> </u> <u>Y</u> →A _a		1	V	Ý	1	1.5
13 14 15 16		Load Magnitude	L±1 Aa			1		1	
13 14 15 16	LM	Load B	Y→B _a		1	Y	Y	1	2.0
13 14 15 16 17 20	LM LB		(B _a) + Y→B _a ; B _a zero extended		1	Y	Y	1	2.0
13 14 15 16 17 20 21	LM				1	Y	Y	1	2.0
13 14 15 16 17 20 21	LM LB AB	Add B	(R_)_V+R R_ zero extended						
13 14 15 16 17 20 21	LM LB AB ANB	Add B Subtract B	(B _a) − Y→B _a ; B _a zero extended			v	v		1.5
13 14 15 16 17 20 21 22 23	LM LB AB ANB SB	Add B Subtract B Store B	$(B_a) - \underline{Y} \rightarrow B_a$; B_a zero extended $(B_a) \rightarrow \underline{Y}$		i	Y	Y	1	1.5
12 13 14 15 16 17 20 21 22 23 24	LM LB AB ANB SB SA	Add B Subtract B Store B Store A	$(B_a) - \underline{Y} \rightarrow B_a$; B_a zero extended $(B_a) \rightarrow \underline{Y}$ $(A_a) \rightarrow \underline{Y}$		i	Y	Y	1	1.5
13 14 15 16 17 20 21 22 23	LM LB AB ANB SB	Add B Subtract B Store B	$(B_a) - Y \rightarrow B_a$; B_a zero extended $(B_a) \rightarrow Y$ $(A_a) \rightarrow Y$; $(B_b) + 1 \rightarrow B_b$. Illegal if $i = 1$		1	Y Y Y			
13 14 15 16 17 20 21 22 23 24 25††	LM LB AB ANB SB SA SXB	Add B Subtract B Store B Store A Store A and Index B	$(B_a) - Y - B_a$; B_a zero extended $(B_a) - Y$ $(A_a) - Y$ $(A_a) - Y$; $(B_b) + 1 - B_b$. Illegal if $i = 1$ and $cc = 00$.		1	Y	Y	1	1.5
13 14 15 16 17 20 21 22 23 24	LM LB AB ANB SB SA	Add B Subtract B Store B Store A Store A and Index B	$(B_a) - Y - B_a$; B_a zero extended $(B_a) - Y$ $(A_a) - Y$ $(A_a) - Y$; $(B_b) + 1 - B_b$. Illegal if $i = 1$ and $cc = 00$.		1	YYY	Y	1	1.5
13 14 15 16 17 20 21 22 23 24 25††	LM LB AB ANB SB SA SXB	Add B Subtract B Store B Store A	$(B_a) - Y \rightarrow B_a$; B_a zero extended $(B_a) \rightarrow Y$ $(A_a) \rightarrow Y$; $(B_b) + 1 \rightarrow B_b$. Illegal if $i = 1$			Y Y Y N N	Y	1	1.5

*Privileged *CPU+IOC Instr. – Privileged Privileged when ak = 2X, 6X, or 7X or Repeated. 1Execution time independent of overlap operation if Privileged if i = 1 s (SPR)s bit 16 = 1. Times shown assume 1.5s; memory with operands not in same bank as instructions (overlapped).

32	BZ	Clear Bit	0→Yak	1	N	Y	3	2
33	BS	Set Bit		-	N	Y	3	2
34 35	RA RI	Replace Add Replace Increment	$(A_a) + \underline{Y} \rightarrow A_a + 1 & \underline{Y}; (A_a)_i = (A_a)_f$	1	Y	Y	1	-
36	RAN	Replace Increment Replace Subtract	$(A_a)_t + Y \rightarrow A_a + 1 & Y; (A_a)_i = (A_a)_f$ $Y + 1 \rightarrow \overline{A}_a & Y$ $Y - (A_a)^{-1} \rightarrow A_a + 1 & Y; (A_a)_i = (A_a)_f$	1	Y	Y	1	
37	RD	Replace Decrement	1 - (Aa/- Aa + 1 & 1; (Aa/) = (Aa/t √ 1→Δ - & √	1	Y	Y	1	
40	M	Multiply A	(Aa) • Y→Aa+1. Aa	i	Y	Y	1	-
41	D	Divide A	(A _{a+1} , A _a) + Y→A _a ; remainder→A _{a+1}	1	Y	Y	1	14
42	ВС	Compare Bit to Zero	$\begin{array}{l} \vdots\\ Y-A_{a}Y-A_{a}+1, & Y; & (A_{a})_{i}=(A_{a})_{t}\\ Y-1\rightarrow A_{a} & Y\\ A_{a}+1, & A_{a} & Y\\ A_{a}+1, & A_{a}+1, & A_{a} & Y\\ A_{a}+1, & A_{a}+1, & A_{a}+1, & A_{a}+1\\ & (A_{a}+1, & A_{a})+Y-A_{a}; & \text{remainder} \rightarrow A_{a}+1\\ & \text{if } Y _{a}k=0, & \text{CD Set EOUAL}\\ & \text{if } Y _{a}k=1, & \text{CD Set UNEQUAL} \end{array}$	1	N	Y	3	1
43	CXI	Compare Index Increment	Bit 25 is ignored If $(B_a) \ge \underline{Y}$, CD Set OUTSIDE, $0 \rightarrow B_a$ If $(B_a) < \underline{Y}$, CD Set WITHIN, $(B_a) + 1 \rightarrow B_a$	1	Υ	N	1	2
44	С	Compare	If (B _a) < Y, CD Set WITHIN, (B _a) + 1→B _a		v	Y	1	1
45	CL	Compare Limits	Compare (A_3) to \underline{Y} , Set the CD If $(A_{3+1}) > \underline{Y} \ge (A_3)$, Set CD WITHIN	1	V	Y	1	
46	CM	Compare Masked	Compare (A - +1) to (A -) o Y Set the CD	1	V	Y	1	-
47	CG	Compare Gated	Compare $(A_a + 1)$ to $(A_a) \circ Y$. Set the CD Compare $(Y - (A_a))$ to $(A_a) \circ Y$. Set the CD If $(A_a + 1) \circ (A_a)$ is Even Parity, jump to Y	i	Y	v	1	-
50 0	JEP	Jump on Even Parity	If (A _{n+1}) @ (A _n) is Even Parity, jump to Y	ill	Ń	N	1	2
50 1	JOP	Jump on Odd Parity	If (A ₈₊₁) o (A ₈) is Odd Parity, jump to Y	III	N	N	1	-
50 2 50 3	DJZ DJNZ	Jump Double Precision Zero Jump Double Precision Not	If $(A_{a+1}, A_{a}) = 0$, jump to Y	Ш	N	N	1	1
		Zero	If $(A_{a+1}, A_{a})\neq 0$, jump to Y	III	N	N	1	1
510	JP	Jump A Positive	If $(A_8) \ge 0$, jump to Y If $(A_8) < 0$, jump to Y	III	N	N	1	1
51 1	JN	Jump A Negative	If (A _a) < 0, jump to Y	III .	N	N	1	1
512	JZ	Jump A Zero	If $(A_a) = 0$, jump to Y	III	N	N	1	1
513	JNZ	Jump A Not Zero	If $(A_a) \neq 0$, jump to Y	III	N	N	1	
52 0 52 1	LBJ IBN7	Load B and Jump	(P)+ 1→B ₈ , jump to Y	111	N	N	1	1
		Index Jump B	If $(B_a) \neq 0$, then $(B_a) - 1 \rightarrow B_a$, jump to Y	111			13	
52 2 52 3	JS JL	Jump sy + B Unconditional Jump Lower	Jump to sy + (B _b) Jump to the Lower of Y	111	N	N	13	
	JNF	Jump on No Overflow	If OD is not Set, Jump to Y; Clear OD		N		12	1
	JOF	Jump on No Overflow Jump on Overflow	If OD is not Set, Jump to Y; Clear OD If OD is Set, jump to Y; Clear OD		N		12	1
53 1 a = 0	JNE	Jump on Not Equal	If CD ≠ , jump to Y		N		12	1
	JE	Jump on Equal	If CD = , jump to Y		N		12	1
	JG	Jump on Greater Than	If CD >, jump to Y		N		12	1
531a=3	JGE	Jump on Greater Than or			-	-		
		Equal	If CD ≥, jump to Y	III	N	N	12	1
53 1 a = 4		Jump on Less Than			N		12	1
531a=5	JLE	Jump on Less Than or Equal	If CD≤, jump to Y If CD Outside Limits, jump to Y		N	N	12	1
53 1 a = 6	JNW	Jump Outside Limits	If CD Outside Limits, jump to Y		N		12	1
	JW	Jump Within Limits	If CD Within Limits, jump to Y (P)+ 1→Y, jump to Y + 1		N		12	1
53 2 53 2	RJ RJC	Return Jump a = 0 Return Jump a = 1, 2, 3	If switch a is Set, (P) + 1-Y, jump to Y + 1;		N	N	12	3
53 2*	RJSC	Return Jump a = 4, 5, 6, 7	otherwise N.I. If switch a is Set, Stop;(P)+ 1→Y, jump to Y + 1 at restart	III	N	N	1	3
533	J	Manual Jump a = o	Jump to Y		N		12	1
	JC	Manual Jump a = 1, 2, 3	If switch a is Set, jump to Y; otherwise N.I.		N	N	1	i
533*	JSC	Manual Jump a = 4, 5, 6, 7	If switch a is Set, Stop; Jump to Y at restart		N	N	1	2
54~	LCT				N	Y	3	1
55*	LCI	Load CMR Interrupt	(Y)→CMR _{ak} + 100	1	N	Y	3	1
56-	SCT				N	Y	3	1
57*	SCI	Store CMR Interrupt	(CMRak + 100)→Y		N	Υ	3	1
	HSCT	Store CMR in A			N	N	4	1
60*i=1	HSCI	Store CMR in A	(CMR _{af} + 100)→A _b load/store only (A _b)→CMR _{af} 4 bits 15–0 of B		N	N	4	1
61 - i = 0	HLCT	Load CMR in A	(A _b)→CMR _{af4} bits 15–0 of B		N	N	4	1
61*i=1	HLCI	Load CMR from A	(CMM ₈ f ₄) A _b (A _b) CMR ₈ f ₄ (A _b) CMR ₈ f ₄ + 100 load/store only bits 15–0 of B		N	N	4	1
63	HDLC	Shift Left Circularly Shift Left Circularly Double	(Ag) Lett Shifted End Around Ag		N		10	1
64	HRZ	Shift Right Fill Zeros	(A _{a+1} , A _a) Left Shifted End Around→A _{a+1} , A _a		N		10	1
65	HDRZ	Shift Right Double, Fill Zeros	(A _a) Right Shifted, Zero Fill→A _a (A _{a+1} , A _a) Right Shifted, Zero Fill→A _{a+1} , A _a		N		10	1
66	HRS	Shift Right Fill Sign	(A _a) Right Shifted, Sign Fill→A _a		N		10	1
67	HDRS	Shift Right Double, Fill Sign	(A _{a+1} , A _a) Right Shifted Sign Fill→A _{a+1} , A _a		N		10	1
700	HSF	Scale Factor	Normalize (A _B) Shift Count→A _b		N	N	5	2
70 1	HDSF	Double Scale Factor	Normalize (A _{a + 1} , A _a) Shift Count→A _b	IVA	N	N	5	2
702	HCP	Complement A	(A _a)' →A _a	IVA	N	N	7	1
703	HDCP	Double Complement A	$(A_{a+1}, A_a)' \rightarrow A_{a+1}, A_a$		N	N	7	1
70 4	ILLEGAL							
705	ILLEGAL							
706	ILLEGAL							
70 7	ILLEGAL	122.10						
710	HOR	Logical Sum	$(A_a) \oplus (A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$ if $a \neq b$	IV A	N	N	5	1
71 1	НА	Sum	$(A_a) + (A_b) \rightarrow A_a; (A_b)_i = (A_b)_f \text{ if } a \neq b$		N	N	5	1
71 2 71 3	HAN HXOR	Difference	$(A_a) - (A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$ if $a \neq b$ $(A_a) \stackrel{=}{=} (A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$ if $a \neq b$	IVA	N	N	5	1
713 715	HAND	Logical Difference AND	$(A_a) \oplus (A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$ if $a \neq b$		N	N	5	1
71.6	ILLEGAL	AND	$(A_a) \odot (A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$ if $a \neq b$	IVA	N	N	5	1
717	ILLEGAL							
	ILLEGAL							
73 X	ILLEGAL							
740	HM	Multiply Register	(A _a) • (A _b)→A _a + 1. A _a	IVA	N	N	5	7
741	HD	Divide Register	$(A_8) \bullet (A_b) \rightarrow A_8 + 1$, A_8 $(A_8 + 1, A_8) + (A_b) \rightarrow A_8$; Remainder $\rightarrow A_8 + 1$ $\sqrt{(A_8 + 1, A_8)} \rightarrow A_b$; Residue $\rightarrow A_b + 1$		N	N	5	15
742	HRT1	Square Root	√(A _{a+1} , A _a)→A _b ; Residue→A _{b+1}	IVA	N	N	5	15
743	HLB	Load Ba with Bb	(B _b)→B _a	IVA	N	N	5	1
744	HC	Compare, Register	Compare (A-) to (AL) Set CD	IVA	N	N	5	1
745	HCL	Compare Limits, Register	If $(A_{B+1}) > (A_b) \ge (A_B)$, Set CD WITHIN Compare $(A_{B+1}) \circ (A_B)$ to (A_b) , Set the CD		N	N	5	1
746	HCM	Compare Masked, Register	Compare (A _{a+1}) ⊙ (A _a) to (A _b), Set the CD		N	N	5	1
747	HCB	Compare B _b with B _a	Compare (Bb) to (Ba), Set the CD	IVA	N	N	5	2
75 X	ILLEGAL							
76 X	ILLEGAL							
77 0**	HSIM	Store IOC Monitor Clock in A	(IOC _a MON CLK)→A _b		N	N	5	3
77 1	HSTC	Store Real-Time Clock in A	(IOC _a RTC)→A _b	IVA	N	N	5	3
77 2	ILLEGAL							
773	ILLEGAL							
77 4* 77 5*	HPI	Prevent Class III Interrupts	Set Class III Interrupt Lockout in the ASR		N	N	9	2
77 5* 77 6*i=0	HALT	Allow Class III Interrupts	Clear Class III Interrupt Lockout in the ASR		N	N	9	2
77 6*i=0 77 6*i=1		Stop Processor Wait for Interrupt	Stop CPU (4-Stop); Continue at Restart		N	N	9	2
		vvait for interrupt	Cease Memory References until Interrupted	IVA	N	N	9	2
	*Privilege	ed **CPU→IOC Instr.—Priv	vileged → Privileged when ak = 2X, 6X, or 7X or Re	mont				

_		10	ISTR	UCT	ION	WC	RD F	ORM	ATS	5		_
Form	at I											
31	26	25	23	22	20	19	17	16	15	13	12	0
f		- 4	а	1	(b	i		\$	у	Ů.
Forma	at II											
31	26	25	23	22	20	19	17	16	15	13	12	0
f		1	a	f	2		b	i		s	у	
Forma	t III											
31	26	25	23	22	21	20	19 1	7 1	6 15	13	12	0
f		- 8	а	f	3	Z	b	i		s	у	
	F	orm	at IV	A					Fo	ormat	IVB	
31 26	25 2	23	22 20	15	17	16		31	26	25 2	3 22	16
15 10	9	7	6 4	3	1	0		15	10	9 7	6	0
	а		f4		b	i			f	а	- 0	m
f												
	unct	ion (Code									
- F	- 5	ubf	uncti			[Bit 26			Func	ion	
- F	- S	ubf	unction R	egis	er	F	0	Sh		coun	t 25_	
- F	- S Accur Opera	subfi nula nd l	unction Report	egis	er	-	0	Sh	ift by	coun	t 25_ 25 = 1	0
- F 2f3f4 - 7 - 1	- S	nula nd li Reg	unction Representation Representatio	egis	er		0	Sh Sh Sh	ift by	coun Bb if	t 25 - 25 - 25 -	1

F CARUF µS

DESCRIPTION

Code Mnemonic

NAME

Memory to Arithmetic (Read)	k-FIELD INTERPR	
		ory (Store)
sy SE+(B _b)→A ₁₅₋₀ SE (Y ₁₅₋₀)→A ₁₅₋₀ SE (Y ₃₁₋₁₆)→A ₁₅₋₀ SE (Y ₃₁₋₀)→A ₃₁₋₀	Not Used (A ₁₅₋₀)→Y ₁₅₋₀ ; (A ₁₅₋₀)→Y ₃₁₋₁₆ ; (A ₃₁₋₀)→Y ₃₁₋₀	Y31-16-UN Y15-0-UN
(Y ₇₋₀)→A ₇₋₀ ZE (Y ₁₅₋₈)→A ₇₋₀ ZE	(A ₇₋₀)→Y ₇₋₀ ; (A ₇₋₀)→Y ₁₅₋₈ ;	Y ₃₁₋₈ -UN Y ₃₁₋₁₆ -UN Y ₇₋₀ -UN
(Y ₂₃₋₁₆)→A ₇₋₀ ZE	(A ₇₋₀)-+Y ₂₃₋₁₆ ;	Y31-24-UN Y15-0-UN
(Y31-24)→A7-0 ZE	(A7-0)-Y31-24;	Y23-0-UN

S₆ and not S_S for store cycle.

	CENTRAL PROCESSOR CONTROL MEMORY ADDRESS ASSIGNMENT	
	Task Mode	
Address	Use	Bits
0-7	Accumulator (A) registers 0-7	32
10	Unassigned	19
11-17	Index (B) registers 1-7	191
20-27	Base (S) registers 0-7**	18
30-57	Unassigned (not usable)	-
6x	Breakpoint register**	20
7x	Active status register**	23
	Interrupt Mode	
Address	Use	Bits
100-107	Accumulator (A) registers 0-7	32
110	CP monitor clock register	19
111-117	Index (B) registers 1-7	19
120-127	Base (S) registers 0-7	18
130-137	Unassigned (not usable)	-
140	ICW-Class I	20
141	DSW-Class I ASR storage	20
142	DSW-Class I interrupt status code	20
143	DSW-Class I P-storage	20
144	ICW-Class II	20
145	DSW-Class II ASR storage	20
146	DSW - Class II interrupt status code	20
147	DSW-Class II P-storage	20

140	ICW Class I	20
141	DSW-Class I ASR storage	20
142	DSW-Class I interrupt status code	20
143	DSW-Class I P-storage	20
144	ICW-Class II	20
145	DSW-Class II ASR storage	20
146	DSW - Class II interrupt status code	20
147	DSW-Class II P-storage	20
150	ICW-Class III	20
151	DSW-Class III ASR storage	20
152	DSW-Class III interrupt status code	20
153	DSW-Class III P-storage	20
154	ICW-Class IV	20
155	DSW-Class IV ASR storage	20
156	DSW-Class IV interrupt status code	20
157	DSW-Class IV P-storage	20
160-167	Storage Protection Registers (SPR) 0-7	21
170-177	Segment Identification Registers (SIR) 0-7	21

(Privileged instruction error will occur)
†Lower 16 bits used for index and arithmetic functions.
Upper three bits used only as a base-register designation. LBMP (05 4) CONSIDERATIONS The LBMP instruction is privileged when bit 8 of the ASR = 0, or if bit 8 of the ASR = 1 and (s ≠ 7 or a = 7)

All function codes except the 05 4 (LBMP) are privileged when bit 8 of the ASR = 1 and s = 7 in the instruction.

±	30	0	Sign Fill	±	14	0
-	Mantissa in A _{a+1} or Y+1		Characteris	tic (ex	ponent) in	A _a or Y

		DOUBLE PRECISION (DO	JUB	LELE	INGTH) FURMAT	
±	30	Most Significant Half	0	31	Least Significant Half	0

ULTR	A/32 PSEU	DO INSTRUCTIONS		F	CA	В	UF	Time µS
10	ZA	Clear A	0→A _a	1	N	Y	7	1.5
20	ZB	Clear B	0→Ba	1	N	Y	7	2.0
20	NOOP	No Operation	0→B ₀	1	N	Y	9	2.0
23	SZ	Store Zeros	0-+Y	- 1	Y	Y	12	1.5
743	HNO	Half Word No Operation	(B ₀)→B ₀	IV A	N	N	9	1.75
-		MATING MNEMONICS			_	_		
_	HK	Half Word Constant (Variable	field becomes next halfword)	-	-	-	16	_
_	IW	Indirect Word (c = 10)		=	_	-	8	_
-				Ξ	-	-	8	-
	IW	Indirect Word (c = 10)	c=00, c ₁ =0)		1111	-	8 11 11	
-	IW IWS	Indirect Word (c = 10) Indirect Word, Special Base (c=00, c ₁ =0) c=00, c ₁ =1)		11111	1111	8 11 11 14	
=	IW IWS IWB	Indirect Word (c = 10) Indirect Word, Special Base (c) Indirect Word, Special Index	c=00, c1=0) (c=00, c1=1) 01)	= =	111111	1111	8 11 11	

ULTRA/32 CODING FORMATS (UF)		(An Asteris	k (*) Preceding y Indic	ates Indirect Addressing)
No. Variable Field No. Variable Field 1 a, y, k, b, s 4 af4, b 5 a, b 5 a, b 6 a, sy, b	No. Variable Field 7 a 8 y, b, s 9 None	No. Variable Field 10 a, m (shift by m) a, b, 1 (shift by Bb) a, b, 2 (shift by Ab)		No. Variable Field 14 y, w, p, b, s 15 r, i, or, ow, ia, ir 16 e

	SYMBOL DEFINITIONS	the second second second
CMR—Control Memory Register F—Format CA—Character Addressable R—Repeatable DSW—Designator Storage Word	$ \begin{array}{l} UF-Ultra Format \\ (AI_{\Pi}-Contents of A, bit n \\ CD-Compare Designator \\ Y-Address formed by \gamma + (B_{\underline{b}}) + (S_{\underline{s}}) \\ ICW-Initial Condition Word \end{array} $	Y—Operand (Y) (Whole word or partial word) or Y, depending on k ○—Logical product (AND) ⊕—Logical sum (Inclusive OR) ⊕—Logical difference (Exclusive OR)

I/O CONTROLLER COMMANDS

(All Unused Function Codes are Illegal)

Code	Mnemonic	NAME	DESCRIPTION	UF**	Time μS
10	IB	Initiate Input Buffer on Cj	(y)→CMA* 0 + j; Activate Input	1	3.25
11	OB	Initiate Output Buffer on Ci	(y)→CMA* 20 + j; Activate Output	1	3.25
12	FB	Initiate External Function Buffer on Ci	(y)→CMA* 40 + j; Activate EF	1	3.25
13	XB	Initiate External Interrupt Buffer on Ci	(y)→CMA* 60 + j; Activate El	1	3.25
14 k = 0	TIB†	Terminate Input Buffer on Ci	Terminate Input 1 m = 0 Suppress	2	3.0
14 k = 1	TOB†	Terminate Output Buffer on Ci	Terminate Output Queued Interrupt;	2	3.0
14 k = 2	TFB†	Terminate External Function Buffer on Cj	Terminate EF m = 1 Allow Queue	ed 2	3.0
14 k = 3	TXB†	Terminate External Interrupt Buffer on Cj	Terminate El Interrupt	2	3.0
15 k = 0	IMIR	Set Input Monitor Interrupt Request on Cj	Set Input Monitor Interrupt on Chan j	3	2.5
15 k = 1	OMIR	Set Output Monitor Interrupt Request on Cj	Set Output Monitor Interrupt on Chan	j 3	2.5
15 k = 2	FMIR	Set EF Monitor Interrupt Request on Cj	Set EF Monitor Interrupt on Chan j	3	2.5
15 k = 3	XMIR	Set El Monitor Interrupt Request on Cj	Set El Monitor Interrupt on Chan j	3	2.5
16 k = 0	AIC	Set Input Chain Active on Cj	y→Command Address Pointer Field	4	2.5
16 k = 1	AOC	Set Output Chain Active on Cj	(bits 55-38) of CMA* 20k + j;	4	2.5
16 k = 2	AFC	Set External Function Chain Active on Ci	Activate Chain	4	2.5
16 k = 3	AXC	Set External Interrupt Chain Active on Ci		4	2.5
17 m = 0	TBZ	Test Bit Zero	If (y)ki = 0, SKIP; Else NI	7	4.0
17 m = 1	TBS	Test Bit Set	If (v)ki ≠ 0, SKIP; Else NI	7	4.0
20	JIO	Jump to y	y→Command Address Pointer of	r	
	***		CAR‡	6	2.5
22	LICM	Load IOC Control Memory	(y)→IOC Control Memory Address kj	5	3.25
23	ILTC	Load Real-Time Clock	(y)→Real Time Clock	6	4.0
24	SICM	Store IOC Control Memory	(IOC Control Memory)ki→y	5	2.75
25	IBS	Set Bit	1→yki	5	3.25
26	IBZ	Clear Bit	0→yki	5	3.25
27	ITSF	Test and Set Flag	1→y31; If (y)31 was Originally Cleared Skip; Else NI	, 6	3.25

FORMATING	MNEMO	NICS

	=	BCWE	Buffer Contro				9	-
-				**ULTRA	FORMAT			
		nmand Address		1-j, y, k, c, m	4-j, y, c	7-kj, y	(I = buffer	
	* Con	trol Memory A	ddress	2-j, c, m	5-kj, y, c	8-y, I	length)	
- 1				3-j, c	6-y, c	9-y, I, k		

K-DESIG	INATON DEFINITIONS			
	k = 0	k=1	k = 2	k=3
f=10, 11, 13	Suppress data	Pack Quarter word	Pack Half word	Whole word
f = 12	Force One Word (y) is EF	One Word Buffer (y) is EF	Multi Word Buffer	Not Used

† The terminate buffer commands terminate only active buffers. They have no effect on active chains. Terminating an active buffer also terminates the chain since the buffer never completed normally. To terminate an active chain, it is recommended that a JIO instruction with no chaining be initiated on the channel of function to be terminated (y may be any valid address). However, attempts to terminate had to the channel and function with an <u>active buffer</u> will result in the CAP being overlayed but no change to the chain bit in IOCM. In this ase, the buffer will complete normally and chaining will commence with the JIO instruction which then terminates the chain

Note: Clearing the IOC enables all monitor interrupts to all CPU's (i.e., all bits set in all ILR's) and clears all requests,

100	COMN	IAN	D WC	RDF	OR	MAT		
31 26	26 25 24 23 20 19		18	17	0			
	Partial Word		Chan				Opera	
	Desig.		(0-17)		Chi	ain Flag	С
Function Code f	k			i	Mo	nitor	Flag m	

NORMAL BUFFER CONTROL WORD FORMAT							
31	18	17					
Final Address Compare Bits		Initial Address					

101	cco	NTROL	ME	MOF	RYW	ORD	FOR	MA	Т		
55	38	37 36	35	34	33	32	31	18	17	0	
Command Address		Partial Word			Byte		Final Buff		Curre		
Pointer		Desig.	CI	Mo ain Fl	Monitor Interrupt Flag						

100	CONTROL MEMORY ASSIGNMENT
Address	Assignment
0-17	Input
20-37	Output
40-57	External Function
60-77	External Interrupt

The Task State is defined as bits 19-16 = 0

The Interrupt State is defined as any bit 19-16 # 0.

Bits 11-9 are normally cleared for Task and set for the Interrupt States. However, this is not a requirement. The SCT, HSCT instructions store all 23 bits of the ASR. However, the LCT or HLCT load only bits 14–0. To load all 23 bits of the ASR, an IR must be performed.

† For complete description of all possible uses, consult the equipment specification NAVSHIPS 0967-051-6291, also, see notes under repeat and indirect addressing tables.

BREAKPOINT	REGISTER

0 0 -Disabled 0 1 -Instruction address*

Operand address*
 Instruction and o

-Instruction and operand addresses*

* An instruction breakpoint match is obtainable on the operand address of a conditional jump instruction, satisfied or unsatisfied. The breakpoint compare is done on the address as it is requested. When a jump instruction is executed the jump address will be requested: (and the breakpoint match will occur) whether the jump condition is met or not.

The P-storage of a satisfied instruction breakpoint interrupt on the operand address of a jump instruc-

An Instruction or Operand Breakpoint Interrupt occurring on a remotely executed instruction will store the Address of the Execute Remote instruction at CMR 144 (P-storage DSW).

Class	INTERRUPT			St	atu	s	od	e i	Bit	s*			Action Taken
		9	8	7	6	5	4		3	2	1	0	L PETE
1*	Power Tolerance (never locked out)	0	0	0	0	0	0		1	1	1	1	(ASR)→CMR141 ISC→CMR142 (P)→CMR143 (CMR140)→P Set ASR bits 19, 14-8. Clear bits 6-0. Bit 7 is unchanged.
1 1 1 1 1 1 1	CP-Operand Memory Resume CP-IOC Command Resume CP-Instruction Memory Resume CP-IOC Interrupt Code Resume IOC Memory Resume Intercomputer Timeout	K O K K	KOKK	0 M 0 M	M 0 M 0 M C	0 M 0 M	0 M 0 M	0	0 0 0	0 0 0 0	0	1	(ASR)→CMR141 ISC→CMR142 (P)→CMR143 NDRO Address 000g→F Set ASR bits 19, 14-8, 7. Clear bits 6-0.
	Interprocessor Interrupt Floating Point Error Floating									0 0 0 1 1 1 0 0 0 0 1 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 1	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	IASR) - CMR 145 ISCCMR 146 (P)-CMR 147 (CMR 147 CMR 147 ISR 148 18, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
	IOC Illegal CAR Instruction IOC Illegal Chain Instruction IOC CP Interrupt IOC Monitor Clock IOC External Interrupt Monitor IOC External Function Monitor IOC Output Data Monitor IOC Input Data Monitor	KKKKK	KKKKKK	000000	00000000	000000	000000		1 1 1 1 1		0 F 1 0 0 1		(ASR)→CMR151 ISC→CMR152 (P)→CMR153 (CMR150)→P Set ASR bits 17, 12-8. Clear bits 6-0. Bit 7 is unchanged.
IV _	Executive Return	IS			gn	16	bit						(ASR)→CMR155 ISC→CMR156 (P)→CMR157 (CMR154)→P Set ASR bits 16, 11-8. Clear bits 6-0. Bit 7 is unchanged.

* Queued

** Definitions: PP-CPU NO. (0-2)

‡ If in Interrupt Mode and AUTO REC switch selected, then jump to NDRO address:

01 if bootstrap 0 selected 02 if bootstrap 1 selected 03 if bootstrap 2 selected

† Maintenance Console Breakpoint Program/Manual switch must be in the PROGRAM position.

✓ Stored P value is the address of the instruction causing the interrupt. (Exception - If the processor is executing an instruction while in the repeat mode, the stored P value will be the address of the repeat instruction.)

11 Fault conditions which illuminate program fault light.

For all Class IV, Class III and Class I or II not denoted above, the Stored P value is the address of the next instruction in the interrupted program. (Exception - if the processor is executing an instruction while in the repeat mode, the stored P value will be the address of the repeat instruction.)

FIXED POINT OVERFLOW CONDITIONS		FIXED	POINT	OVERFL	OW	CONDITI	ONS
---------------------------------	--	-------	-------	--------	----	---------	-----

a) Addition: Addend and augend have like signs and the sum has a different sign.

- b) Subtraction: Minuend and subtrahend have different signs and the difference has a sign different from
- c) Division: Attempt to divide by zero or if the magnitude of divisor times 2³¹ is less than the magnitude of the dividend.
- d) Square Root: Attempt to take square root of a negative number or a number greater than or equal to 262

				NOR	M	AL (IW) Y =	= v + (B _b) +	-(Se)		
31	30	29				19	17	16		3 12	0
		Not	Used		1					Relative Address (y)	
C = 1	0			-	٦				Base Register Desi	gnator (s)	
								Ind	irect Addressing De	signator (i)	
						Index Reg	ister Desig	nato	r (b)		
				SPECI	A	L BASE (IV	VS) Y=sy	+ (S	b)		
31	30	29	28	20	0	19	17	16			0
			Not Used						16-bit Relative Add		
		C1=	0					_	irect Addressing De	signator (i)	
C=0	0					Base Regi	ister Design	nator	(s)		
C = 0	0					Index Reg	ister Desig	nato	r (b)	7	
C=0	30	29	25	CHARAC		ER (IWC)	Y = y + ((+ (S _s)	3 12	0
		29	25			ER (IWC)	Y = y + ((3 _b) +	+ (S _s)	3 12 Relative Address (y)	0
		29	25			ER (IWC)	Y = y + ((3 _b) +	+ (S _s)	Relative Address (y)	0
		29	25		0	ER (IWC)	Y = y + (1	3 _b) +	Base Register Des	Relative Address (y) gnator (s)	0
		29	25	24 20	D	ER (IWC)	Y = y + (f	3 _b) 16	Base Register Des	Relative Address (y) gnator (s)	0
				24 20 Bit Position Design	D	ER (IWC)	Y = y + (f	3 _b) 16	Base Register Des	Relative Address (y) gnator (s)	0
31	30		25 racter Length Design	24 20 Bit Position Design	D	ER (IWC)	Y = y + (f	3 _b) 16	Base Register Des	Relative Address (y) gnator (s)	0
	30			24 20 Bit Position Design	D	ER (IWC)	Y = y + (f	3 _b) 16	Base Register Des	Relative Address (y) gnator (s)	0
31 C=0	30	Char	racter Length Design	24 20 Bit Position Design ator (w)	D	Index Reg	Y = y + (I	Ind nato	Base Register Descret Addressing De	Relative Address (y) gnator (s) signator (i)	0
31 C=0	30	Char	racter Length Design	Bit Position Design ator $\{w\}$ $ Y=y+(B_b)+(S_s) $	ac	Index Reg	Y = y + (i 17 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	Ind nato	(S_g) 15 1 Base Register Desirect Addressing De r (b) If $(p) - (w) < 0$, then	Relative Address (y) gnator (s)	
31 C=0	30 11	Char	racter Length Desigr	Bit Position Design ator $\{w\}$ $ Y=y+(B_b)+(S_s) $	ac	Index Reg	Y = y + (i 17 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	lnd lndosse c	(S_g) 15 1 Base Register Desirect Addressing De r (b) If $(p) - (w) < 0$, then	Relative Address (y) gnator (s) signator (i) 32 – (w) → p and y + 1 → y.	0
31 C=0	30 11	Char	racter Length Desigr	Bit Position Design ator $\{w\}$ $ Y=y+(B_b)+(S_s) $	ac	Index Reg	Y = y + (i 17 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	lnd lndosse c	(S_g) 15 1 Base Register Desirect Addressing De r (b) If $(p) - (w) < 0$, then	Relative Address (y) gnator (s) signator (i) 32 – (w)p and y + 1y, 3 12 Relative Address (y)	
31 C=0	30 11	Char	racter Length Desigr	Bit Position Design ator $\{w\}$ $ Y=y+(B_b)+(S_s) $	ac	Index Reg	Y = y + (i 17 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	3 _b) + 16 Ind nato SB ← 16	(S ₃)	Relative Address (y) gnator (s) signator (i) 32 – (w)-+p and y + 1y, 3 12 Relative Address (y) gnator (s)	
31 C=0	30 11	Char	racter Length Desigr	Bit Position Design ator $\{w\}$ $ Y=y+(B_b)+(S_s) $	ac o	Index Reg	Y = y + (I 17 17 17 17 17 17	3 _b) + 16 Ind nato SB c	(S _s) 15	Relative Address (y) gnator (s) signator (i) 32 – (w)-+p and y + 1y, 3 12 Relative Address (y) gnator (s)	

If Bits	and	
31. 30 & 29	and	Designators in current indirect control word used as follows:
Equal	Equals	Designators in current indirect control word used as follows:
000 (IWS)	1	The next indirect word address $Y = sy + (S_b)$
001 (IWB)	1	The next indirect word address $Y = sy + (B_{\hat{D}}) + (S)$ as designated by $(B_{\hat{D}})_{19-17}$
000 (IWS)	0	The operand* address $Y = sy + (S_h)$
001 (IWB)	0	The operand* address $Y = sy + (B_h) + (S)$ as designated by $(B_h)_{19-17}$
10X: (IW)	1	The next indirect word address is $Y = y + (B_h) + (S_g)$
01X (IWC)	1	The next indirect word address is $Y = y + (B_b) + (S_c)$
11X (IWCI)	1	The next indirect word address is $Y = y + (B_b) + (S_s)$
10X (IW)	0	The operand* address $Y = y + (B_h) + (S_g)$
01X (IWC)	0	The address of the single character operand defined by w and p is $Y = y + (B_b + (S_c))$
11X (IWCI)	0	The address of the sequential character operand defined by w and p is $Y = y + (B_{\hat{p}}) + (S_{\hat{q}})$.
		Then if $p-w \ge 0$, $p-w \to p$ and $y \to y$ if $p-w < 0$, $32-w \to p$ and $y+1 \to y$
		The updated indirect control word is stored back into main memory for the nex execution.

The operand is defined by the function code and in Format I instructions the k designator.

OPERAND INTERPRETATIONS FOR JUMP INSTRUCTIONS (FORMAT III)
k is not used
When $i = 0$ the jump address $Y = y + (B_h) + (S_h)$
When $i = 1$ the indirect control address $Y = y + (B_b) + (S_s)$.
Indirect addressing continues through all indirect control words until $i=0$ is encountered. Depending on the c-field in the indirect control word the jump address will be $Y=y-t$ (Bj.) $t+S_j$. $Y=y+t$ (Sj.) or $Y=y+t$ (Bj.) $t=y-t$ (Sj.) as specified by (Bg) $y=t$ 1. The indirect control word t 2 are specified by (Bg) $y=t$ 3. The indirect control word for a Format III instruction is not allowed. These are jump instructions.
Note: Any jump instruction with i = 1 and (SPR)S bit 16 = 1 is privileged.

Repeated			a Fiel	d of F	lepea	t Inst			Terminate	Repeated		а	Field	of Re	peat	ed Ins	it.		Terminat
Instruction	0	1	2	3	4	5	6	7	7 on	Instruction	0	1	2	3	4	5	6	7	on
010	X	X	X	X	X			X	Aa	17	X	X	Х	X	X			X	Aa
011	X	X	X	X	X			X	Aa	20					X			X	
012	X	X	X	X	X			X	A _{a+1}	21					X			X	- 1
013	X	X	X	X	X			X	Aa	22					X			X	100
014	X	X	X	X	X			X	Aa + 1	23					X			X	
015	X	X	X	X	X			X	Aa	24	X	X	X	X	X	X	X	X	Aa
016	X	X	X	X	X			X	Aa + 1	26					X	X	X	X	OP*
017	X	X	X	X	X			X	Aa+1	27					X	X	X	X	OP*
020	X	X	X	X	X			X	Aa	32‡					X			X	
024	X	X	X	X	X	X	X	X	OP**	33‡					X			X	
025	X	X	X	X	X	X	X	X	Aa+1	34‡	X	X	X	X	X	X	X	X	Aa + 1
026	X	X	X	X	X	X	X	X	Aa + 1	35‡	X	X	X	X	X	X	X	X	Aa
03.0‡	X	X	X	X	X	X	X	X	Aa	36‡	X	X	X	X	X	X	X	X	Aa+1
03 1‡	X	X	X	X	X	X	X	X	Aa	37‡	X	X	X	X	X	X	X	X	Aa
03 2‡	X	X	X	X	X	X	X	X	Aa+1	40					X			X	
033#	X	X	X	X	X			X	Aa	41					X			X	
03 4#	X	X	X	X	X	X	X	X	Aa+1	42	X	X							CD
03 5‡	X	X	X	X	X	X	Х	X	Aa+1	44	X	X	X	X	X	X			CD
036‡	X	X	X	X	X	X	X	X	Aa+1	45	1000						X	X	CD
037‡	X	X							CD	46	X	X	X	X	X	X			CD
10	X	X	X	X	X			X	Aa	47	X	X	X	X	X	X			CD
12	X	X	X	X	X			X	Aa + 1	541					X			X	
13	X	X	X	X	X			X	Aa	55†					X			X	
14	X	X	X	X	X			X	Aa	56t					X			X	
15	X	X	X	X	X			X	Aa+1	57†					X			X	
16	X	X	X	X	X			X	Aa										

* Unpredictable operation will occur for unusable conditions.

** OP is the 32-bit result of the execution.

† In the repeat mode, ak+1→ak for each execution. These instructions are not interruptable in the repeat mode. These instructions are privileged if repeat is attempted in the Task mode (Privileged Instruction Error).

For replace class instructions, use S6 on store cycle; if in repeat instruction, b ≠ 0.

Note: Any repeated instruction with i = 1 and (SPR)_S bit 16 = 1 is privileged.

If B7 = Ø skip next instruction.

At termination, sy sign extended will have been added to (Bb).

а	Non-Compare Instructions	a	Compare Instructions				
0	Terminate if A ≠ 0	0	Terminate if CD set to ≠				
1	Terminate if A = 0	1	Terminate if CD set to =				
2	Terminate if A > 0	2	Terminate if CD set to >				
3	Terminate if A < 0	3	Terminate if CD set to >				
4	Do not terminate	4	Terminate if CD set to <				
5	Terminate if (A) is even parity on write into memory	5	Terminate if CD set to <				
6	Terminate if (A) is odd parity on write into memory	6	Terminate if CD set to outside				
7	Do not terminate	7	Terminate if CD set to within limit				

ROUNDING OF FLOATING POINT RESULTS

Mantissa rounding is performed (A_{n+1}) according to the status of the intermediate double-length result in the arithmetic section for add, subtract and multiply; and according to the value of the remainder in divide operations. The final sum or difference mantissa in (Aa + 1) is rounded as follows:

1. If bit 31 of the 64 bit intermediate sum or difference equals 1 and (A_{n+1}) are positive, 1 is added to (A_{n+1}) .

2. If bit 31 of the 64 bit intermediate sum or difference equals 0 and (A_{n+1}) are negative, 1 is subtracted from (A_{n+1}) .

 If not 1 or 2 above, (A_{B+1}) are not changed.
 If overflow results in 1 or 2 above (A_{B+1}) are shifted right one place, 1 is added to the characteristic exponent in A_B and the mantissa sign bit in An + 1 is restored.

Rounding of a product mantissa is done before final sign correction.

1 is added to (A_{a+1}) if bit 31 of the 64 bit intermediate product equals 1; otherwise (A_{a+1}) are not changed.

Rounding of a quotient mantissa is done before final sign correction.

1. If the remainder is equal to or greater than one-half the divisor and there is no overflow, 1 is added to (A_{a+1}) .

If bit 31 of the quotient in A_{B+1} equals 1, (A_{B+1}) are shifted right one place, (A_{B+1})₀ before shifting, is added to the shifted
(A_{B+1}) and 1 is added to the characteristic exponent in A_B.

PROGRAMMER NOTES

USE A PENCIL FOR ENTRIES AND CHANGES MAY BE MADE WITH AN ERASER.

IOC BUFFERED REQUEST PRIORITY								
REQUEST	REQUEST TITLE	ACTION WHEN PROCESSED						
Channel dependent	Buffer request (includes EI, EF, outputs and input)	Performs transfer based on buffer request priority first by channel (17 highest, 0 lowest) then as specified below.						
1a	External interrupt request (occurs when an external device sets the external interrupt request line)	Performs a one word external interrupt word transfe using the control memory word at CMR address fo channel.						
1b	External function request (occurs when an external device sets the external function request line)	Performs a one word external function code won transfer using the control memory word at CMI address for channel.						
1c	Output data request (occurs when an external device sets the output data request line)	Performs a one word output data word transfer using the control memory word at CMR address for channel.						
1d	Input data request (occurs when an external device sets the input data request line)	Performs a one word input data word transfer using th control memory word at CMR address for channel.						

PRIORITY	REQUEST TITLE	ACTION WHEN PROCESSED					
1	Intercomputer Terminate Sequence	Performs the termination functions when an intercomputer channel terminates.					
2	Clock Request	Decrement the IOC monitor clock by 1 and increment the real-time clock by 1.					
3	Central Processor Instruction for IOC and Interrupt Status Code Requests.	Performs the function as commanded according to priority below.					
3a	CP No. 0 Request*						
3b	CP No. 1 Request*						
3c	CP No. 2 Request*						
4	Central Processor Command Address Request	Performs the function as commanded according to priority below.					
4a	CP No. 0 Request (* The numbers 1 & 2 are IOC						
4b	CP No. 1 Request port numbers and not necessarily the same as						
4c	CP No. 2 Request CPU I.D.						
5	Chain Commands (Note 1) (channel associated)	Performs the function as commanded according to normal channel priority.					

REGISTER SELECT	CM ADDRESS SELECT/SELECT 2	I/O CONTROLLER DISPLAY (IOC must be in SEQ mode)	MON/ CHAIN
CMP	0-77	Bits 55-38 of IOCM (CAP) specified by CM ADDRESS SELECT	N.U.
CMU	0-77	Bits 37, 36 and 33-18 of IOCM specified by CM ADDRESS SELECT	bit 35 (chain)
CML	0-77	Bits 17-0 of IOCM specified by CM ADDRESS SELECT	bit 34 (monitor)
DIRU	N.U.	Bits 31-18 of DIR	N.U.
DIRL	N.U.	Bits 17-0 of DIR	N.U.
SEL 2	CAR + 0	(CAR 0) bits 17-0‡	CAR ACT
	CAR + 1	(CAR 1) bits 17-0‡	CAR ACT
	CAR + 2	(CAR 2) bits 17-0‡	CAR ACT
	ILR + 0	(ILR 0) channels 15-0†	N.U.
	ILR + 1	(ILR 1) channels 15-01	N.U.
	ILR + 2	(ILR 2) channels 15-0†	N.U.
	CHAN + 0	Buffer actives by type on channels 3-01	N.U.
	CHAN + 1	Buffer actives by type on channels 7-4 †	N.U.
	CHAN + 2	Buffer actives by type on channels 10-131	N.U.
	CHAN + 3	Buffer actives by type on channels 17-141	N.U.
	CHAIN + 0	Chain actives by type on channels 3-0 †	N.U.
	CHAIN + 1	Chain actives by type on channels 7-4 †	N.U.
	CHAIN + 2	Chain actives by type on channels 13-101	N.U.
	CHAIN + 3	Chain actives by type on channels 17-141	N.U.
	60	(RTC) bits 17-0	CAR'0 ACTIVE
	61	(RTC) bits 31-18	CAR 1 ACTIVE
	62	(IOC MONITOR CLK) 15-0	N.U.

N.U. Not Used

† These displays are indicate only and are available in both RUN and SEQ mode.

These displays are available in both RUN and SEQ mode.