

AN/UYK-7 COMPUTER REPERTOIRE OF INSTRUCTIONS

CENTRAL PROCESSOR COMMANDS

Code	Mnemonic	NAME	DESCRIPTION	F	CA	R	UF	Time µS
00	ILLEGAL						П	
010	OR	Inclusive OR (Selective Set A)	(Y) ⊕ (A _a)→A _a	11	Y	Y	2	1.5
01 1	SC	Selective Clear A	$(A_a) \circ (Y)' \rightarrow A_a$	11	Y	Y	2	1.5
012	MS	Selective Substitute	$(Y)_{n} \rightarrow (A_{n+1})_{n}$ for all $(A_{n})_{n} = 1$: $(A_{n})_{i} = (A_{n})_{i}$	II	Y	Y	2	1.5
013	XOR	Exclusive OR (Sel. Comp. A)	$(Y) \equiv (A_n) \rightarrow A_n : (A_n)_n' \rightarrow (A_n) \text{ for } (Y)_n = 1$	11	v	Y	2	1.5
01 4	ALP	Add Logical Product	$(Y) \oplus (A_3) \rightarrow A_3; (A_3)_n' \rightarrow (A_3) \text{ for } (Y)_n = 1$ $(A_{3+1}) + (Y) \odot (A_3) \rightarrow A_{3+1}; (A_3)_i = (A_3)_f$	11	v	Y	2	1.5
015	LLP	Load Logical Product	(Y) ⊙ (A _B)→A _B	ii.	Y	Y	2	1.5
016	NLP	Subtract Logical Product	(A -) (V) = (A) - (A)					
			$(A_{3+1}) - (Y) \odot (A_{3}) \rightarrow A_{3+1}; (A_{3})_{i} = (A_{3})_{f}$	11	Y	Y	2	1.5
017	LLPN	Load Logical Product Next	$(Y) \otimes (A_8) \rightarrow A_{8+1}; (A_8)_i = (A_8)_f$	11	Y	Y	2	1.5
020	CNT	Count Ones	No. of Bits Set in (Y)→A _B	11	Y	Y	2	7.51
02 1	ILLEGAL							
022	XR	Execute Remote	(Y)→U. Execute (Y) _U only of two half words.	11	N	N	8	1.5
023	XRL	Execute Remote Lower	(Y) _L →U	11	N	N	8	1.5
024	SLP	Store Logical Product	$(A_{a+1}) \circ (A_{a}) \rightarrow Y; (A_{a})_{i} = (A_{a})_{f};$					
		otoro augross ricassor	(A a): (A a):	11	V	Y	2	1.5
02.5	SSUM	Ctron Com	$(A_{a+1})_{i=}(A_{a+1})_{f}$		1			
		Store Sum	$(A_a) + (A_{a+1}) \rightarrow A_{a+1} & Y; (A_a)_i = (A_a)_f$	11	Υ	Y	2	2.0
026	SDIF	Store Difference	$(A_a) + (A_a + 1)^{-a}A_a + 1&Y (A_a)_i = (A_a)_f$ $(A_a + 1) - (A_a) \rightarrow A_a + 1&Y (A_a)_i = (A_a)_f$ $(A_a + 1, A_a) \rightarrow Y + 1, Y$	11	Y	Y	2	2.0
02711	DS	Double Store A	$(A_{a+1}, A_{a}) \rightarrow Y + 1, Y$	II	N	N	2	3.0
03 0	ROR	Replace Inclusive OR	$(Y) \oplus (A_3) \rightarrow A_3 \& Y$ $(A_3) \odot (Y)' \rightarrow A_3 \& Y$	11	Y	Y	2	2.5
03 1	RSC	Replace Selective Clear	$(A_n) \circ (Y)' \rightarrow A_n & Y$	11	Y	Y	2	2.5
03.2	RMS	Replace Selective Substitute	$(Y)_n \rightarrow (A_{a+1})_n$ for all $(A_a)_n = 1$; Then $(A_{a+1}) \rightarrow Y$; $(A_a)_i = (A_a)_f$					
		Tropico Constituto Constituto	Then (A share) (A hand A	11	Y	V	2	2.5
03.3	RXOR	Paninas Evalurius OR	(V) E (A) = A & V (A) ' = A & V (- V	11		Y	2	2.5
		Replace Exclusive OR	$(Y) \in (A_a) \rightarrow A_a & Y; (A_a)_n \rightarrow A_a & Y \text{ for } Y_n = 1$		N			
03 4	RALP	Replace A + Logical Product	$(A_{a+1}) + (Y) \odot (A_a) \rightarrow A_{a+1} & Y; (A_a)_i = (A_a)_f$	11	Y	Y	2	2.5
03 5	RLP ·	Replace Logical Product	$(Y) \circ (A_a) \rightarrow Y & A_{a+1}; (A_a)_i = (A_a)_f$	11	Y	Y	2	2.5
036	RNLP	Replace A - Logical Product	$(A_{8+1})-(Y) \odot (A_{8}) \rightarrow A_{8+1} \& Y; (A_{8})_{i} = (A_{8})_{f}$ If $(Y)_{31}=0$, CD Set EQUAL. $1 \rightarrow Y_{31}$	11	Y	Y	2	2.5
03 7	TSF	Test and Set Flag	If (Y)31 = 0, CD Set EQUAL. 1→Y31	II	N	Y	8	2.5
			If (Y)31 = 1, CD Set UNEQUAL. This instruction					
			cannot use indirect addressing.					
04 X	ILLEGAL		gi					
04 X 05 0±±	DI	Double Load A	(V + 1 V) - A A	11	N	N	2	3.0
	DA		$(Y+1,Y) \rightarrow A_a+1$, A_a	11				
05 111		Double Add A	$(A_{8+1}, A_{8}) + (Y+1, Y) \rightarrow A_{8+1}, A_{8}$		N	N	2	3.0
05 2††	DAN	Double Subtract A	$(A_{8+1}, A_{8}) - (Y+1, Y) \rightarrow A_{8+1}, A_{8}$	II	N	Ν	2	3.0
05 311	DC	Double Compare	(A ₈ + 1, A ₈) − (Y + 1, Y) → A ₈ + 1, A ₈ Compare (A ₈ + 1, A ₈) to (Y + 1, Y), Set CD	11	N	N	2	3.0
054	LBMP	Load Base and Memory	$(Y)_{17.0} \rightarrow S_8$; $(Y+1)_{20.0} \rightarrow SPR_8$; $Y \rightarrow SIR_8$ Privileged if: ASR bit $8=0$, $s\neq 7$ or $a=7$.	11	N	N	2	5.75
		Protection	Privileged if: ASR bit 8 = 0. s≠7 or a = 7.					
			Illegal if y + (B _b) = odd.					
05.5	ILLEGAL							
05 6	ILLEGAL							
05.5	ILLEGAL							
		-			200			1000
06 011	FA	Floating-point Add	Shift (A_{a+1}) or $(Y+1)$ Right such that $(A_a) = (Y)$	11	N	N	2	6.25
			$(A_{n+1})+(Y+1)\rightarrow A_{n+1}$: Normalize					
06 111	FAN	Floating-point Subtract	Shift (A_{a+1}) or $(Y+1)$ Right such that $(A_a) = (Y)$	11	N	N	2	6.25
			$(A_{n+1}) - (Y+1) \rightarrow A_{n+1}$; Normalize					
06 211	FM	Floating-point Multiply	(A _a) + (Y)→(A _a)	11	N	N	2	10.01
			$(A_{8+1}) \cdot (Y+1) \rightarrow A_{8+1}$; Normalize	1			-	.0.01
06311	FD	m a management	(A ₈ + 1) • (1 + 1) • A ₈ + 1; Normalize	11			2	17.01
06311	FD	Floating-point Divide	$(A_a) - (Y) \rightarrow (A_a)$	11	N	Ν	2	17.01
A 107			(A _{a+1})+(Y+1)→A _{a+1} ; Normalize					
06 411	FAR	Floating-point Add with Round	Same as FA with (A _{a+1}) rounded	H	N	Ν	2	6.25
06 511	FANR	Floating-point Subtract w/Rd.	Same as FAN with (A _{B+1}) rounded	H	N	N	2	6.25
06 611	FMR	Floating-point Multiply w/Rd.	Same as FM with (A _{B+1}) rounded	11	N	N	2	10.01
06711	FDR	Floating-point Divide w/Rd.	Same as FD with (A _{a+1}) rounded	11	N	N	2	17.0
070a=0	XS	Enter Executive State	sy + (B _b)→CMR 156; Enter class IV(Executive)	11	N	N	11	4.0
07 0° a=1		Interprocessor Interrupt	Send Class II interrupt to processors n (0-7)	ii	N		11	4.0
070 a-1	IFI	interprocessor interrupt	Send class if interrupt to processors if to-77	111	14	14	11	4.0
			IF bit n of sy + (B_b) = 1. Prevent self-					
			interrupt if $sy + (B_b)$ bit $15 = 1$.					
07 1**	AEI	Allow Enable Interrupt	Allow Monitor interrupts from IOC a on					
		and the same of th	Channels n; IF bit n of sy + (B _b) = 1:	11	N	N	6	2.0
			Bit 25 is ignored		14	14	0	2.0
072**	PEI	Decree Freble Internet						
0/2-	rel	Prevent Enable Interrupt	Prevent Monitor interrupts from IOC a on	-	100	1		2
			Channels n; IF bit n of sy + $(B_b) = 1$:	11	N	N	6	2.0
			Bit 25 is ignored					
073**	LIM	Load IOC Monitor Clock	sy + (B _b)→IOC a MON CLK	11	N	N	6	3.0
074**	10	Initiate I/O	Initiate IOC a at address Y	- 11	N	N	2	3.5
075*	IR	Interrupt Return	Return from highest State Specified	11	N	N	9	3.0
0000	100000	,	by ASR bits 19-16.				-	0.0
076	RP	Repeat	Repeat N.I.B7 Times; sy sign extended					
0,0	***	riopout	of Pannet added to P (All)			N	6	
			of Repeat added to Bb of N.I. after	-11	N	N	6	1.5
			each cycle. See Repeat Conditions					
			Illegal if in N.I. $i = 1$ and $c = 00$.					
077	ILLEGAL							
10	LA	Load A	<u>Y</u> →A _a	1	Y	Y	1	1.5
1111	LXB	Load A and Index B	$\underline{\underline{Y}} \rightarrow A_a$; $(B_b + 1 \rightarrow B_b$. Illegal if $i = 1$	1	Y	N	1	1.5
			and cc = 00.					
12	LDIF	Load Difference	\underline{Y} - $(A_a) \rightarrow A_{a+1}$; $(A_a)_i = (A_a)_f$	1	Y	Y	1	1.5
13	ANA	Subtract A	(A _a) - Y→A _a	1	v	Y	1	1.5
14	AA	Add A	(A) Y = A	,		Y	1	
			$(A_a) + \underline{Y} \rightarrow A_a$	1	1			1.5
15	LSUM	Load Sum	$(A_a) + \underline{Y} \rightarrow A_{a+1}; (A_a)_i = (A_a)_f$	1	Y	Y	1	1.5
16	LNA	Load Negative	$\underline{Y}' \rightarrow A_{a}$	1	Y	Y	1	1.5
17	LM	Load Magnitude	Y →A ₂	1	Y	Y	1	1.5
20	LB	Load B	Y→B _a	1	Y	Y	1	2.0
21	AB	Add B	(B _a) + Y→B _a ; B _a zero extended	1	v	Y	1	2.0
22	ANB	Subtract B	(B) V-B B servereded	1		Y	1	2.0
			(B _a) – <u>Y</u> →B _a ; B _a zero extended	1	T			
23	SB	Store B	(B _a)→ <u>Y</u>		Y	Y	1	1.5
24	SA	Store A	(A _a)→ <u>Y</u>	1	Y	Y	1	1.5
25††	SXB	Store A and Index B	$(A_a) \rightarrow \underline{Y}; (B_b) + 1 \rightarrow B_b.$ Illegal if $i = 1$	-1	Y	N	1	1.5
			and cc = 00.					
			IN M. M.	1747	N	Y	1	1.5
26	SNA	Store Negative		1				
26 27	SNA	Store Negative Store Magnitude	$(A_3)' \rightarrow \underline{Y}$ $ (A_3) \rightarrow \underline{Y}$	1	N	Y	1	1.5

 $\label{eq:privileged} \begin{tabular}{ll} * CPU+IOC Instr. $-$ Privileged & $-$ Privileged when a * 2X, 6X, or 7X or Repeated. \\ 1 Execution time independent of overlap operation & If r^* in Sept. $f = 1$ is 1 SPR]_b bit $f = 1$. \\ 1 Times shown assume 1 is, a memory with operands not in same bank as instructions to overlapped). \\ \end{tabular}$

31	ILLEGAL								
32	BZ	Clear Bit	0→Yak	- 1	1		Y	3	2.5
13	BS	Set Bit	1-+V .	1	1		Y	3	2.5
34	RA	Replace Add	(A _a) + Y→A _{a+1} & Y; (A _a); = (A _a) _f	1	1	1	Y	1	2.5
15	RI	Replace Increment	$(A_a)_1 + Y \rightarrow A_{a+1} & Y; (A_a)_i = (A_a)_f$ $\frac{Y}{Y} + 1 \rightarrow \overline{A}_a & \frac{Y}{Y}$ $\frac{Y}{Y} - (A_a) \rightarrow A_{a+1} & Y; (A_a)_i = (A_a)_t$	1	1	1	Y	1	2.5
86	RAN	Replace Subtract	$Y = (A_a) \rightarrow A_{a+1} & Y; (A_a)_i = (A_a)_t$	1	1	1	Y	1	2.5
37	RD	Replace Decrement	Y_1→A ₈ &Y	i	1	1	Y	1	2.5
10	M	Multiply A	(An) • Y→An + 1. An	i	1	,	Ý	1	7.51
11	D	Divide A	(A ₂ + 1, A ₂) + Y→A ₂ : remainder→A ₂ + 1	i	1	1	Y	1	14.51
42	BC	Compare Bit to Zero	If (Y) = 0 CD Set FOLIAL	i		u u	Y	3	1.5
-	50	compare dit to Euro	$\frac{\mathbf{Y}}{\mathbf{A}_{a}} = \frac{\mathbf{Y}}{\mathbf{A}_{a}} + \mathbf{A}_{a} + \mathbf{A}_{a}$ $(\mathbf{A}_{a}) + \underbrace{\mathbf{Y}}_{\mathbf{A}_{a}} + \mathbf{Y}_{\mathbf{A}_{a}} + \mathbf{A}_{a}$ $(\mathbf{A}_{a}) + \mathbf{Y}_{\mathbf{A}_{a}} + \mathbf{Y}_{\mathbf{A}_{a}} + \mathbf{Y}_{\mathbf{A}_{a}}$, remainder $\mathbf{A}_{a} + 1$ If $(\mathbf{Y})_{ak} = 0$, CD Set EQUAL If $(\mathbf{Y})_{ak} = 1$, CD Set UNEQUAL Bit 25 is ignored					•	
43	CXI	Compare Index Increment	If $(B_a) \ge \underline{Y}$, CD Set OUTSIDE, $0 \rightarrow B_a$ If $(B_a) < \underline{Y}$, CD Set WITHIN, $(B_a) + 1 \rightarrow B_a$	- 1	1		N	1	2.0
44	С	Compare	Compare (A _a) to <u>Y</u> , Set the CD	1	1		Υ	1	1.5
45	CL	Compare Limits	If $(A_{a+1}) > \underline{Y} \ge (A_a)$, Set CD WITHIN	- 1	1		Υ	1	1.5
46	CM	Compare Masked	Compare (A_{a+1}) to $(A_{a}) \odot \underline{Y}$, Set the CD	- 1	1	1	Y	1	1.5
47	CG	Compare Gated	Compare $ \underline{Y} - (A_a) $ to (A_{a+1}) , Set the CD	1	1	1	Υ	1	1.5
50 0	JEP	Jump on Even Parity	If $(A_0 + 1) \supseteq Y \supseteq (A_0)$, Set CD WITHIN Compare $(A_0 + 1)$ to $(A_0) \supseteq Y$, Set the CD Compare $ Y = (A_0) $ to $(A_0 + 1)$, Set the CD If $(A_0 + 1) \supseteq (A_0)$ is Even Parity, jump to Y	111	١		N	1	2.0
50 1	JOP	Jump on Odd Parity	If $(A_{a+1}) \circ (A_a)$ is Odd Parity, jump to Y	HI	1	4	N	1	2.0
50 2 50 3	DJZ DJNZ	Jump Double Precision Zero Jump Double Precision Not	If $(A_{a+1}, A_a) = 0$, jump to Y	III	1		N	1	2.0
		Zero	If $(A_{a+1}, A_{a})\neq 0$, jump to Y	III	1		N	1	2.0
510	JP	Jump A Positive	If $(A_a) \ge 0$, jump to Y	111		1	N	1	1.5
51 1	JN	Jump A Negative	If (A _a) < 0, jump to Y	111	. 1		N	1	1.5
512	JZ	Jump A Zero	If $(A_3) \ge 0$, jump to Y If $(A_3) < 0$, jump to Y If $(A_3) = 0$, jump to Y	III		4	N	1	1.5
513	JNZ	Jump A Not Zero	If $(A_a) \neq 0$, jump to Y	111		V	N	1	1.5
520	LBJ	Load B and Jump	(P)+ 1→B _n , jump to Y	111	1	4	N	1	1.8
52 1	JBNZ	Index Jump B	If $(B_a) \neq 0$, then $(B_a) - 1 \rightarrow B_a$, jump to Y	III	i		N	1	1.8
52 2	JS	Jump sv + B	If $(B_a) \neq 0$, then $(B_a) - 1 \rightarrow B_a$, jump to Y Jump to sy $+ (B_b)$	III				13	1.5
523	JL	Unconditional Jump Lower	Jump to the Lower of Y	111	,			12	1.5
530a=0		Jump on No Overflow	If OD is not Set, Jump to Y; Clear OD	III	N			12	1.5
30a=1		Jump on Overflow	If OD is Set, jump to Y; Clear OD	III	N			12	1.5
31a=0		Jump on Not Equal	If CD ≠ .iump to Y	111	N			12	1.5
31a=0 31a=1		Jump on Equal	If CD ≠ , jump to Y If CD = , jump to Y	111	N			12	1.5
31a=1	JG	Jump on Greater Than	If CD >, jump to Y	III	N			12	1.5
331a=2 531a=3	JGE	Jump on Greater Than or Equal		111	N			12	1.5
531a=4	JLT	Jump on Less Than	If CD ≥, jump to Y If CD <, jump to Y	111	N			12	1.5
	JLE	Jump on Less Than or Equal	If CD ≤, jump to Y If CD ≤, jump to Y	III	N		N	12	1.5
31a=6		Jump Outside Limits	If CD Outside Limite jump to V	111	N			12	1.5
31a=7	JW	Jump Within Limits	If CD Within Limits, jump to Y	111	N			12	1.5
32	RJ	Return Jump a = o	(P)+ 1→Y jump to Y + 1	111	N			12	3.0
32	RJC	Return Jump a = 1, 2, 3	If CD Within Limits, jump to Y (P)+ 1→Y, jump to Y + 1 If switch a is Set, (P) + 1→Y, jump to Y + otherwise N.I.	1; 111	N	1	N	1	3.0
	RJSC	Return Jump a = 4, 5, 6, 7	If switch a is Set, Stop;(P)+ 1→Y, jump to Y + 1 at restart	Ш	N		N	1	3.75
533	J	Manual Jump a = o	Jump to Y	III	N	ı	N ·	12	1.5
	JC	Manual Jump a = 1, 2, 3	If switch a is Set, jump to Y; otherwise N.I.	III	٨	1	N	1	1.5
	JSC	Manual Jump a = 4, 5, 6, 7	If switch a is Set, Stop; Jump to Y at restart	III	N	1	N	1	2.25
542	LCT	Load CMR Task	(Y)→CMRak	1	N		Y	3	1.5
55*	LCI	Load CMR Interrupt	(Y)→CMR _{ak} + 100	1	N		Ÿ	3	1.5
56-	SCT	Store CMR Task	(CMR _{ak})→Y	1	N		Ý	3	1.5
57*	SCI	Store CMR Interrupt	(CMR-Is 100)-+Y	1	N		v	3	1.5
50 ri=0	HSCT	Store CMR in A	(CMR _{ak+100})→Y (CMR _{af4})→A _b	IV			N	4	1.75
30*i=1	HSCI	Store CMR in A	(CMRaf + 100)→Ab load/store only	IV			N	4	1.75
	HLCT	Load CMR in A	(Ab)→CMR _{af4} load/store only bits 15–0 of B	IV			N	4	1.7
	HLCI	Load CMR from A	(A _b)→CMR _{af4} bits 15–0 of B (A _b)→CMR _{af4+100}	IV			N	4	1.75
52	HLC	Shift Left Circularly	(A _B) Left Shifted End Around→A _B	IV				10	1.75
33	HDLC	Shift Left Circularly Double	(A ₈ + 1, A ₈) Left Shifted End Around→A ₈ + 1, A ₈	IV				10	1.75
33	HRZ	Shift Right Fill Zeros		IV	3 N			10	1.75
35	HDRZ	Shift Right Double, Fill Zeros	(A _a) Right Shifted, Zero Fill + A _a	IV				10	1.75
56	HRS	Shift Right Double, Fill Zeros Shift Right Fill Sign	(A _a + 1, A _a) Right Shifted, Zero Fill→A _a + 1, A _a (A _a) Right Shifted, Sign Fill→A _a (A _a + 1, A _a) Right Shifted Sign Fill→A _a + 1, A _a	IV				10	
27		Shift Black David Sign	(A ₈) right Shifted, Sign Fill→A ₈	IV	3 N				1.75
57 70 0	HDRS	Shift Right Double, Fill Sign	(A ₈ + 1, A ₈) Right Shifted Sign Fill→A ₈ + 1, A ₈	IV				10	1.75
	HDSF	Scale Factor	Normalize (A _a) Shift Count→A _b	IV.	A N		N	5	2.25
70 1 70 2	HDSF	Double Scale Factor	Normalize (A _{a+1} , A _a) Shift Count→A _b	IV.			N	5	2.25
02		Complement A	(A _a)' →A _a	IV	AN		N	7	1.1
	HDCP	Double Complement A	(A _{a+1} , A _a)'→A _{a+1} , A _a	IV	A N		N	7	1.1
	ILLEGAL								
705	ILLEGAL								
706	ILLEGAL								
707	ILLEGAL	1							
710	HOR	Logical Sum	$(A_a) \oplus (A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$ if $a \neq b$	IV			N	5	1.0
111	HA	Sum	$(A_a) + (A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$ if $a \neq b$ $(A_a) - (A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$ if $a \neq b$ $(A_a) \stackrel{?}{=} (A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$ if $a \neq b$ $(A_a) \stackrel{?}{=} (A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$ if $a \neq b$	IV	A N		N	5	1.0
12	HAN	Difference	$(A_a) - (A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$ if $a \neq b$	IV.	AN	1	N	5	1.0
113	HXOR	Logical Difference	$(A_a) \equiv (A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$ if $a \neq b$	IV.	A N	4	N	5	1.0
715	HAND	AND	$(A_a) \odot (A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$ if $a \neq b$	IV	A N	1	N	5	1.0
71.6	ILLEGAL								
717	ILLEGAL								
	ILLEGAL								
	ILLEGAL								
740	НМ	Multiply Register	$(A_{B}) \bullet (A_{D}) \neg A_{B+1}, A_{B}$ $(A_{B+1}, A_{B}) \vdash (A_{D}) \neg A_{B};$ Remainder $\neg A_{B+1}$ $(A_{B+1}, A_{B}) \neg A_{D};$ Residue $\neg A_{D+1}$ $(B_{D}) \neg B_{B}$	IV		1	N	5	7.75
41	HD	Divide Register	(Aa + 1, Aa) + (Ab)→Aa; Remainder→Aa + 1	IV	A N	1	N	5	15.01
42	HRT'	Square Root	$\sqrt{(A_{a+1}, A_{a})} \rightarrow A_{b}$; Residue $\rightarrow A_{b+1}$	IV.	A N	1	N	5	15.01
43	HLB	Load Ba with Bb	(Bh)→Ba	IV			N	5	1.75
744	HC	Compare, Register		IV		4	N	5	1.1
45	HCL	Compare Limits, Register	If (An + 1) > (An) ≥ (An) Set CD WITHIN	IV			N	5	1.75
46	HCM	Compare Masked, Register	compare (A_a) to (A_b) , set CD WITHIN Compare $(A_a+1) \circ (A_b) \geqslant (A_a)$, Set CD WITHIN Compare $(B_a+1) \circ (A_a)$ to (A_b) , Set the CD Compare (B_b) to (B_a) , Set the CD	IV			N	5	1.1
47	HCB	Compare Bb with Ba	Compare (B.) to (B.) Set the CD	IV	AN		N	5	2.0
5 X	ILLEGAL	Danie ob willi pa	compare robi to toar, set the CD	10	. 0		44	9	2.0
76 X	ILLEGAL								
77 0**	HSIM	Store IOC Monitor Clark in A	HOC MON CLKI-A-	100			N/		20
	HSTC	Store IOC Monitor Clock in A	(IOC _a MON CLK)→A _b (IOC _a RTC)→A _b	IV.			N	5	3.0
77 1	HSTC	Store Real-Time Clock in A	(IOCa HTC)→Ab	IV	A N	ı	N	5	3.5
77.2 77.3									
	ILLEGAL		Terrest Control of the Control of th					950	
	HPI	Prevent Class III Interrupts	Set Class III Interrupt Lockout in the ASR	IV.			N	9	2.25
74*	HAI	Allow Class III Interrupts	Clear Class III Interrupt Lockout in the ASR	IV.	A N		N	9	2.25
77.4*		Stop Processor	Stop CPU (4-Stop); Continue at Restart	IV.	AN	J	N	9	2.25
77.4* 77.5* 77.6*i=0	HALT								
77.4*	HALT HWFI ILLEGAL	Wait for Interrupt	Cease Memory References until Interrupted	IV.	A N	1	N	9	2.25

Form												
31	26	25	23	22	20	19	17	16	15	13	12	(
f Forma	v+ 11		а	,	<		b	i		s	У	
31	26	25	23	22	20	19	17	16	15	13	12	(
f Forma	t III		а	f	2		b	1		s	У	
31	26	25	23	22	21	20	19 1	7 16	15	13	12	(
- f	F		a nat IV	f.	3	z	b	i	Fo	s rmat l	V B	
31 26	25 :	23	22 20	15	17	16		31	26	25 23	22	11
	9	7	6 4	3	1	0		15	10	9 7	6	0
15 10	a		f4		b	i			f	a	ı	n
f	a	ion I	ode									
f - F 2f3f4	unct	Subf	uncti				Bit 2 ⁶			Funct	ion	-
f - F 2 f 3 f 4 1 - 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	unct — S Accur	Subf mula and I Reg	unction Rater Project	egist	er		0 1	Shi	ft by	Funct coun Bb if Ab if	25_ 25_()

FORMATIINSTRUCTION	k-FIELD INTERPR	
Memory to Arithmetic (Read)	Arithmetic to Mem	ory (Store)
sy SE+(B _b)→A ₁₅₋₀ SE (Y ₁₅₋₀)→A ₁₅₋₀ SE (Y ₃₁₋₁₆)→A ₁₅₋₀ SE (Y ₃₁₋₀)→A ₃₁₋₀	Not Used (A15-0)→Y 15-0; (A15-0)→Y 31-16; (A31-0)→Y31-0	Y31-16-UN Y15-0-UN
(Y ₇₋₀)→A ₇₋₀ ZE (Y ₁₅₋₈)→A ₇₋₀ ZE	(A ₇₋₀)→Y ₇₋₀ ; (A ₇₋₀)→Y ₁₅₋₈ ;	Y31-8-UN Y31-16-UN Y7-0-UN
(Y ₂₃₋₁₆)→A ₇₋₀ ZE	(A ₇₋₀)→Y ₂₃₋₁₆ ;	Y31-24-UN Y15-0-UN
(Y31-24)→A7-0 ZE	(A7-0)→Y31-24;	Y23-0-UN

S₆ and not S_S for store cycle.

	Task Mode	
Address	Use	Bits
0-7	Accumulator (A) registers 0-7	32
10	Unassigned	19
11-17	Index (B) registers 1-7	191
20-27	Base (S) registers 0-7**	18
30-57	Unassigned (not usable)	-
6x	Breakpoint register**	20
7x	Active status register**	23
	Interrupt Mode	
Address	Use	Bits
100 107	A a supervision (A) assistant 0.7	22

Address	Use	Bits
100-107	Accumulator (A) registers 0-7	32
110	CP monitor clock register	19*
111-117	Index (B) registers 1-7	191
120-127	Base (S) registers 0-7	18
130-137	Unassigned (not usable)	-
140	ICW-Class I	20
141	DSW-Class I ASR storage	20
142	DSW-Class I interrupt status code	20
143	DSW-Class I P-storage	20
144	ICW-Class II	20
145	DSW-Class II ASR storage	20
146	DSW-Class II interrupt status code	20
147	DSW-Class II P-storage	20
150	ICW-Class III	20
151	DSW-Class III ASR storage	20
152	DSW-Class III interrupt status code	20
153	DSW-Class III P-storage	20
154	ICW-Class IV	20
155	DSW-Class IV ASR storage	20
156	DSW-Class IV interrupt status code	20
157	DSW-Class IV P-storage	20
160-167	Storage Protection Registers (SPR) 0-7	21
170-177	Segment Identification Registers	
	(SIR) 0-7	21

*Clock is low order 16 bits

**Not Addressable in the Task Mode.
(Privileged instruction error will occur)
*Lower 16 bits used for index and arithmetic functions.
Upper three bits used only as a base-register designation. LBMP (05 4) CONSIDERATIONS The LBMP instruction is privileged when bit 8 of the ASR = 0, or if bit 8 of the ASR = 1 and (s≠7 or a = 7)

All function codes except the 05 4 (LBMP) are privileged when bit 8 of the ASR = 1 and s = 7 in the instruction.

±	30	0	Sign Fill	±	14	(
	Mantissa in Aa + 1	or Y + 1	Characteris	tic (ex	ponent) in	Aa or

		DOUBLE PRECISION (DC	UBL	LELE	ENGTH) FORMAT	
±	30	Most Significant Half	0	31	Least Significant Half	0
		Y+1 or Aa+1			YorA	

ULTR	A/32 PSEU	DO INSTRUCTIONS		F	CA	З	UF	Time ‡
10	ZA	Clear A	0→A _a	1	N	Y	7	1.5
20	ZB	Clear B	0→Ba	1	N	Y	7	2.0
20	NOOP	No Operation	0-+B ₀	1	N	Y	9	2.0
23	SZ	Store Zeros	0-+Y	- 1	Y	Y	12	1.5
743	HNO	Half Word No Operation	(B ₀)→B ₀	IV A	Ν	N	9	1.75
ULTR	A/32 FORM	MATING MNEMONICS	10.00					
-	HK	Half Word Constant (Variable	field becomes next halfword)	-	-	-	16	_
_	IW	Indirect Word (c = 10)		1-	-	-	8	_
-	IWS	Indirect Word, Special Base ($c = 00, c_1 = 0$	-	-	-	11	-
-	IWB	Indirect Word, Special Index	c=00, c1=1)	-	-	-	11	-
-	IWC	Indirect Word, Character (c =	01)	_	-	-	14	_
-	IWCI	Indirect Word, Character Incre	ement (c = 11)	-	-	-	14	-
_	MP	Memory Protection (see SPR	format)	_	-	-	15	_

-	IWS	Indirect Word, Specia	Base (c=00, c1=0)				- 11	-	П
_	IWB	Indirect Word, Specia	I Index (c=00, c1=1)			- 11	-	ı
-	IWC	Indirect Word, Charac	ter (c = 01)				- 14	_	ı
-	IWCI	Indirect Word, Charac	ter Increment (c = 11)			- 14	-	1
-	MP	Memory Protection (s	ee SPR format)				- 15	-	ı
ULTF	RA/32 CODIN	G FORMATS (UF)		(An Asteris	k (*) Preceding y Indic	ates Ind	lirect Add	ressing)	
2 a	Variable Field y, k, b, s y, b, s	No. Variable Field 4 af4, b 5 a, b	No. Variable Field 7 a 8 y, b, s	No. Variable Field 10 a, m (shift by m) a, b, 1 (shift by Bb)	No. Variable Field 11 sy, b 12 y, k, b, s	15 r,	Variable w, p, b, s i, or, ow,	s	
3 al	k. v. b. s	6 a. sv. b	9 None	a, b, 2 (shift by Ah)	13 sy, k, b	16 e			1

Co.	SYMBOL DEFINITIONS	
CMR—Control Memory Register F—Format CA—Character Addressable R—Repeatable DSW—Designator Storage Word	$\label{eq:UF-Ultra-Format} \begin{split} &(A)_{n}-Contents \ of \ A, \ bit \ n \\ &CD-Compare \ Designator \\ &Y-Address \ formed \ by \ y+(B_{\underline{b}})+(S_{\underline{s}}) \\ &ICW-Initial \ Condition \ Word \end{split}$	Y—Operand (Y) (Whole word or partial word) or Y, depending on k ○ Logical product (AND) ○ Logical sum (Inclusive OR) □ Logical difference (Exclusive OR)

I/O CONTROLLER COMMANDS

(All Unused Function Codes are Illegal)

Code	Mnemonic	NAME	DESCRIPTION	UF**	Time μS
10	IB	Initiate Input Buffer on Cj	(y)→CMA* 0 + j; Activate Input	1	3.25
11	OB	Initiate Output Buffer on Cj	(y)→CMA* 20 + j; Activate Output	1	3.25
12	FB	Initiate External Function Buffer on Cj	(y)→CMA* 40 + j; Activate EF	1	3.25
13	XB	Initiate External Interrupt Buffer on Cj	(y)→CMA* 60 + j; Activate El	1	3.25
14 k = 0	TIB†	Terminate Input Buffer on Cj	Terminate Input m = 0 Suppress	2	3.0
14 k = 1	TOB†	Terminate Output Buffer on Cj	Terminate Output Queued Interrupt;	2	3.0
14 k = 2	TFB†	Terminate External Function Buffer on Cj	Terminate EF m = 1 Allow Queued	2	3.0
14k = 3	TXB†	Terminate External Interrupt Buffer on Cj	Terminate El Interrupt	2	3.0
15 k = 0	IMIR	Set Input Monitor Interrupt Request on Cj	Set Input Monitor Interrupt on Chan j	3	2.5
15 k = 1	OMIR	Set Output Monitor Interrupt Request on Cj	Set Output Monitor Interrupt on Chan j	3	2.5
15 k = 2	FMIR	Set EF Monitor Interrupt Request on Cj	Set EF Monitor Interrupt on Chan j	3	2.5
15 k = 3	XMIR	Set El Monitor Interrupt Request on Cj	Set El Monitor Interrupt on Chan j	3	2.5
16 k = 0	AIC	Set Input Chain Active on Cj	y→Command Address Pointer Field	4	2.5
16 k = 1	AOC	Set Output Chain Active on Cj	(bits 55-38) of CMA* 20k + j;	4	2.5
16 k = 2	AFC	Set External Function Chain Active on Cj	Activate Chain	4	2.5
16 k = 3	AXC	Set External Interrupt Chain Active on Cj		4	2.5
17 m = 0	TBZ	Test Bit Zero	If (y)ki = 0, SKIP; Else NI	7	4.0
17 m = 1	TBS	Test Bit Set	If (y)ki ≠ 0, SKIP; Else NI	7	4.0
20	JIO	Jump to y	y→Command Address Pointer or		
			CAR‡	6	2.5
22	LICM	Load IOC Control Memory	(y)→IOC Control Memory Address kj	5	3.25
23	ILTC	Load Real-Time Clock	(y)→Real Time Clock	6	4.0
24	SICM	Store IOC Control Memory	(IOC Control Memory)ki→y	5	2.75
25	IBS	Set Bit	1→y _{kj}	5	3.25
26	IBZ	Clear Bit	0→ykj	5	3.25
27	ITSF	Test and Set Flag	1-+y31; If (y)31 was Originally Cleared, Skip; Else NI	6	3.25
		FORMATING MNE	MONICS		
-	BCW	Buffer Control Word		8	-
=	BCWE	Buffer Control Word ESI		9	-

k-DESIG	NATOR DEFINITIONS	STATE OF THE STATE							
	k = 0	k = 1	k=2	k=3					
f = 10, 11, 13	Suppress data	Pack Quarter word	Pack Half word	Whole word					
f = 12	Force One Word (v) is FF	One Word Buffer (v) is FF	Multi Word Buffer	Not Used					

4-j, y, c

6-v.c

1 The terminate buffer commands terminate only <u>active buffers</u>. They have no effect on active chains. Terminating an active buffer also terminates the chain since the buffer never completed normally. To terminate an active chain, it is recommended that a 10 instruction with no chaining be initiated on the channel of function to be terminated by may be any valid address. However, attempts to terminate a <u>chain</u> on a channel and function with an <u>active buffer</u> will result in the CAP being overlayed but no change to the chain bit in IOCM. In this case, the buffer will complete normally and chaining will commence with the IO listruction which then terminates the chain.

Note: Clearing the IOC enables all monitor interrupts to all CPU's (i.e., all bits set in all ILR's) and clears all requests.

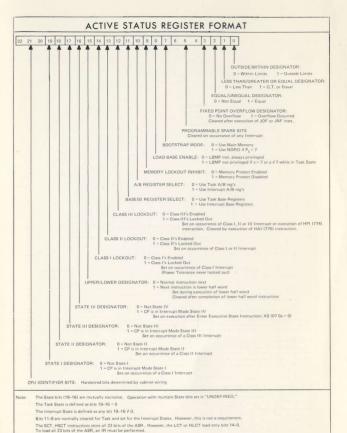
1-j, y, k, c, m

2-j, c, m 3-j, c

IOC	COMMAN	D WORD F	ORMAT							
31 26	25 24	23 20	19 18	17 0						
	Partial Word	Channel Number		Operand Address y						
	Desig.	(0-17)	Cha	Chain Flag c						
Function Code f	k	j	Monitor Flag m							

‡ Command Address Register

Control Memory Address


31	18	17	
Final Address Compare Bits		Initial Address	

8-y, I 9-y, I, k length)

100	ссо	NTROL	ME	MOF	YW	ORD	FOR	MA	Т	
55	38	37 36	35	34	33	32	31	18	17	0
Command		Partial			Byte		Fina	l.	Curre	ent
Address		Word			Poin	ter	Buff	er	Addr	ess
Pointer		Desig.		Mo	nitor	nter	rupt l	lag		Т
		-	Cha	in FI	ag					_

100	CONTROL MEMORY ASSIGNMENT
Address	Assignment
0-17	Input
20-37	Output
40-57	External Function
60-77	External Interrupt

	Partial Design		Final Ad Compar		Curren	t Address
		Parti	al Word Des	ignator [Definitions	
31	30	29	Quart	er Word	XX = 00 ne	xt byte 31-24
X	X	1			01 ne	xt byte 23-16
х	1		Half W K = 0 next w	ord 31-16	11 ne	xt byte 15- 8 xt byte 7- 0
1	0	0	Full Word	i		
0	0	0	Suppress	Data*		
	uppre					ds ified addres

the operand address of a conditional jump instruction, satisfied or unsatisfied. The breakpoint compare is done on the address as it is requested. When a jump instruction is executed the jump address will be requested: (and the breakpoint match will occur) whether the jump condition is met or not.

The P-storage of a satisfied instruction breakpoint interrupt on the operand address of a jump instruction will be the P address of the jump instruction: which did not complete due to the interrupt.

An Instruction or Operand Breakpoint Interrupt occurring on a remotely executed instruction will store the Address of the Execute Remote instruction at CMR 144 (P-storage DSW).

Class	INTERRUPT			St	atu	s	od	e i	Bit	s*			Action Taken
		9	8	7	6	5	4		3	2	1	0	L PETE
1*	Power Tolerance (never locked out)	0	0	0	0	0	0		1	1	1	1	(ASR)→CMR141 ISC→CMR142 (P)→CMR143 (CMR140)→P Set ASR bits 19, 14-8. Clear bits 6-0. Bit 7 is unchanged.
1 1 1 1 1 1 1	CP-Operand Memory Resume CP-IOC Command Resume CP-Instruction Memory Resume CP-IOC Interrupt Code Resume IOC Memory Resume Intercomputer Timeout	K O K K	KOKK	0 M 0 M	M 0 M 0 M C	0 M 0 M	0 M 0 M	0	0 0 0	0 0 0 0	0	1	(ASR)→CMR141 ISC→CMR142 (P)→CMR143 NDRO Address 000g→F Set ASR bits 19, 14-8, 7. Clear bits 6-0.
	Interprocessor Interrupt Floating Point Error Floating									0 0 0 1 1 1 0 0 0 0 1 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 1	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	IASR) - CMR 145 ISCCMR 146 (P)-CMR 147 (CMR 147 CMR 147 ISR 148 18, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
	IOC Illegal CAR Instruction IOC Illegal Chain Instruction IOC CP Interrupt IOC Monitor Clock IOC External Interrupt Monitor IOC External Function Monitor IOC Output Data Monitor IOC Input Data Monitor	KKKKK	KKKKKK	000000	00000000	000000	000000		1 1 1 1 1		0 F 1 0 0 1		(ASR)→CMR151 ISC→CMR152 (P)→CMR153 (CMR150)→P Set ASR bits 17, 12-8. Clear bits 6-0. Bit 7 is unchanged.
IV _	Executive Return	IS			gn	16	bit						(ASR)→CMR155 ISC→CMR156 (P)→CMR157 (CMR154)→P Set ASR bits 16, 11-8. Clear bits 6-0. Bit 7 is unchanged.

* Queued

:: PP-CPU NO. (0-2)

MMMM-Memory Bank (0-17)

CCCC-IOC Channel (0-17)

KK-IOC NO. (0-3)

FF = 00-EXT, INT.

01-EXT, FCT.

10-OUTPUT

11-INPUT

11-INPUT ** Definitions: PP-CPU NO. (0-2)

‡ If in Interrupt Mode and AUTO REC switch selected, then jump to NDRO address:

01 if bootstrap 0 selected 02 if bootstrap 1 selected 03 if bootstrap 2 selected

† Maintenance Console Breakpoint Program/Manual switch must be in the PROGRAM position.

✓ Stored P value is the address of the instruction causing the interrupt. (Exception - If the processor is executing an instruction while in the repeat mode, the stored P value will be the address of the repeat instruction.)

11 Fault conditions which illuminate program fault light.

For all Class IV, Class III and Class I or II not denoted above, the Stored P value is the address of the next instruction in the interrupted program. (Exception - if the processor is executing an instruction while in the repeat mode, the stored P value will be the address of the repeat instruction.)

FIXED POINT OVERFLOW CONDITIONS		FIXED	POINT	OVERFL	OW	CONDITI	ONS
---------------------------------	--	-------	-------	--------	----	---------	-----

a) Addition: Addend and augend have like signs and the sum has a different sign.

- b) Subtraction: Minuend and subtrahend have different signs and the difference has a sign different from
- c) Division: Attempt to divide by zero or if the magnitude of divisor times 2³¹ is less than the magnitude of the dividend.
- d) Square Root: Attempt to take square root of a negative number or a number greater than or equal to 262

				NOR	M	AL (IW) Y =	= v + (B _b) +	-(Se)		
31	30	29				19	17	16		3 12	0
		Not	Used		1					Relative Address (y)	
C = 1	0			-	٦				Base Register Desi	gnator (s)	
								Ind	irect Addressing De	signator (i)	
						Index Reg	ister Desig	nato	r (b)		
				SPECI	A	L BASE (IV	VS) Y=sy	+ (S	b)		
31	30	29	28	20	0	19	17	16			0
			Not Used						16-bit Relative Add		
		C1=	0					_	irect Addressing De	signator (i)	
C=0	0					Base Regi	ister Design	nator	(s)		
C = 0	0					Index Reg	ister Desig	nato	r (b)	7	
C=0	30	29	25	CHARAC		ER (IWC)	Y = y + ((+ (S _s)	3 12	0
		29	25			ER (IWC)	Y = y + ((3 _b) +	+ (S _s)	3 12 Relative Address (y)	0
		29	25			ER (IWC)	Y = y + ((3 _b) +	+ (S _s)	Relative Address (y)	0
		29	25		0	ER (IWC)	Y = y + (1	3 _b) +	Base Register Des	Relative Address (y) gnator (s)	0
		29	25	24 20	D	ER (IWC)	Y = y + (f	3 _b) 16	Base Register Des	Relative Address (y) gnator (s)	0
				24 20 Bit Position Design	D	ER (IWC)	Y = y + (f	3 _b) 16	Base Register Des	Relative Address (y) gnator (s)	0
31	30		25 racter Length Design	24 20 Bit Position Design	D	ER (IWC)	Y = y + (f	3 _b) 16	Base Register Des	Relative Address (y) gnator (s)	0
	30			24 20 Bit Position Design	D	ER (IWC)	Y = y + (f	3 _b) 16	Base Register Des	Relative Address (y) gnator (s)	0
31 C=0	30	Char	racter Length Design	24 20 Bit Position Design ator (w)	D	Index Reg	Y = y + (I	Ind nato	Base Register Descret Addressing De	Relative Address (y) gnator (s) signator (i)	0
31 C=0	30	Char	racter Length Design	Bit Position Design ator $\{w\}$ $ Y=y+(B_b)+(S_s) $	ac	Index Reg	Y = y + (i 17 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	Ind nato	(S_g) 15 1 Base Register Desirect Addressing De r (b) If $(p) - (w) < 0$, then	Relative Address (y) gnator (s)	
31 C=0	30 11	Char	racter Length Desigr	Bit Position Design ator $\{w\}$ $ Y=y+(B_b)+(S_s) $	ac	Index Reg	Y = y + (i 17 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	lnd lndosse c	(S_g) 15 1 Base Register Desirect Addressing De r (b) If $(p) - (w) < 0$, then	Relative Address (y) gnator (s) signator (i) 32 – (w) → p and y + 1 → y.	0
31 C=0	30 11	Char	racter Length Desigr	Bit Position Design ator $\{w\}$ $ Y=y+(B_b)+(S_s) $	ac	Index Reg	Y = y + (i 17 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	lnd lndosse c	(S_g) 15 1 Base Register Desirect Addressing De r (b) If $(p) - (w) < 0$, then	Relative Address (y) gnator (s) signator (i) 32 – (w)p and y + 1y, 3 12 Relative Address (y)	
31 C=0	30 11	Char	racter Length Desigr	Bit Position Design ator $\{w\}$ $ Y=y+(B_b)+(S_s) $	ac	Index Reg	Y = y + (i 17 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	3 _b) + 16 Ind nato SB ←	(S ₃)	Relative Address (y) gnator (s) signator (i) 32 – (w)-+p and y + 1y, 3 12 Relative Address (y) gnator (s)	
31 C=0	30 11	Char	racter Length Desigr	Bit Position Design ator $\{w\}$ $ Y=y+(B_b)+(S_s) $	ac o	Index Reg	Y = y + (I 17 17 17 17 17 17	3 _b) + 16 Ind nato SB c	(S _s) 15	Relative Address (y) gnator (s) signator (i) 32 – (w)-+p and y + 1y, 3 12 Relative Address (y) gnator (s)	

If Bits	and	
31. 30 & 29	and	Designators in current indirect control word used as follows:
Equal	Equals	Designators in current indirect control word used as follows:
000 (IWS)	1	The next indirect word address $Y = sy + (S_b)$
001 (IWB)	1	The next indirect word address $Y = sy + (B_{\hat{D}}) + (S)$ as designated by $(B_{\hat{D}})_{19-17}$
000 (IWS)	0	The operand* address $Y = sy + (S_h)$
001 (IWB)	0	The operand* address $Y = sy + (B_h) + (S)$ as designated by $(B_h)_{19-17}$
10X: (IW)	1	The next indirect word address is $Y = y + (B_h) + (S_g)$
01X (IWC)	1	The next indirect word address is $Y = y + (B_b) + (S_c)$
11X (IWCI)	1	The next indirect word address is $Y = y + (B_b) + (S_s)$
10X (IW)	0	The operand* address $Y = y + (B_h) + (S_g)$
01X (IWC)	0	The address of the single character operand defined by w and p is $Y = y + (B_b + (S_c))$
11X (IWCI)	0	The address of the sequential character operand defined by w and p is $Y = y + (B_{\hat{p}}) + (S_{\hat{q}})$.
		Then if $p-w \ge 0$, $p-w \to p$ and $y \to y$ if $p-w < 0$, $32-w \to p$ and $y+1 \to y$
		The updated indirect control word is stored back into main memory for the nex execution.

The operand is defined by the function code and in Format I instructions the k designator.

OPERAND INTERPRETATIONS FOR JUMP INSTRUCTIONS (FORMAT III)
k is not used
When $i = 0$ the jump address $Y = y + (B_h) + (S_h)$
When $i = 1$ the indirect control address $Y = y + (B_b) + (S_s)$.
Indirect addressing continues through all indirect control words until $i=0$ is encountered. Depending on the c-field in the indirect control word the jump address will be $Y=y-t$ (Bj.) $t+S_j$. $Y=y+t$ (Sj.) or $Y=y+t$ (Bj.) $t=y-t$ (Sj.) as specified by (Bg) $y=t$ 1. The indirect control word t 2 are specified by (Bg) $y=t$ 3. The indirect control word for a Format III instruction is not allowed. These are jump instructions.
Note: Any jump instruction with i = 1 and (SPR)S bit 16 = 1 is privileged.

Repeated			a Fiel	d of F	lepea	t Inst			Terminate	Repeated			Terminat						
Instruction	0	1	2	3	4	5	6	7	on	Instruction	0	1	2	3	4	5	6	7	on
010	X	X	X	X	X			X	Aa	17	X	X	Х	X	X			X	Aa
011	X	X	X	X	X			X	Aa	20					X			X	
012	X	X	X	X	X			X	A _{a+1}	21					X			X	
013	X	X	X	X	X			X	Aa	22					X			X	- V
014	X	X	X	X	X			X	Aa + 1	23					X			X	
015	X	X	X	X	X			X	Aa	24	X	X	X	X	X	X	X	X	Aa
016	X	X	X	X	X			X	Aa + 1	26					X	X	X	X	OP*
017	X	X	X	X	X			X	Aa+1	27					X	X	X	X	OP*
020	X	X	X	X	X			X	Aa	32‡					X			X	
024	X	X	X	X	X	X	X	X	OP**	33‡					X			X	
025	X	X	X	X	X	X	X	X	Aa+1	34‡	X	X	X	X	X	X	X	X	Aa + 1
026	X	X	X	X	X	X	X	X	Aa + 1	35‡	X	X	X	X	X	X	X	X	Aa
03.0‡	X	X	X	X	X	X	X	X	Aa	36‡	X	X	X	X	X	X	X	X	Aa+1
03 1‡	X	X	X	X	X	X	X	X	Aa	37‡	X	X	X	X	X	X	X	X	Aa
03 2‡	X	X	X	X	X	X	X	X	Aa+1	40					X			X	
033#	X	X	X	X	X			X	Aa	41					X			X	
03 4#	X	X	X	X	X	X	X	X	Aa+1	42	X	X							CD
03 5‡	X	X	X	X	X	X	X	X	Aa+1	44	X	X	X	X	X	X			CD
03 6‡	X	X	X	X	X	X	X	X	Aa+1	45	1000						X	X	CD
03 7‡	X	X							CD	46	X	X	X	X	X	X			CD
10	X	X	X	X	X			X	Aa	47	X	X	X	X	X	X			CD
12	X	X	X	X	X			X	Aa+1	541					X			X	
13	X	X	X	X	X			X	Aa	551					X			X	
14	X	X	X	X	X			X	Aa	56t					X			X	
15	X	X	X	X	X			X	Aa+1	57†					X			X	
16	X	X	X	X	X			X	Aa										

* Unpredictable operation will occur for unusable conditions.

** OP is the 32-bit result of the execution.

† In the repeat mode, ak+1→ak for each execution. These instructions are not interruptable in the repeat mode. These instructions are privileged if repeat is attempted in the Task mode (Privileged Instruction Error).

For replace class instructions, use S6 on store cycle; if in repeat instruction, b ≠ 0.

Note: Any repeated instruction with i = 1 and (SPR)_S bit 16 = 1 is privileged.

If B7 = Ø skip next instruction.

At termination, sy sign extended will have been added to (Bb).

а	Non-Compare Instructions	a	Compare Instructions
0	Terminate if A ≠ 0	0	Terminate if CD set to ≠
1	Terminate if A = 0	1	Terminate if CD set to =
2	Terminate if A > 0	2	Terminate if CD set to >
3	Terminate if A < 0	3	Terminate if CD set to >
4	Do not terminate	4	Terminate if CD set to <
5	Terminate if (A) is even parity on write into memory	5	Terminate if CD set to <
6	Terminate if (A) is odd parity on write into memory	6	Terminate if CD set to outside
7	Do not terminate	7	Terminate if CD set to within limit

ROUNDING OF FLOATING POINT RESULTS

Mantissa rounding is performed (A_{B+1}) according to the status of the intermediate double-length result in the arithmetic section for add, subtract and multiply; and according to the value of the remainder in divide operations. The final sum or difference mantissa in (Aa + 1) is rounded as follows:

1. If bit 31 of the 64 bit intermediate sum or difference equals 1 and (A_{n+1}) are positive, 1 is added to (A_{n+1}) .

2. If bit 31 of the 64 bit intermediate sum or difference equals 0 and (A_{n+1}) are negative, 1 is subtracted from (A_{n+1}) .

 If not 1 or 2 above, (A_{B+1}) are not changed.
 If overflow results in 1 or 2 above (A_{B+1}) are shifted right one place, 1 is added to the characteristic exponent in A_B and the mantissa sign bit in An + 1 is restored.

Rounding of a product mantissa is done before final sign correction.

1 is added to (A_{a+1}) if bit 31 of the 64 bit intermediate product equals 1; otherwise (A_{a+1}) are not changed.

Rounding of a quotient mantissa is done before final sign correction.

1. If the remainder is equal to or greater than one-half the divisor and there is no overflow, 1 is added to (A_{a+1}) .

If bit 31 of the quotient in A_{B+1} equals 1, (A_{B+1}) are shifted right one place, (A_{B+1})₀ before shifting, is added to the shifted
(A_{B+1}) and 1 is added to the characteristic exponent in A_B.

PROGRAMMER NOTES

USE A PENCIL FOR ENTRIES AND CHANGES MAY BE MADE WITH AN ERASER.

IOC BUFFERED REQUEST PRIORITY							
REQUEST PRIORITY	REQUEST TITLE	ACTION WHEN PROCESSED					
Channel dependent	Buffer request (includes EI, EF, outputs and input)	Performs transfer based on buffer request priority first by channel (17 highest, 0 lowest) then as specified below.					
1a	External interrupt request (occurs when an external device sets the external interrupt request line)	Performs a one word external interrupt word transfer using the control memory word at CMR address for channel.					
1b	External function request (occurs when an external device sets the external function request line)	Performs a one word external function code word transfer using the control memory word at CMR address for channel.					
1c	Output data request (occurs when an external device sets the output data request line)	Performs a one word output data word transfer using the control memory word at CMR address for channel.					
1d	Input data request (occurs when an external device sets the input data request line)	Performs a one word input data word transfer using the control memory word at CMR address for channel.					

PRIORITY	REQUEST TITLE	ACTION WHEN PROCESSED
1	Intercomputer Terminate Sequence	Performs the termination functions when a intercomputer channel terminates.
2	Clock Request	Decrement the IOC monitor clock by 1 and increment the real-time clock by 1.
3	Central Processor Instruction for IOC and Interrupt Status Code Requests.	Performs the function as commanded according to priority below.
3a	CP No. 0 Request*	
3b	CP No. 1 Request*	
3c	CP No. 2 Request*	
4	Central Processor Command Address Request	Performs the function as commanded according priority below.
4a	CP No. 0 Request	
4b	CP No. 1 Request port numbers and not necessarily the same as	
4c	CP No. 2 Request CPU I.D.	
5	Chain Commands (Note 1) (channel associated)	Performs the function as commanded according normal channel priority.

REGISTER SELECT	CM ADDRESS SELECT/SELECT 2	I/O CONTROLLER DISPLAY (IOC must be in SEQ mode)	MON/ CHAIN
CMP	0-77	Bits 55-38 of IOCM (CAP) specified by CM ADDRESS SELECT	N.U.
CMU	0-77	Bits 37, 36 and 33-18 of IOCM specified by CM ADDRESS SELECT	bit 35 (chain)
CML	0-77	Bits 17-0 of IOCM specified by CM ADDRESS SELECT	bit 34 (monitor)
DIRU	N.U.	Bits 31-18 of DIR	N.U.
DIRL	N.U.	Bits 17-0 of DIR	N.U.
SEL 2	CAR + 0	(CAR 0) bits 17-0‡	CAR ACT
	CAR + 1	(CAR 1) bits 17-0‡	CAR ACT
	CAR + 2	(CAR 2) bits 17-0‡	CAR ACT
	ILR + 0	(ILR 0) channels 15-01	N.U.
	ILR + 1	(ILR 1) channels 15-01	N.U.
	ILR + 2	(ILR 2) channels 15-0†	N.U.
	CHAN + 0	Buffer actives by type on channels 3-01	N.U.
	CHAN + 1	Buffer actives by type on channels 7-4 †	N.U.
	CHAN + 2	Buffer actives by type on channels 10-131	N.U.
	CHAN + 3	Buffer actives by type on channels 17-141	N.U.
	CHAIN + 0	Chain actives by type on channels 3-0 †	N.U.
	CHAIN + 1	Chain actives by type on channels 7-4 †	N.U.
	CHAIN + 2	Chain actives by type on channels 13-101	N.U.
	CHAIN + 3	Chain actives by type on channels 17-141	N.U.
	60	(RTC) bits 17-0	CAR 0 ACTIVE
	61	(RTC) bits 31-18	CAR 1 ACTIVE
	62	(IOC MONITOR CLK) 15-0	N.U.

N.U. Not Used

† These displays are indicate only and are available in both RUN and SEQ mode.

These displays are available in both RUN and SEQ mode.