‘hh

I"ll

B B G i
il ’ ‘ ' ||||| i illisiitil 'm"“|'I‘|ii|l|illhhwa.l~...;....‘.
il -

BUREAU] 3 NAVAL PERSONNEL
NAVY TRAINlNG COURSE NAVPERS 10201

i =
DATA SYSTEMS TECHNICIAN 3 & 2

NAVPERS 10201

PREFACE

This training course is written for men of the U.S. Navy and Naval
Reserve who are interested inqualifying for advancement to Data Systems
Technician third class and Data System technician second class. Combined
with the necessary practical experience, this training course will aid the
DS in preparing for the advancement-in-rating examination.

The qualifications for the DS Rating are included in section 3 of the
Manual of Qualifications for Advancement in Rating, NavPers 18068-A.
This training course contains information on each examination subject;
and insofar as it is practical in a training course, information is also
included on each practical factor. Because examinations for advancement
in rating are based on these qualification, interested personnel should
refer to them for guidance. The latest qualifications for advancement in
rating should always be consulted.

The DS 3&2 training course is prepared by the Navy Training Publi-
cations Service, Washington, D.C., which is a field activity of the Bureau
of Naval Personnel. Technical assistance was provided by the U.S. Fleet
Anti-Air Warfare Training Center, Dam Neck, Virginia Beach, Virginia;
U.S. Naval Schools Command Mare Island Vallejo, California; the Bureau
of Ships and the U.S. Fleet Anti-Air Warfare Training Center, San Diego,
California.

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON: 1965

THE UNITED STATES NAVY
GUARDIAN OF OUR COUNTRY

The United States Navy is responsible for maintaining control of the sea
and is a ready force on watch at home and overseas, capable of strong
action to preserve the peace or of instant offensive action to win in war.

It is upon the maintenance of this control that our country’s glorious
future depends; the United States Navy exists to make it so.

WE SERVE WITH HONOR

Tradition, valor, and victory are the Navy's heritage from the past. To
these may be added dedication, discipline, and vigilance as the watchwords
of the present and the future.

At home or on distant stations we serve with pride, confident in the respect
of our country, our shipmates, and our families.

Our responsibilities sober us; our adversities strengthen us.

Service to God and Country is our special privilege. We serve with honor.

THE FUTURE OF THE NAVY

The Navy will always employ new weapons, new techniques, and
greater power to protect and defend the United States on the sea, under
the sea, and in the air.

Now and in the future, control of the sea gives the United States her
greatest advantage for the maintenance of peace and for victory in war.

Mobility, surprise, dispersal, and offensive power are the keynotes of
the new Navy. The roots of the Navy lie in a strong belief in the
future, in continued dedication to our tasks, and in reflection on our
heritage from the past.

Never have our opportunities and our responsibilities been greater.

ii

CONTENTS

CHAPTER Page
1. Advancement oo 1
2. Introduction to computers., 9
3. Number systems. 16
4. Controlunit. 37
5. Arithmeticunit. 56
6. Memory and storage units i
7. Input/output devices, 97
8. Programming. e e e e e e e 113
9. Analog-digital and digital-analog conversions . . . c 142

10. NTDS computer control section. 158

11. NTDS computer arithmetic section. 213

12. NTDS computer memory section. 241

13. NTDS computer input/output section (partI) 271

14, NTDS computer input/output section (part II). 314

15. Other Navy computers. 361

16. Test equipments., 372

17. Maintenance information 393

18. Maintenance procedures.ttt 417

APPENDIX
1 Training film list 452

II. Glossary. 456

INDEX 461

iii

READING LIST

NAVY TRAINING COURSES

Basic Electricity, NavPers 10086-A

Basic Electronics, NavPers 10087-A

Introduction to Electronics, NavPers 10084

Basic Handtools, NavPers 10085-A

Blueprint Reading and Sketching, NavPers 10077-B
Mathematics, Vol. 1, NavPers 10069-B
Mathematics, Vol. 2, NavPers 10070-B
Mathematics, Vol. 3, NavPers 10073

Standard First Aid, NavPers 10081-A

OTHER PUBLICATIONS

Bureau of Ships Technical Manual, Chapter 9670

USAFI TEXTS

United States Armed Forces Institute (USAFI) courses for addi-
tional reading and study are available through your Educational
Services’ Officer.* The following courses are recommended:

A788 Introduction to Electronics I
A789 Introduction to Electronics II
C166 Advanced Algebra

C176 Plane Geometry I

C177 Plane Geometry II

C188 Trigonometry

*‘Members of the United States Armed Forces Reserve compo-
nents, when on active duty, are eligible to enroll for USAFI courses,
services, and materials if the orders calling them to active duty
specify a period of 120 days or more, or if they have been on active
duty fora period of 120days or more, regardless of the time specified
on the time specified on the active duty orders.’’

iv

CREDITS

Illustrations indicated below are includedinthis editionof Data Systems
Technician 3&2 through the courtesy of the designated companies. Excerpts
from Reference Manual Control Data 1604-A Computer; Control Data 160-A
Computer, Programming Manual; and Control Data 1604-A Computer,
Principles of Operation—Volume 1 are also included. Permission to use
these materials is gratefully acknowledged.

Source (illustrations) Figure Nos.
International Business Machines 7-8
Control Data Corporation 2-1

15-1
15-2

CHAPTER 1

ADVANCEMENT

This training course has been prepared to
help you meet the technical qualifications for
advancement to Data Systems Technician 3 and
Data Systems Technician 2. The DS quals which
were used as a guide in the preparation of this
training course were current through Change No,
1 of the Manual of Qualifications for Advancement
In Rating, NavPers 18068-A.

Chapters 2 through 9 treat basic principles
of computers and should be understood before
attempting to study any of the other chapters
of this course. Chapter 2 presents the history,
purpose, and some of the applications of com-
puters. Chapter 3 treats number systems,
Boolean Algebra, and methods of converting from
one number system to another. Chapters 4
through 7 present the basic circuits and con-
cepts used in the control, arithmetic, memory,
and input/output sections of the computer.
Chapter 8 treats basic principles of programming
by defining the parts of an instruction word,
and by showing how these basic word sections
are used to express instructions in computer
language. Chapter 9 presents the basic concepts
and circuits involved in performing analog-to-
digital and digital-to-analog conversions.

Chapters 10through 14 describe the operation
of a representative digital computer. The CP-
642A/USQ-20(V), a component part of the Naval
Tactical Data System, is used as the vehicle
in the discussion. Chapter 15 treats the char-
acteristics and word construction of the 160A
and 1604A Computers as other representative
Navy computers. Chapters 16, 17, and 18 treat
test equipments, maintenance information, and
maintenance procedures, respectively.

THE E\INLISTED RATING STRUCTURE

The present enlisted rating structure, estab-
lished in 1957, includes three types of ratings—
general ratings, service ratings, and emergency
ratings.

GENERAL RATINGS identify broad occupa-
tional fields of related duties and functions.
Some general ratings include service ratings;
others do not. Both Regular Navy and Naval
Reserve personnel may hold general ratings.

SERVICE RATINGS identify subdivisions or
specialties within a general rating. Although
service ratings can exist at any petty officer
level, they are most common at the PO3 and
PO2 levels. Both Regular Navy and Naval
Reserve personnel may hold service ratings.

EMERGENCY RATINGS generally identify
civilian occupational fields. Emergency ratings
do not need to be identified as ratings in the
peacetime Navy, but their identification is
required in time of war.

THE DATA SYSTEMS RATING

The DS rating is one of the most challenging
Navy ratings. Despite this, the number of
strikes for this rating is constantly increasing.

Data Systems Technicians maintain elec-
tronic digital data systems and equipment. They
inspect, test, calibrate, and repair computers,
video processors, tape units, buffer equipment,
digital display equipment, data link transmitting
and receiving equipment, ‘‘input-output’’ de-
vices, and related equipment. They also test
and maintain test equipments. Data Systems
Technicians are included inthe personnel allow-
ance on ships and in shore stations where
electronic digital computers are in use.

The DS should have a good background in
mathematics. If you are lacking in this area,
a study of the mathematics training courses
listed in thefront of this course is recommended.
Skill in the use of tools and test equipment will
be acquired through performance of your daily
duties. Gaining the necessary technical knowl-
edge, and keeping abreast of the changesinyour
field, however, will require reading and studying
in your spare time.

DATA SYSTEMS TECHNICIAN 3 & 2

Also upon advancement to DS 3, you will be
graded on your leadership and supervisory
ability as well as your ability to perform your
technical duties. Study the leadership principles
and techniques discussed in Military Require-
ments for Petty Officers 3&2. Additional material
concerning leadership for petty officers is
available to you as a result of the current Navy
leadership program. As you study the material
concerning leadership traits, keep in mind that
probably none of our most successful leaders
possessed all of these traits to a maximum
degree, but a weakness in some traits was
more than compensated for by strength in others.
Critical self evaluation will enable youtorealize
the traits which you must strive to improve.
Although leadership principles can be taught, a
good leader develops these qualities only through
hard work and practice. Your success as a
leader will be decided for the most part by the
success with which you have inspired others to
learn and perform through your personal
example.

ADVANCEMENT IN RATING

Some of the rewards of advancement in
rating are easy to see. You get more pay.
Your job assignments become more interesting
and more challenging. You are regarded with
greater respect by officers and enlisted per-
sonnel. You enjoy the satisfaction of getting
ahead in your chosen Navy career.

But the advantages of advancing in rating
are not yours alone. The Navy also profits.
Highly trained personnel are essential to the
functioning of the Navy. By each advancement
in rating, you increase your value to the
Navy in two ways. First, you become more
valuable as a technical specialist in your own
rating. And second, you become more valuable
as a person who can train others and thus make
far-reaching contributions to the entire Navy.

HOW TO QUALIFY FOR ADVANCEMENT

What must you do to qualify for advancement
in rating? The requirements may change from
time to time, but usually you must:

1. Have a certain amount of time in your
present grade.

2. Complete the required military and pro-
fessional training courses.

3. Demonstrate your ability to perform all
the PRACTICAL requirements for advancement

by completing the Record of Practical Factors,
NavPers 760.

4, Be recommended by your commanding
officer, after the petty officers and officers
supervising your work have indicated that they
consider you capable of performing the duties
of the next higher rate.

5. Demonstrate your KNOWLEDGE by
passing a written examination on (a) military
requirements and (b) professional qualifications.

Some of these general requirements may be
modified in certain ways. Figure 1-1 gives a
more detailed view of the requirements for
advancement of active duty personnel; figure
1-2 gives this information for inactive duty
personnel,

Remember that the requirements for ad-
vancement can change. Check with your division
officer or training officer to be sure that you
know the most recent requirements.

Advancement in rating is not automatic.
After you have all the requirements, you are
ELIGIBLE for advancement. You will actually
be advanced in rating only if you meet all the
requirements (including making a high enough
score on the written examination) and if the
quotas for your rating permit your advancement.

HOW TO PREPARE FOR ADVANCEMENT

What must you dotoprepare for advancement
in rating? You must study the qualifications
for advancement, work on the practical factors,
study the required Navy Training Courses, and
study other material that is required for ad-
vancement in your rating. To prepare for
advancement, you will need to be familiar
with (1) the Quals Manual, (2) the Record of
Practical Factors, NavPers 760, (3) a NavPers
publication called Training Publications for
Advancement in Rating, Navpers 10052, and (4)
applicable Navy Training Courses. Figure 1-3
illustrates these materials; the following sec-
tions describe them and give you some practical
suggestions on how to use them in preparing
for advancement.

The Quals Manual

The Manual of Qualifications for Advancement
in Rating, NavPers 18068-A (change 1), gives
the minimum requirements for advancement to
each rate within each rating. This manual is
usually called the ‘‘Quals Manual,”” and the
qualifications themselves are often called

Chapter 1—ADVANCEMENT

ACTIVE DUTY ADVANCEMENT REQUIREMENTS

REQUIREMENTS * | E1 to E2|E2 to E3|E3 to E4 |E4 to E5|E5 to E6 [1E6 to E7 |1 E7 to E8|t E8 to E9
4 mos. 48 mos. | 24 mos.
service— as E-7. | as E-8.
or 8of 11 [100f 13
SERVICE comple- | 6 mos. | 6 mos. |12 mos. |24 mos. | 36 mos. | yeqrs years
tion of | 05 E-2. | as E-3. | asE-4. | as E-5. | asE-6. total total
recruit service | service
training. must be | must be
; : enlisted. | enlisted.
. | Class A | ClassB M::;:?
sCHOOL Recruit | for PR3,} 1 for AGCA, pnent
Training.| DT3, PT3, L | MUCA, int
o AME3, | | | MNCA. appoint-
. HM 3 o . ment.
Locally
PRACTICAL prepared Records of Practical Factors, NavPers 760, myst be
FACTORS check- completed for E-3 and all PO advancements.
_offs.
. Specified ratings must complete
PERFORMANCE applicable performance tests be-
TEST . _ fore taking examinations.
ENLISTED As used by CO . i
PERFORMANCE when approving ‘(’g::l;:‘:::v:g"?slr:ormunce factor credit in ad
EVALUATION advancement.)
i - : Navy-wide,
EXAMINATIONS l°“’"'Y P'"’P‘"ed ?""yl‘l":,d; e:“'"'""m"i required | . lection board,
ests. ora advancements. and physical..
Reauired for E-3 and all PO ad Correspondence
NAVY TRAINING e aved bormuse of "h""l'“e““";‘s courses and
unless waived because of school comple- recommended

COURSE (INCLUD-
ING MILITARY
REQUIREMENTS)

tion, but need not be repeated if identical
course has already been completed. See
NavPers 10052 (current edition).

reading. See
NavPers 10052
(current edition).

:(olznvmbunding
Officer

U.S. Naval Examining Center| Bureau of Naval Personnel

AUTHORIZATION | 1aRs attached to the air program are advanced to fill

vacancies and must be approved by CNARESTRA.

* All advancements require commanding officer's recommendation.
1 2 years obligated service required.

Figure 1-1.—Active duty advancement requirements,

3

DATA SYSTEMS TECHNICIAN 3 & 2

INACTIVE DUTY ADVANCEMENT REQUIREMENTS

REQUIREMENTS * El1toE2|E2to E3|E3 to E4|E4 to E5|E5to E6|E6to E7| E8 E9
FOR THESE
DRILLS PER
YEAR
TOTAL 48 6 mos.| 6 mos. | 15 mos. | 18 mos. | 24 mos. | 36 mos. | 48 mos. |24 mos.
TIME 24 9 mos. | 9 mos. |15 mos. |18 mos. |24 mos. |36 mos. | 48 mos. |24 mos.
IN NON-
GRADE DRILLING 12 mos. | 24 mos. | 24 mos. | 36 mos. |48 mos. | 48 mos.
DRILLS 48 18 18 45 54 72 108 144 72
IAJTENDED 24 16 16 27 32 42 64 85 32
GRADE {
TOTAL 48 14 days [14 days |14 days |14 days | 28 days |42 days |56 days |28 days
TRAINING 24 14 days [14 days (14 days |14 days | 28 days |42 days |56 days |28 days
DUTY IN NON-
GRADE t DRILLING None | None ‘|14 days |14 days | 28 days|28 days
PERFORMANCE Specified ratings must complete applicable
TESTS performance tests before taking exami-

nation.

| PRACTICAL FACTORS
(INCLUDING MILITARY
REQUIREMENTS)

Record of Practical Factors, NavPers 76
for all advancements.

0, must be completed

NAVY TRAINING
COURSE (INCLUDING
MILITARY REQUIRE-

Completion of applicable course or courses must be entered

in service record.

MENTS)
Standard EXAM,
| EXAMINATION Standard exams are used where available, Selection
otherwise locally prepared exams are used. Board, and
Physical.
B f Naval
AUTHORIZATION District commandant or CNARESTRA ureau of Nav

Personnel

* Recommendation by commanding officer required for all advancements.
t Active duty periods may be substituted for drills and training duty.

Figure 1-2.~Inactive duty advancement requirements.

4

Chapter 1—ADVANC EMENT

MANUAL OF
QUALIFICATIONS FOR

JUNE 1963

BUREAY of NAvaL PERSONNE(

MAVPERS 10032 -5
MARCH 194;

NAVPERS 18068-A

T80 (M) REV. 3- 6t

RECORD OF PRACTICAL FACTORS C
RS
mes—

- — T G Ga— G

]
|
1
|
f

== ==

I

oy

Figure 1-3,

—Materials used in breparing for advancement,

5

DATA SYSTEMS TECHNICIAN 3 & 2

‘‘quals.’”” The qualifications are of two general
types: (1) military requirements, and (2) pro-
fessional or technical qualifications.

MILITARY REQUIREMENTS apply to all
ratings rather than to any one particular rating.
Military requirements for advancement to third
class and second class petty officer rates deal
with military conduct, naval organization, mili-
tary justice, security, watch standing, and other
subjects which are required of petty officers in
all ratings.

PROFESSIONAL QUALIFICATIONS are
technical or professional requirements that are
directly related to the work of each rating.

Both the military requirements and the pro-
fessional qualifications are divided into subject
matter groups; then, within each subject matter
group, they are divided into PRACTICAL
FACTORS and KNOWLEDGE FACTORS. Practi-
cal factors are things you must be able to DO.
Knowledge factors are things you must KNOW
in order to perform the duties of your rating.

The written examination you will take for
advancement in rating will contain questions
relating to the practical factors and the knowl-
edge factors of both the military requirements
and the professional qualifications. If you are
working for advancement to second class
remember that you may be examined on third
class qualifications as well as on second class
qualifications.

The Quals Manual is kept current by means
of changes., The professional qualifications for
your rating which are covered in this training
course were current at the time the course was
printed. By thetime you are studying this course,
however, the quals for your rating may have
been changed. Never trust any set of quals
until you have checked it against an UP-TO-DATE
copy in the Quals Manual.

Record of Practical Factors

Before you can take the servicewide examin-
ation for advancement in rating, there must
be an entry in your service record to show
that you have qualified in the practical factors
of both the military requirements and the
professional qualifications. A special form known
as the RECORD OF PRACTICAL FACTORS,
NavPers 760, is used to keep a record of your
practical factor qualifications. This form is
available for each rating. The form lists all
practical factors, both military and professional,
As you demonstrate your ability to perform each

practical factor, appropriate entries aremadein
the DATE and INITIALS columns.

Changes are made periodically tothe Manual
of Qualifications for Advancement in Rating,
and revised forms of NavPers 760 are provided
when necessary. Extra space is allowed on the
Record of Practical Factors for entering
additional practical factors as they are published
in changes to the Quals Manual. The Record of
Practical Factors also provides space for re-
cording demonstrated proficiency in skills which
are within the general scope of the rating but
which are not identified as minimum qualifica-
tions for advancement.

If you are transferred before you qualify
in all practical factors, the NavPers 760 form
should be forwarded with your service record
to your next duty station. You can save yourself
a lot of trouble by making sure that this form
is actually inserted in your service record
before you are transferred. If the form is not
in your service record, you may be required to
start all over again and requalify inthe practical
factors which have already been checked off.

NavPers 10052

Training Publications for Advancement in
Rating, NavPers 10052 (revised), is a very
important publication for anyone preparing for
advancement in rating. This bibliography lists
required and recommended ‘Navy Training
Courses and other reference material tobe used
by personnel working for advancement in rating.
NavPers 10052 is revised and issued once each
year by the Bureau of Naval Personnel. Each
revised edition is identified by aletter following
the NavPers number. When using this publica-
tion, be SURE that you have the most recent
edition.

If extensive changes inqualifications occur in
any rating between the annual revisions of Nav-
Pers 10052, a supplementary list of study mate-
rial may be issued in the form of a BuPers
Notice. Whenyouare preparing for advancement,
check to see whether changes have beenmadein
the qualifications for your rating. If changes
have been made, see if a BuPers Noticehas been
issued to supplement NavPers 10052 for your
rating.

The required and recommended references
are listed by rate level in NavPers 10052, If
you are working for advancement to third class,
study the material that is listed for third class.
If you are working for advancement to second

Chapter 1—ADVANCEMENT

class, study the material thatislisted for second
class; but remember that you are also respon-
sible for the references listed at the third class
level.

In using NavPers 10052, you will notice that
some Navy Training Courses are marked with
an asterisk (*). Any course marked in this way
is MANDATORY — that is, it mustbe completed
at the indicated rate level before you can be
eligible to take the servicewide examination for
advancement in rating. Each mandatory course
may be completed by (1) passing the appropriate
enlisted correspondence course that is based on
the mandatory training course; (2) passing
locally prepared tests based on the information
given inthe training course; or (3) insome cases,
successfully completing an appropriate Class A
school.

Do not overlook the section of NavPers 10052
which 1lists the required and recommended
references relating tothe military requirements
for advancement. Personnel of ALL ratings must
complete the mandatory military requirements
training course for the appropriate rate level
before they can be eligible to advance in rating.

The references in NavPers 10052 which are
recommended but not mandatory should also be
studied carefully. ALL references listed in
NavPers 10052 may be used as source material
for the written examinations, at the appropriate
rate levels.

Navy Training Courses

There are two general types of Navy Training
Courses. RATING COURSES (such as this one)
are prepared for most enlisted ratings. A rating
training course givesinformationthatis directly
related to the professional qualifications of ONE
rating, SUBJECT MATTER COURSES or BASIC
COURSES give information that applies to more
than one rating.

Navy Training Courses are revised from
time to time tokeepthem up to date technically.
The revision of a Navy Training Course is
identified by a letter following the NavPers
number., You can tell whether any particular
copy of a Navy Training Course is the latest
edition by checking the NavPers number and the
letter following this number in the most recent
edition of List of Training Manuals and Cor-
respondence Courses, NavPers 10061, (NavPers
10061 is actually a catalog that lists all current
training courses and correspondence courses;
you will find this catalog useful in planning your
study program.)

Navy Training Courses are designed to help
you prepare for advancement in rating. The
following suggestions may help you to make the
best use of this course and other Navy training
publications whenyou are preparing for advance-
ment in rating.

1. Study the military requirements and the
professional qualifications for your rating before
you study the training course, and refer to the
quals frequently as you study. Remember, you
are studying the training course primarily in
order to meet these quals.

2. Set up a regular study plan. It will prob-
ably be easier for you to stick to a schedule if
you can plan to study at the same time each day.
If possible, schedule your studying for a time of
day when you will not have too many interruptions
or distractions.

3. Before you begin to study any part of the
training course intensively, become familiar
with the entire book. Read the preface and the
table of contents. Check through the index. Look
at the appendixes. Thumb through the book with-
out any particular plan, looking at the illustra-
tions and reading bits here and there as you see
things that interest you.

4. Look at thetraining course in more detail,
to see how it is organized. Look at the table of
contents again. Then, chapter by chapter, read
the introduction, the headings, and the sub-
headings., This will give you a pretty clear
picture of the scope and content of the book.
As you look through the book in this way, ask
yourself some questions: What do I need to
learn about this? What do I already know about
this? How is this information related to informa-
tion giveninother chapters? How is this informa-
tion related to the qualifications for advance-
ment in rating?

5. When you have a general idea of what is
in the training course and how it is organized,
fill in the details by intensive study. In each
study period, try to cover a complete unit — it
may be a chapter, a section of a chapter, or a
subsection. The amount of material that youcan
cover at one time will vary. If you know the
subject well, or if the material is easy, you can
cover quite a lot at one time. Difficult or un-
familiar material will require more study time.

6. In studying any one unit — chapter, section,
or subsection — write down the questions that
occur to you, Many people find it helpful to
make a written outline of the unit as they study,
or at least to write down the most important
ideas.

DATA SYSTEMS TECHNICIAN 3 & 2

7. As you study, relate the information in
the training course to the knowledge you already
have. When you read about a process, a skill,
or a situation, try to see how this information
ties in with your own past experience,

8. When you have finished studying a unit,
take time out to see what you have learned.
Look back over your notes and questions. Maybe
some of your questions have been answered, but
perhaps you still have some that are not
answered, Without looking at the training course,
write down the main ideas that you have gotten
from studying this unit. Don’t just quote the book.
If you can’t give these ideas in your own words,
the chances are that you have not really mastered
the information.

9. Use Enlisted Correspondence Courses
whenever you can. The correspondence courses
are based on Navy Training Courses or on
other appropriate tests. As mentioned before,
completion of a mandatory Navy Training Course
can be accomplished by passing an Enlisted
Correspondence Course based on the Navy
Training Course. You will probably find it helpful
to take other correspondence courses, as well as
those based on mandatory training courses. Tak-
ing a correspondence course helps you tomaster
the information given in the training course, and
also helps you see how much you have learned.

10. Think of your future as you study Navy
Training Courses. You are working for advance-
ment to third class or second class right now,
but someday you will be working toward higher
rates. Anything extra that you can learn now
will help you both now and later.

SOURCES OF INFORMATION

One of the most useful things you can learn
about a subject is how to find out more about
it. No single publication can give you all the
information you need to perform the duties of
your rating. You should learn where to look for
accurate, authoritative, up-to-date information
on all subjects related to the military require-
ments for advancement and the professional
qualifications of your rating.

Some publications are subject to change or
revision from time to time, some at regular
intervals, others as the need arises. When using
any publication that is subject to change or
revision, be sure that you have the latest edition.
When using any publication that is kept current
by means of changes, be sure you have a copy
in which all official changes have been made.
Studying canceled or obsolete information will
not help you to do your work or to advance in
rating; it is likely to be a waste of time, and
may even be seriously misleading.

Technical publications that will be helpful as
references and in preparing for advancement
are discussed in chapter 17. Other training
courses that will be helpful to you are listed in
the front of this course.

Training films serve as a valuable source
of supplementary information. A selected list
of training films appears in appendix I of this
training course. Other films that may be helpful
are listed in the U.S. Navy Film Catalog,
NavPers 10000 (revised).

CHAPTER 2

INTRODUCTION

The development of high speed data proc-
essing and computing devices has enabled the
Navy to utilize new and highly sophisticated
tactical and logistic systems. In these and
other ways, the use of computers has greatly
improved the efficiency of many naval opera-
tions. As a prospective Data Systems Technician,
the operation and maintenance of computers will
be your responsibility. Keep in mind that the
measure of our Navy’s success with computing
devices depends upon the ability of its techni-
cians to understand and apply the necessary
fundamental operating and maintenance concepts.

DEFINITION

A computer is a device which is capable of
receiving information in a given form at its
input, performing certain prescribed internal
operations on this information, and producing
a result atits output. A representative electronic
digital computer presently in use by some naval
activities is the Control Data 1604-A computer
(fig. 2-1). Some of the features of this computer
are treated in chapter 15 of this text.

Not all computers are so complex. An ex-
ample of a basic computer is the commonly
used gear reduction train. Here, the inputinfor-
mation, or data, is altered by the gears to
produce modified data at the gear train output.
A second example is the adding machine dis-
cussed in Basic Electronics, NavPers 10087
(revised).

HISTORY

In order to appreciate the high speed and
accuracy of computers today, it is desirable to
have some knowledge of earlier computers and
their originators, The first calculator was built
by Pascal in 1642, This machine could add, sub-
tract, and was successfully applied to tax col-
lectionin France.In 1671, Leibniz built a machine
which could add, subtract, multiply, and divide.

TO COMPUTERS

Leibniz also recognized the advantages of the
binary (or two digit) number system over the
decimal (or ten digit) number system which will
be pointed out in chapter 3 of this course.

In 1842, Babbage started a machine called a
“Difference Engine.’’ This machine would have
been able to construct tables of any function
that could be described by the first five dif-
ferences. Work on this machine ceased, how-
ever, when Babbage conceived the idea of an
‘‘Analytic Engine’’ which could tabulate any
function. In 1910, his son completed building the
latter machine and used it to calculate 7 to 20
decimal places. Babbage also suggested the use
of punched cards (now used as input and output
media for computers) and the possibility of a
machine that could alter its operations according
to the results of its calculations. Present elec-
tronic computers resemble his analytic engine
in many respects.

Between 1937 and 1944, Aiken built thefirst
general purpose automatic digital computer,
called the ‘Mark I.”’ It is electromechanical,
using relays as one of the major calculating
devices.

Between 1939 and 1945, Eckert and Mauchly
built the ‘‘Eniac,’”’ also a digital computer. It
consisted of 18,000 electron tubes, weighed 30
tons, and dissipated 150 kilo watts. The time
required for an add operation was only 0.21
psec compared to 300 usec for the Mark I.

In 1951 Eckert and Mauchly built the first
‘“Univac’’ for the United States Census Bureau.

The ¢‘‘Edvac,’’ completed in 1952, was the
first computer to use internally stored in-
structions (program).

CAPABILITIES

The two major characteristics of computers
which make them so useful in military and com-
mercial applications are SPEED and ACCU-
RACY. The speed of computers is seen when
we consider that problems which require days,

DATA SYSTEMS TECHNICIAN 3 & 2

ELECTRIC
TYPEWRITER

124.1X

Figure 2-1.—Representative digital computer.

weeks, or years to solve by man, with his
slow pencil and paper tools, can be solved in
seconds or minutes by a computer. This is
conceivable when we consider that a single
arithmetic operation can be solved and stored
by a computer in a few microseconds whereas
a mathematician needs a few seconds to do the
same operation and record (or store) it on
paper. Thus, the computer can solve the prob-
lems and produce an output record of its
results, thousands or even millions of times
faster than man.

The second characteristic of the computer
is ACCURACY. Once a computer is provided
with the correct instructions, the planned opera-
tions can be repeated millions of times without
a single error. Computers make errors only
when there is a breakdown in the computing
system, or when there is human error in the
prepared instructions. Once the breakdown or
error is detected and corrected, the computer
again operates at high speeds and without error.

Computers are used in many fields of re-
search. In engineering, they are used in design.
In business, they are used in bookkeeping and
inventory; in government for the census; and by
the military, in logistics and battle strategy
problems. Any problem which can be reduced-
to and solved-by a sequence of arithmetic steps
can be done rapidly by a computer.

10

DIGITAL COMPUTERS

Computers are classified into two general
types; digital and analog, although a variation
of these types called a ‘‘hybrid computer’’ has
both digital and analog characteristics. The hy-
brid computer is not treated in this text.

The digital computer, as implied in the
name, produces its output by responding to
changes in fixed increments, such as 0 to 1,
or 1 to 2, ete. The digital change may be
accomplished in a gear train, by changing a
voltage from one level to another; by the ‘‘on’’
or ‘‘off’’ condition of a switch; by the energized
or deenergized condition of a relay; or by the
presence or absence of electrical pulses.

Examples of digital devices are adding
machines, cash registers, the abacus, thought
processes in human calculations, and the odom-
eter used in conjunction with an automobile
speedometer.

Electronic digital computers can be made
accurate to any desirable degree. They are
usually more expensive than analog computers
but are also usually more versatile. A digital -
computer can be given a sequence of instruc-
tions in which it can execute later steps using
the results of the earlier steps. It can also
alter the sequence of instructions according to
the results of previous steps.

Chapter 2—INTRODUCTION TO COMPUTERS

ANALOG COMPUTERS

Analog computers use physical changes as
input data and indicate the significance which
such changes have on the device or unit as a
whole, From this, it should be noted that
analog computers are limited in their applica-
tion to problems related to specific devices.
They lend themselves ably to such problems as
guided missile control or radar antenna training.

The measure of the output accuracy of the
analog computer is ‘‘analogous’’ tothe accuracy
of the input data. In this respect, the analog
computer can be compared to the slide rule.
When using a short slide rule, it is difficult
to feed information into the rule with accuracy.
Likewise, it is difficult to read the rule ac-
curately. The longer the rule (within limits),
the easier it is to feed-in and read-out more
accurate data. Obviously, there is a practical
limit to the rule length, which thus imposes a
limit on the accuracy of the input and output
data. Because this principle is true of all
analog computers, these computers are normally
less accurate than digital computers which, as
stated earlier, use fixed incremental inputs to
yield fixed incremental outputs with nearly 100
percent accuracy. The treatment in this text is
generally limited to DIGITAL COMPUTERS.

ARITHMETIC
AND
LOGIC

3

-

MEMORY
(STORAGE)

<@— OUTPUT = J *
l
|
1

INPUT >

\

\ 4

|
|
L e CONTROL

124.2
Figure 2-2.—Basic computer block diagram.

BASIC COMPUTER BLOCK DIAGRAM

The basic sections of an elementary digital
computer are shown in figure 2-2,

The control section is comparable to a tele-
phone exchange, It directs the operations of the
computer under the direct influence of a sequence
of instructions called the ‘‘program.’’ These
instructions are comparable to the phone
numbers dialed into a phone exchange and
cause certain switches and control lines to be
energized.

The program may be stored in the internal
circuits of the computer or it may be read
instruction-by-instruction from external media.
The internally stored program type of computer,
generally referred toonly as a ‘‘stored program’’
computer, is the most practical type to use
when speed and fully automatic operation are
desired.

In addition to the command which tells the
computer what to do, the control unit also
dictates how and when each specific operation
is to be performed. It is also activein initiating
circuits which locate any information stored
in the computer and in moving this information
to the point where the actual manipulation or
modification is to be accomplished.

In the stored program computer, the control
unit reads an instruction from the memory
section (as instructed by the program). The in-
formation read intothe control unit from memory
is in the form of voltage levels that make up
a “binary word’’ and represents a specific
operation that is to be performed. The location
of the data to be operated on is generally a
part of the instruction and energizes circuitry
which causes the specified operation (such as
add, subtract, compare, etc.) to be executed.
Subsequently, the control unit reads the next
instruction, or jumps as directed, (explained
later) to find the next instruction to execute.

The arithmetic unit of the computer is
the section in which arithmetic and logic opera-
tions are performed on the input or stored
data. The arithmetic operations performed in
this unit include adding, subtracting, multiplying,
dividing, counting, shifting, complementing, and
comparing.

All arithmetic operations can be reduced to
-any one of four arithmetic processes; addition,
subtraction, multiplication, or division. In most
computers, multiplication involves a series of
additions; and division, a series of subtractions.

11

DATA SYSTEMS TECHNICIAN 3 & 2

The arithmetic unit contains several reg-
isters; units which can store one ‘‘word’’ of
computer data. This group of registers generally
include X and Q registers (sonamed for identifi-
cation purposes only), and a unit called an
“accumulator’’ (A register). During anarithme-
tic process, the X and Q registers temporarily
hold or store the numbers being used in the
operation, called ‘‘operands’’, The accumulator
stores the result of the operation. The control
unit instructs the arithmetic unit to perform the
specified arithmetic operation (as requested in
the instruction); transfers the necessary infor-
mation into the X and Q registers from memory
(discussed later); and controls the storage of the
results in the accumulator or in some specific
location in memory.

The arithmetic unit also makes comparisons
and produces ‘‘yes’’ or ‘‘no’’ or ‘‘go-no-go’’
outputs as a result. The computer may be
programmed so that a ‘‘yes’” or ‘‘go’’ result
advances the computer units to perform the
next step in the program, whereas a ‘‘no’’ or
‘‘no-go’’ instruction may cause the computer to
jump several programmed steps. A computer
may be programmed so that a ‘‘no’’ result at a
certain point in the program will cause the com-
puter to stop and await instructions from a
keyboard or other input device.

Generally information delivered to the con-
trol unit represents instructions, whereas infor-
mation routed to the arithmetic unit represents
data. Frequently it is necessary to modify anin-
struction. This instruction may have beenused in
one form in one step of the program but must be
altered for a subsequent step. In such cases, the
instruction is delivered to the arithmetic unit
where it is altered by addition-to or subtraction-
from another number in the accumulator. The
resultant modified instruction is again storedin
the memory unit for use later in the program.

In most digital computers the storage or
memory section is constructed of small mag-
netic cores, each capable of representing an
“ON’’ (‘“1’’) or ‘‘OFF’ (‘“0’’) condition. A
system of these cores arranged in a matrix
can store any computer word which is repre-
sented in binary form.

All computers must contain facilities to
store computer words or instructions (which
are intelligible to the computer) until these
instructions or words are needed in the per-
formance of the computer calculations. Before
the stored program type computer can begin to
operate on its input data, it is first necessary

12

to store, in memory, a sequence of instructions
and all figures, numbers, and any other data
which are to be used in the calculations. The
process by which these instructions and data
are read into the computer is called ‘‘loading.’’

Actually the first step in loading instruc-
tions and data into a computer is to manually
place enough instructions into memory by using
the console or keyboard so that these instruc-
tions can be used to bring in more instructions
as desired. In this manner a few instructions
are used to ‘‘bootstrap’’ more instructions.
Some computers make use of an auxiliary
(wired) memory which permanently stores the
‘““pbootstrap program’’, thereby making manual
loading unnecessary. This process is explained
in more detail in subsequent chapters.

The memory (or storage) section of a com-
puter is essentially an electronically operated
file cabinet. It is actually a large number
(generally between 1 and 40 thousand) of storage
locations; each referred to as a storage address
or register. Every computer word which is
read into the computer during the loading process
is stored or filed in a specific storage address
and is almost instantly accessible.

Input and output devices are similar in
operation but perform opposite functions. It
is through the use of these devices that the
computer is able to communicate with the outside
world.

Input data may be in any one of three forms:
It may be fed in manually from a keyboard or
console; from instruments or sensors; or from
a source on which data has previously been
stored in a form intelligible to the computer.

Computers can process hundreds of thou-
sands of computer words per second. Thus, a
study of the first method (manual input) re-
flects the incompatibility of human-operated
keyboards or keypunches to supply data at a
speed which matches the electronic speed of
digital computers. A high average speed for
keyboard operation is 2 or 3 characters per
second, which when coded to form computer
words may have more than 15 to 20 binary
digits, The computer is capable of reading
several thousand times this amount of informa-
tion per second. It is clear, therefore, that
manual inputs should be minimized to make
more efficient use of computer time.

Instruments are used as input sensors, and
are capable of supplying several thousand sam-
ples regarding pressure, temperature, speed,
etc., per second. This is equivalent to 10 or 20

Chapter 2—INTRODUCTION TO COMPUTERS

thousand bits or binary digits per second.
Digital computers which use these devices must
be equipped with analog-digital converters to
convert physical change to specific increments.

Finally, input information may be supplied
from cards, paper tapes, or magnetic tapes;
which have been stored previously outside of
the computer but in a form understood by
the computer program. This is the fastest
method of supplying input data to the computer,

Some commonly used input devices are
paper tape readers, teletypewriters, and mag-
netic type units.

Output information is also made available in
three types: human information, such as codes
or symbols presented on a cathode-ray screen
which are used by the operator to answer
questions or make decisions; information which
operates a control device such as a lever,
aileron, or actuator; or information which is
stored in a machine language or human language,
on tapes, or printed media.

Devices which store or read-out output
information include magnetic tape, punched
cards, punched paper tapes, cathode-ray oscillo-
scopes, electric typewriters, line-at-a-time
printers, and surface-at-a-time printers.

One of the main features of computers is
their ability to process large amounts of data
quickly. In most cases, the processing speed
far exceeds the ability of input devices to
supply information. One common limitation of
most input devices is that each involves some
mechanical operation, that is, the movement of
a tape drive or card feeder. Because a mechan-
ical movement of some part of these devices
cannot take place fast enoughtomatch electronic
speeds within the computer, these input devices
limit the speed of operation of the associated
computer particularlyincases where successive
operations are dependent upon the reception of
new data from the input medium.

Several methods of speeding up mechanical
operations have been devised, all of which are
designed to move a smaller mass a shorter
distance and with greater driving force. Many
of these designs have been directed toward
increasing the drive speed of magnetic tapes.
Present day tape drives can pass up to 112.5
inches of tape per second over a tape reading
head. Card readers (discussed inalater chapter)
can read between 100 and 1000 cards per minute,
depending on the particular reader.

With an understanding of the function of the
various computer sections, let us now consider

13

a basic computer instruction and how this in-
struction is executed. Let the instruction be as
follows:

‘‘Add the contents of the A register

to the contents of memory address loca-

tion 123 and store the results in address

456 in memory.’’

We will assume that the computer used is
the stored program type and that all instruc-
tions, data, numbers, and symbols have been
previously loaded or stored in memory at
known addresses. The stored input may have
been read from a magnetic tape (similar to that
used with commercial tape recorders), from
paper tape (similar to that used with teletype),
or from punched cards.

If the instruction to be executed is the first
programmed operation, energizingthe startbut-
ton will cause the control unit to issue an
order ‘‘Read instruction.’’ The instruction will
be read into a register in the control unit where
it will remain throughout the execution cycle.

Note that the mathematical operation re-
quested in the instruction is ADD, The instruc-
tion word thus contains a code which is inter-
preted by the control unit—ADD.

After reading the instruction, the control
unit will automatically energize circuits which
will (1) read-out the contents of memory ad-
dress 123 and (2) transfer this information to a
register (say the X register) in the arithmetic
unit. The contents of register A (accumulator)is
read into say the Q register inthe arithmetic unit.

The ADD process is then accomplished,
being constantly monitored by the control unit
to ensure that no further actions are initiated
before the ADD operation is completed. The
results of the ADD operation are stored in the
accumulator from which, by control request,
it is transferred to address 456 in memory.
This ends the instruction, The control unit will
read and execute the next instruction.

If the result is to be displayed at the output
immediately or at a later time (as stipulated in
the programmed instructions) the control unit
upon receipt of the instruction will issue an
order to read-out the contents of memory
address 456. Because read-out (which some-
times involve printing by some electromechan-
ical apparatus) is extremely slow as compared
to computer speed, most computers use a
secondary storage device called a buffer onto
which data is read directly from the primary
(main) storage at computer speeds. When read-
out is desired, the control unit enables the

DATA SYSTEMS TECHNICIAN 3 & 2

buffer storage to read-out all or any part of the
buffer storage. The buffer read-out is therefore
independent of the main computer operation,
and in some computers only one instruction is
required to start and stop the read-out process.

COMPONENTS USED IN COMPUTERS

Unlike the mechanical computers, such as
adding machines and odometers which are based
on the decimal (ten) digit system, modern
electronic computers use components which will
represent only 2 conditions. These conditions
are sometimes referred to as the 1 (energized)
or 0 (deenergized) states. Early computers
used relays and electron tubes; now transistors
and silicon or germanium diodes are used
because of the higher speeds at which they can
react, and too, because of their lower power
consumption. The physics and operation of these
devices is explained in Basic Electronics, Nav-
Pers 10087 (revised) training course.

Electronic circuits used in computers are
basically simple. To a large extent these cir-
cuits are of four types: the OR circuit which
produces an output when one or more of its
inputs is high, that is, in the one state; the
AND circuit which yields an output only when
all inputs are high; the flip-flop circuit which
is a bistable multivibrator; and the inverter
circuit which yields a high output with a low
input or a low output with a high input.

The reader should familiarize himself with
basic electronic circuits by studying Basic
Electronics, NavPers 10087 (revised). Only
those circuits which are peculiar to computers
will be treated in this text.

COMPUTER WAVEFORMS

To a great extent the speed and accuracy of
digital computers are directly related to the
type of pulse signals used. Most computer
circuits use square or rectangular-shaped wave-
forms to trigger circuits designed to have 2
stable states. Pulses may be negative going,
positive going, or alternating, but must have
a sharp rise time to ensure positive triggering
action,

14

In modern computers a series of pulses
referred to as clock pulses is produced by a
generator system which has a fixed rate. The
term ‘‘clock pulses’’ is indicative of the action
of these pulses to time all operations within
the computer.

In many cases the source of the clock pulses
is a synchronized multivibrator. The waveforms
shown in figure 2-3 are representative of those
used as triggering or gating pulses for computer
circuits.

Each action within a computer must begin
and end at a specified time. The clock pulses
compensate for slight inaccuracies (either ad-
vances or delays) in the timing of binary
pulses which initiate various actions throughout
the computer. Take for example the AND circuit
(fig. 2-4) which requires 2 input pulses (positive
going) in coincidence and produces an output to
initiate the execution of an operation. If the
enable input is either advanced or delayed in
time as it arrives at one of the AND circuit
inputs, the clock pulse will coincide with the
binary input only for a short period, and the
condition of this coincidence will ensure that
the output will appear at the proper time (only
at the time of the clock pulse).

ENVIRONMENTAL CONDITIONS

Each of the myriad contacts and components
in a computer is a potential source of break-
down. Thousands of resistors, capacitors,
crystal diodes, and transistors, are used in
computers, each of which exhibits some change
in its electrical value or conducting resistance
when subjected to temperature or humidity
changes. Some computer components such as
photoelectric card readers are sensitive to
light and can introduce errors in the computing
system if exposed to room lighting. Gas-filled
voltage regulating tubes or components which
operate in pressurized (gas) containers are
affected by changes in gas pressure.

Any significant change in the value of com-
puter components can cause errors in the
computations. If the error is introduced early
in the computation, the output may be grossly
inaccurate. However, a malfunction at any point
in the calculation, whether caused by atransient
voltage, intermittent component, environmental
change, or a mistake in the program will
produce incorrect results at the output.

Chapter 2—INTRODUCTION TO COMPUTERS

TRAILING PEAK
EDGE VALUE
LEADING
EDGE POSITIVE -GOING
PULSES
MAY REPRESENT

r] "1-STATE" |
|

OV : . |
|

|

| | |
I7—->> \—MAY REPRESENT) FALL OR
PULSE 0-STATE DECAY
REPETITION , TIME
RATE PULSE DURATION RISE TIME
NEGaTVE ~GOING MAY REPRESENT
o 0 - STATE
V L_J
MAY REPRESENT
“4-STATE"
ALTERNATING
PULSES MAY REPRESENT
“1-STATE"
‘__Lt/——-MAY REPRESENT

"0-STATE"

Figure 2-3.—Computer waveforms.

124.3

As a DATA SYSTEMS Technician one. of
your responsibilities will be to control the

CLOCK- PULSE ﬂ

CONTROL ENABLE [T}

L environmental conditions surrounding the com-
puting equipments within specified limits. The
temperature and humidity must be controlled
| in order to prevent expansion of mechanical

I AND linkages, changes in resistance values and rust
outpuT puLse [L and corrosion of components which are not
: adequately protected.
124.4 Other duties involving maintenance respon-
Figure 2-4.—Basic example of the use of sibilities are treated in chapters 18 and 19 of
clock pulses. this course.

15

CHAPTER 3

NUMBER SYSTEMS

How does a digital computer represent data
internally in order to perform operations on it?
The answer is found inthe nature of the principal
electronic components employed. These include
diode rectifiers, transistor flip-flops, and mag-
netic cores, all of which have two possible states
(bi-stable). They are either ON or OFF, con-
ducting or nonconducting, energized or deener-
gized. The presence of electrical signals in
certain components and the absence of signals
in others represent the internal data.

BINARY ARITHMETIC

Computers function in the binary number
system using digits 0 and 1. The components
that represent data can only represent two pos-
sible stable states, as previously stated, that of
conducting or nonconducting. For example, we
may represent decimal numbers (data) by using
light bulbs which are assigned the decimal values
of 8, 4, 2, and 1 reading from left-to-right in
figure 3-1. A lighted lamp in the 8’s column
represents a 1 condition in that column. The
numerical value of this 1conditionis 8. Alcon-
dition at the 4 level represents 4, etc. The
decimal value 0 is represented when all lights
are off. The decimal value of 15 is represented
when all lights are ‘‘on’’., The decimal value
of 5 is represented by having the 4 light on and
the 1 light on. The decimal value of 12 is
represented by having the 8 light on and the 4
light on. Thus any decimal number from 0 to 15
may be represented by the four light bulbs.

The topic of number systems is discussed
in detail in the training course Mathematics
Vol. 3. In this chapter we will only review the
main points of number systems as discussed in
that course,

BASIC OPERATIONS

Computation in the binary number system is
relatively simple since the number system uses
only the digits 1 and 0.

16

Addition

For addition three rules apply:

1. Zero plus zero equals zero.

2. Zero plus one equals one.

3. One plus one equals zero with a carry of
one to the next position on the left.

Example:
Binary Decimal
Representation Equivalent
01111 1510
+00111 + 710
10110 2210
Subtraction

For subtraction four rules apply:

1. Zero minus zero equals zero.

2. One minus one equals zero.

3. One minus zero equals one.

4, Zero minus one equals one, with one
borrowed from the left.

Example:
Binary Decimal
Representation Equivalent
{1}
Borrows 11
01101 1310
-00110 - 610
00111 710
Multiplication

For multiplication three rules apply:
1. Zero times zero equals zero.

Chapter 3—NUMBER SYSTEMS

®

\‘\\\\‘;;J "’///"
i;§ﬁ~hv : eéé?
A Y LS
S £
:g E:
- E..

e

I4f’1_

I_;/o_

OFF ON

\ g

OFF ON

124.5

Figure 3-1.—Light bulbs assigned decimal numbers.

2. Zero times one equals zero; no carries
are considered.

3. One times one equals one.

Example:
Binary Decimal
Representation Equivalent
01111 1510
x 100 x410
00000 60.
00000 10
01111
0111100
Division

For division similar concepts are applied:

Example:
Binary Decimal
Representation Equivalent
101 510
100/101

0 10000 410/2010

== 20

100 0

100

17

CONVERTING BETWEEN NUMBER
SYSTEMS

Although the computer operates internally
using the binary system, the programmer or
operator may express input-output data in the
decimal form; and by means of a stored program
the computer can convert from one system to
another,

It can be seen that binary numbers require
about three times as many positions as decimal
numbers to express the equivalent number.
Although this is not much of a problem to the
computer itself, in talking and writing, these
binary numbers are quite bulky. A long string
of zeros and ones is difficult to interpret. A more
convenient method is desirable and the octal
number system fills this need. Numbers can be
converted from the octal to binary and from
binary to octal by inspection. There is a simple
relationship between the octal and binary system.
Three binary positions are equivalent to one
octal position. The following table is used con-
stantly when working on or about the computer.

BINARY OCTAL

0000
0001
0010
0011
0100
0101
0110
0111

O W= O

DATA SYSTEMS TECHNICIAN 3 & 2

At this point a carry to the next higher
position of the number is required, since all
eight symbols have been used.

BINARY OCTAL
1000 10
1001 11
1010 12
1011 13

and so forth

DIRECT CONVERSION OF RADIX
r, TO r2

1
In order to convert an octal number to a
binary number or a binary number to an octal
number, use the following rule:
Rule: Express the number in binary groups
of three and arrange the groups according to
the following example:

OCTAL TO BINARY BINARY TO OCTAL

2
010

2
010

5
101

010
2

010
2

101
5

In the decimal system a number is repre-
sented or expressed by a sum of terms. An
individual term consists of a product of a power
of ten and some integer from 0t0 9. For example,
the number 125 means 100 plus 20 plus 5. This
can also be expressed as:

(1x102) + (2x101) + (5x100)
In a like manner the binary number 1111101
can be expressed as follows:

(1x28) + (1x25) + (1x2%) + (1x23) + (1x22)
+ (0x21) + (1x20) =
64 + 32 +16 +8 +4 +0 + 1

1254

The octal number 175 can be expressed as
follows:

(1x82). + (7x8l) + (5x80)
64 + 56 + b5

12519

To convert a DECIMAL integral number to
an OCTAL integral number, divide the decimal
number by 8, and the remainder equals the unit’s
position of the octal number. Divide the quotient
(obtained from the first division) by 8 and this
remainder equals the next (eight’s) position of

18

the octal number. Repeat the above process
until the quotient zero is reached.

Example: Convert 1491 to anoctalnumber,

18 2 0
8 /149 8/18 8/2
8 16 0
69 2 remainder 2 remainder
64

5 remainder

The last remainder is the most significant
digit in the octal number.

14919 225g

To convert a DECIMAL fractional number to
an OCTAL fractional number, multiply by 8 and
develop the octal number as follows:

Example:
number,

Convert 0.14917 to an octal

0.149
8
1.192

X

0.192
8
1.536

X

0.536
8
4.288

X

0.288
X 8
2.304

0.1142g = 0.14919

To convert an OCTAL integral number to a
DECIMAL number multiply the highest-order
digit of the octal number by 8 and add the next
lower order digit of the octal number to the
product. Multiply this sum by 8 and add the
next lower order digit to the result. When the
lowest order digit has been added tothe answer,
the process ends.

Chapter 3—NUMBER SYSTEMS

Example: Convert 225g to a decimal number.

225

+ 5
14910

2258

To convert an OCTAL fractional number to
a DECIMAL number, express the number in
power of 8, add and divide as follows:

Example: Convert 0.1142g to a decimal number.

0.1142 = (1x8-1) + (1x8-2) + (4x8-3) + (2x8-%)
=1/8 +1/64 +4/512 + 2/4096
= 610/4096
= 0.14897 or 0.149

Negative Numbers

A convention for representing negative num-
bers is the use of the minus sign (-). For in-
stance, negative 23 is written as -23, Negative
numbers comprise an important part of our
number system. The question arises, how does
a digital computer represent negative numbers?

SIGN-BIT NOTATION

In the binary number system, the digits 0
and 1 are used to represent any number of our
familiar decimal number system. This is also
true for negative numbers. The 0 is assigned
the plus (+) sign and 1 is assigned the minus (-)
sign, when either the 0 or the 1 is found in a
specified column. This column is called the
“‘sign bit’’ column. Using the far left column
as the sign bit column, -12 and +22 are written
as:

sign
bit

1 01100
0 10110

-12
+22

The confusion which arises when performing
mathematic operations and not being able to
differentiate between the sign bit and the true
magnitude of the number is solved by using the

19

‘“‘complemented form’’ of the negative number.
The use of complements is discussed in detail
in Mathematics Vol. 3.

All data that is input-output data to a com-
puter does not always represent numerical data.
Thus, it has become necessary to develop codes
to represent data consisting of both numerical
and alphabetical symbols. In the computer, the
code relates binary indications to data which
may consist of either numerical or alphabetical
symbols,

If one understands the principles of coding,
memorization of the codes is not necessary. In
fact, it is sometimes impossible. There are so
many different computer codes that no one in-
dividual knows all of them. A small portion of
such codes is shown below. They are named
after their four lowest integral weights.

Another fact of which one should be made
aware is that two different computers seldom
use exactly the same code. If onebegins to work
with a specific computer, one will become so
familiar with it and with its coding that mem-
orization will be automatic.

Computer codes can be divided into three
categories:

1. Regularly weighted codes

2. Arbitrarily weighted codes

3. Nonweighted codes

REGULARLY WEIGHTED CODES: In these
codes, each number position has a weighting
value just as the decimal number system and its
weighting values are regular. For example 910
and 510 are formed in the 7,4,2,1 codeas shown
in figure 3-2. These codes are formed according
to a specific rule. A regularly weighted code is
7,4,2,1 code. The weighting values form a sim-
ple arithmetic series which begins with 1 and
increases regularly, plus one unit, plus two
units, plus three units, etc.

The important point to remember about reg-
ularly weighted codes is that the weights are
determined by some rule. If one knows the rule,
he can find the weighting value for any desired
position,

ARBITRARILY WEIGHTED CODES: These
codes also use weighting values, but have no
rules for forming them. Consider the 4,2,2,1
code in which the first four weighting values

DATA SYSTEMS TECHNICIAN 3 & 2

WEIGHTS
DECIMAL 7 4 2
i | n
. | ! '
20 = | | 0 | | | 0
| I I
50 = O { [: 0 : !
| | |
| |]

IX7 +0X4 +1X2 +0X1=9,0

=0X7 +1 X4 +0X2+1X1=5

124.6

Figure 3-2.—Formation of 910 and 510 in the 7,4,2,1, code.

from left to right are 4,2,2,1. There is no rule,
or formula, for generating these values, and one
cannot know what the weighting value of the fifth
digit from the right might be. However, one will
find that the 4,2,2,1 code, as well as many other
arbitrarily weighted codes, can be a very prac-
tical one, and that it makes no difference what
the fifth digit weight might be, because it is
never used.

NONWEIGHTED CODES: These codes have
no weighting values at all. Each coded group is
defined so as to represent some quantity. The
Roman numeral system is such a nonweighted
code.

PURE BINARY CODING: Although the deci-
mal code is quite appropriate for use in the
small mechanical office calculator, it is im-
practical for use in the electronic digital com-
puter. One important reason for this limitation,
which has been mentioned before, is that elec-
tronic digital computers use binary components
such as magnetic cores, flip-flops, and diodes,
that function best with pure binary numbers.
Pure binary calculation is of the utmost sim-
plicity, as shown by the following comparison
between binary and decimal addition:

BINARY DECIMAL
ADDEND: 100 4
AUGEND: 001 1
SUM: 101 5

(The augend, from Mathematics, Vol. 3, is a
number which has another number, the addend,
added to it.)

The simplicity of binary calculation means
fewer and simpler instructions are required to
program the computer. This, in turn, means

A\

\\

N\

20

less hardware and lower cost. For these reasons
straight binary coding, as it is called, provides
a definite design advantage.

Every design advantage is usually accom-
panied by some limitations. The major disad-
vantage is that one mustfirst convert the problem
into binary code, and then he must convert the
binary solution back into decimal numbers. Ob-
viously, while binary calculations is convenient
for the machine’s internal operations, the ma-
chine’s input and output must be able to ‘‘talk’’
man’s language.

In order to do this, two translation units are
required. These include a decimal-to-binary
converter immediately after the input, and a
binary-to-decimal converter just before the
output. This arrangement is shown infigure 3-3.
These converters must be able to convert any
number from one system intothe other. Because
they must handle an infinite number of possi-
bilities, these converters are complex, expen-
sive, and difficult to maintain. Despite these
disadvantages, however, the balance remains
in favor of the pure binary code, and many of
the early computers were built in accordance
with this system.

BINARY-CODED DECIMALS—
(A COMPROMISE)

Our decimal number language is different
from the one used by a large electronic com-
puter. Although we understand decimal numbers
best, all digital computers, (except the simplest
mechanical calculators), function best by using
the pure binary number system. In order to
bridge the two systems, it was necessary to
sacrifice some of the computer’s simplicity by
adding complex encoding and decoding circuits.

Chapter 3—NULIZBER SYSTEMS

TWO EXTRA SECTIONS MUST BE ADDED
FOR STRAIGHT BINARY COMPUTATION.

DECIMAL
DEGIMAL TO STBRIQIA?;V.
PTSEIJ'I%M BINARY COMPUTER
CONVERTER

BINARY
T0
DECIMAL
CONVERTER

i

[

BINARY
PROBLEM
INPUT

BINARY
SOLUTION
OUTPUT

DECIMAL
SOLUTION
OuUTPUT

124.7

Figure 3-3.—Relationship of converters to the straight binary computer.

At the present time no complete solution has
been developed for this problem. Even the best
modern computer employs a system that is a
compromise. Thus, one of the better modern

computers uses a combination of boththe binary
and decimal codes, and the outstanding features
of its operation will be described in the para-
graphs that follow.

Recall that each decimal digit can be repre-
sented by a binary number, as shown in figure
3-4, Each of the binary numbers that is shown
in the figure is called a ‘“‘binary-coded decimal
digit’’ or ‘‘coded digit.’’ One can see that without
using any other binary numbers, it is possible
to represent any desired quantity by means of
these coded digits. For example, in order to
represent 736, we simply write the coded digit
for each decimal, then we place the digit in the
same order asthedecimalsthus: 011100110110.

Binary coded decimal digits need not be
spaced because we know that each one is com-
posed of four binary digits. For easier reading,
however, a space usually will be placed between
each coded digit, thus: 0111 0011 0110. Note that
this number is not pure binary; it is, instead, a
binary-coded decimal number, as shown in
figure 3-5.

This notation possesses important advan-
tages for computer applications. Any decimal
number can be expressed in the binary-coded
decimal system, but only ten different conver-
sions are necessary—one for each decimal.
Therefore, the machine is designed to compute
with each coded decimal as its basic unit, not

DECIMAL BINARY-CODED
DIGIT DECIMAL DIGIT
0. O 0 0 O
I O O O |
2 O O 1 O
3 O O I |
4 O I 0 o
5 o 1 0 |
6 o 1 1 O
7 o 1 1 1
8 I O 0O O
9 I 0 O |

with each binary digit. Thus, although the com-
puter never operated with anything but binary
numbers, it remains, from one point of view,
a decimal calculator.

21

124.8

Figure 3-4.—Binary-coded decimal digits.

DATA SYSTEMS TECHNICIAN 3 & 2

7 3 6
v \ \
ollL ool ollo

124.9
Figure 3-5.—Binary-coded decimal digits can
represent any decimal number,

Binary-coded decimals are not a complete
solution, because they are longer than pure
binary numbers. For example, the number 0111
0011 0110 (12 bits) can be writteninpure binary
code a 1011100000 (10 bits). Thus, more com-
ponents are needed to represent the extra digits
of binary-coded decimals. Calculating circuits
must also be made more complex, in order to
process each coded-digit as a unit.

There is a net gain, however. The increase
in calculating circuit complexity is more than
balanced by the vastly simplified encoding and
decoding circuits.

THE BIQUINARY CODE

" This is a binary-coded decimal system that
uses seven-bit words instead of four-bit words.
(See figure 3-6.) The code derives its name
from the fact that we can conveniently divide it
into two parts: the ‘bi’’-part, which consists of
the first two bits at the left, and the ‘‘quinary’’-
part, which makes up the other five digits. With
this code, the decimal number 306 is writtenas:

0101000 0100001 1000010

The major disadvantage of this code is ob-
vious, It requires more bits per word, and is
therefore more expensive. On the other hand
with this code, it is easy to detect an error.
Note that every single biquinary digit represen-
tation has exactly two 1’sinit;nomore, no less.

Let us assume, for example, thata computer
contains the biquinary number 2, using a positive
pulse to represent 1, and no pulse to represent
0, as shown in figure 3-7. Let us assume fur-
ther that during the process of passing this
coded pulse train from one circuit to another,
a pulse is dropped. (See figure 3-6.)

We can easily determine that an error has
occurred, even if we do not know the exact
value of each biquinary number. The error will
be detected when we fail to find two 1’s in the
pulse train. This method of looking for pairs
is called a parity check.

22

DECIMAL BIQUINARY 8421
DIGIT CODE CODE
“BI" "QUINARY"
. 84 2|
50\ /43210 2
0 Ol 00001 0000
[0l 000IC 000 |
2 0l 00100 0010
3 ol 01000 00l |
4 ol 10000 0100
5 10 0000 0101
6 10 00010 ollo
7 10 00100 o1l
8 10 01000 1000
9 10 10000 100 |
BIQUINARY-CODED DIGITS CAN
REPRESENT ANY DECIMAL NUMBER
3 o) 6
]) \J
0101000 010000l 1000010

124.10
Figure 3-6.—~Comparing the biquinary with
the 8,4,2,1 code.

ERROR DETECTING CODES

The biquinary code is only one of a class
of codes called two-out-of-seven codes, all of
which have the same error-detecting property.
The quibinary code, for example, uses a different

Chapter 3—=NUMBER SYSTEMS

—_ 0 DECIMAL DIGIT 2
‘ | r\l gé)%%g\l%?gw rO I 00 I O o‘
REPRE%IE?\FI’%TION _[—l___l_l_
TIMING PULSES

I 2 3 45 67
A CODED DIGIT CAN BE

REPRESENTED BY A SEQUENCE
OF PULSES

EVEN NUMBER OF I'S 0DD NUMBER OF I'S

— ——t—
Ol 00 1| © O 0O0O0 1 OO

TRANSMITTING
CIRCUITRY
ouT

A DROPPED PULSE
CREATES AN ERROR

124.11
Figure 3-7.—Biquinary code.

notation to produce the same effect. Its seven
weighting values are

8,6,4,2,0,1,0

and its decimal equivalents are given in figure
3-8.

Another group of codes, called two-out-of-
five codes, possess error-detecting qualities,
but are less expensive. As their name implies,
two-out-of-five codes require only five bits
instead of seven bits to represent a decimal
digit.

A two-out-of-five code can be generated
very simply from the 7,4,2,1 code. Remember
that this ‘code never has more than two 1’s in
any single word. Now add a fifth bit to each
four-bit word in such a manner that the total
number of 1’s per word is always an even
number. In other words, if there is one 1lina
coded digit, 0010 for example, then another 1 is
added to it, making it 00101, On the other hand,
if there are two 1’s in the word, such as 0110,
then a zero is added to produce 01100, thus
retaining the quality of evenness. The 7,4,2,1
code, converted into a two-out-of-five code, is
shown in figure 3-9,.

Note that each word has exactly two 1’s in
it, except for the zero, which has none. Although

23

this complete lack of the 1 bit does no harm to the
code’s error-detecting properties, it can cause
trouble in certain instances. If 1 is represented
by a pulse, and 0 is represented by no pulse,
there is no method of telling whether 00000
means zero or whether it means a complete
absence of information (fig. 3-10). Although this
dilemma can be resolved by means of the
computer’s timer (a count of five time-units
with no pulses is defined as representing zero),
it is safer to have 1’s in every word. Besides,
it is not difficult to find a 7,4,2,1 code word
that has not been used. For example, the
decimal number eleven (7 + 4) inthe 7, 4, 2, 1
code is the word 1100, Since we donot need this
‘‘spare,’”” we can use it to represent zero. If
we add a 0, to its right, we have 11000, which
satisfies the two-out-of-five requirements per-
fectly (see fig. 3-11).

We are obviously willing to pay for reli-
ability with an extra bit per word, although
these extra bits possess no code values. If
these extra bits represent no number, how
does the computer calculate with them? One
answer is that if it is provided with enough
circuitry, the computer can calculate with

Qul BINARY
DECIMAL WEIGHTS WEIGHTS
DIGIT
86420 10
T
0 00001 : ol
| 00001 l 1o
2 00010 | ol
I
3 00010 l o)
4 00100 | 01
|
5 00100 l 10
6 01000 | o1
7 01000 : 10
8 10000 ! X
9 10000 | 10
|
|
124.12

Figure 3-8.—The quibinary code.

DATA SYSTEMS TECHNICIAN 3 & 2

DECIMAL
DIGIT 7WE|(52H,TzA/‘4‘:ﬁ'ZIcTKY
COLUMN
(0] 000O0O0
| 00011
2 00101
3 oOoO01 1O
4 Ol1 001
5 o1 010
6 Ol 100
7 10001
8 I 00 10
9 I 0100
124,13

Figure 3-9.—Two-out-of-five code.

®
124.14

Figure 3-10.-Is it 00000 or simply a
pause between pulses?

almost any number system, However, this is
not a very economical method of calculation.
The method more frequently used is to remove
the redundant bit (or parity bit, as it is some-
times called) just before the coded number
enters a calculating circuit, and to replace the
redundant bit as soon as the coded number
leaves the circuit. This method requires fewer
extra circuits.

For further economy, the parity bit can be
removed before a word is stored, and it can be

24

DECIMAL
DIGIT

WEIGHTS
74210

AN IMPROVEMENT

o 'l 00 0 ~——

| 00 01 I
00101
o001 10
O 1001
Ot1to1o0
Ol1100

7 I 0001
I 0010

o100

124,15
Figure 3-11.—Revised two-out-of-five code.

added on as soon as the word leaves storage.
One important fact about the error-detecting
codes so far discussed is that they have been
misnamed., The term ‘‘error-detecting’’ is not
completely accurate, Consider, for example,
a situation in which the word 01001 enters a
faulty component, and leaves it with two errors,
such as 00101. The comparator will allow the
erratic 7,4,2,1-coded word to pass, for it has
an even number of 1’s. Obviously, the ‘‘error-
detecting’’ codes should be called ‘‘single-
error detecting’’ codes for that is the full
limit of their capability.

ERROR-PREVENTING CODES

We have already considered error-detecting
codes, and one should understand that these
codes are useful only after the error has been
committed. Sometimes, however, itisimportant
to detect an error, or at least to minimize the
error, before it occurs. This is where error-
preventing codes can be used.

Gray Code

An analog-to-digital converter frequently
uses error-preventing codes. Basically, an
analog-to-digital converter is a device that
changes a number from analog to digital form.
If the analog value is a mechanical movement,
the quantity can be expressed in terms of a

Chapter 3—NUMBER SYSTEMS

specific angle of shaft rotation or by the longi-
tudinal movement of a rack and pinion. An
error-preventing code frequently used with an
analog-to-digital converter is the Gray code.
This Gray code is a cyclic code which changes
only by one bit when going from one number to
the one immediately following. Operational
errors are reduced if only one digit at a time
changes as the numerical value increases.

Let us examine the Gray code in figure
3-12, If we cover the leftmost digit in the first
and last rows under the reflected binary code,
we will observe that the bits that represent 0
are identical with the bits that represent 15.
Thus, all but the leftmost digit of 0000 and 1000
‘‘reflect’’ each other. Similarly, the number that
represents 1 is reflected by the number that
represents 14, etc.

A simple method of constructing the Gray
code is to employ the following steps:

1, Write the number 00, and the number 01

below it.
00
01

2. Now ‘“‘reflect’’ the least significant digits

of these two numbers, thus

0

1

1

0
Place 0’s to the left of the top half of
the numbers and 1’s to the left of the
bottom half.

reflection line

00
01
11
10
“‘reflect’’ these numbers, thus
00
01
11
10

4, Again,

reflection line

00
5. Once more, place 0’s to the left of the
top half of the numbers and 1’s to the
left of the bottom half.
000
001
011
010

25

110
111
101
100

DED?::ATAL REFLEGTED BINARY CODE
o 0 00 O
| 00 0 I
) 0 0 1 1
3 00 1 0
4 0 | I 0]
5 o 1 | |
6 0 | 0 |
7 o1 0 o0
8 I 1 0 o
s 1o
o Lo
1 | | | [0}
- I o | o
'3 Lo 1o
L4 I o o I
5 I 0 0 o

| Sr 124.16
Figure 3-12.—The Gray code.

DATA SYSTEMS TECHNICIAN 3 & 2

6. Reflect, and again add 0’s to the left of
the top half of the numbers and 1’s to
the left of the bottom half. Remember to
add these extra 0’s to the left.

0000
0001
0011
0010
0110
0111
0101
0100
reflection line

1100
1101
1111
1110
1010
1011
1001
1000

Of course, we could continue this process of
adding and reflecting, thus making this code as
large as we desire,

The reflected binary code that has been
constructed, is called the Gray code. It is only
one of a number of reflected binary codes.
These codes, in turn, belong to a large group
of cyclic codes.

FUNDAMENTALS OF BOOLEAN ALGEBRA

As stated previously, adigital computer uses
bi-stable elements as electrical components in
its circuitry. These bi-stable elements act as
electronic switches. These electronic switches
are put in a definite order to perform certain
prescribed tasks such as adding and comparing.

When designing switching circuits for the
first digital computers, it became evident that
a simple mathematical way of representing
switching circuits was needed so that these
circuits could be simplified. Upon investigation
and research, it was discovered that Boolean
algebra could be applied to switching circuits.

Boolean algebra is based on George Boole’s
book, An Investigation of the Laws of Thought,
On Which are Founded the Mathematical Theories
of Logic and Probabilities, published in 1854,
His book led to the development of a ‘‘logical
algebra’ used to design logical circuitry in
digital computers. This algebra will be discussed
in the following paragraphs. A more detailed
discussion may be found in Mathematics, Vol. 3.

BASIC CIRCUITS AND SYMBOLS

Boolean algebra uses the mathematical sym-
bols of ¢.’’, ‘“+’’ and ‘‘~’’ to represent a
logical description. The ¢‘.’’ represents AND,
the ‘“+’’ represents OR, and the ‘‘~-’’ represents
NOT. With these three symbols, one can repre-
sent the basic logic switching circuits of a
digital computer.

AND Circuit

The AND circuit of two switches (variables)
is shown in figure 3-13A. Switch A or B may be
either open or closed, 0 or 1 position. The
series circuit will transmit a signal only if
both A AND B are closed, i.e., equal to 1. If
either switch A or switch B is open, i.e., equal
to 0, then the circuit will not transmit a signal.

The preceding AND circuit is represented
in Boolean algebra as A-B, which means A AND
B. Note that the variables A and B can only
take on the values of either 0 or 1.

4 O 0" g
T e
® | (o
A | B fAB):=4A8
010 0
0| I 0
I |0 o]
L] |
A
© i 48

12.133
Figure 3-13.—The AND circuit.

26

Chapter 3—NUMBER SYSTEMS

In Boolean algebra any group of variables,
which represents an expression of logic, is
called a function and is symbolized ‘‘f’’. For
any Boolean function there is a corresponding
truth table which shows, in tabular form, the
true condition of the function (0 or 1) for each
way in which conditions can be assigned to its
variables. The associated AND circuit truth
table (fig. 3-13B), shows the various condition
of 0 and 1 assigned to variables A and B, and
the AND circuit outputs f(A,B) to the load.

In any digital computer, there will be many
AND circuits. In order to analyze circuit
operation, it is necessary to refer frequently
to these circuits without looking at their detailed
electronic switching arrangements. This sim-
plification is accomplished by substituting logic
diagram mechanizations for the actual circuits.
The logic symbol for the AND circuit is illus-
trated in figure 3-13C. Two coincident inputs,
A and B at the left will produce the output
function A-B in Boolean form at the right,

OR Circuit

The OR circuit is shown in figure 3-14A
with its corresponding truth table (fig. 3-14B),
and logic symbol (fig. 3-14C). Notice that the
circuit switches are placed in parallel. Inspec-
tion of the arrangement shows that the circuit
will transmit a signal to the loads if either
A OR B is in the closed position, i.e., equal to
1. If, and only if, both A and B are open, i.e.,
equal to 0, the circuit will not transmit.

The logic symbol for the OR circuit is
illustrated in figure 3-14. Either of two inputs
A or B at the left will produce the output
function A+B in Boolean form at the right.

NOT Function

Figure 3-15A shows the NOT function and its
corresponding truth table (fig. 3-15B) and logic
diagram mechanization (fig. 3-15C). The re-
quirements of a NOT condition are that a signal
applied to the input produce the complement
(reverse or opposite) of the signal at the output,
and furthermore, that the complement of the
signal at the input produce the signal at the
output. Thus, in figure 3-15A when switch A is
closed, i.e., equal to 1, the relay opens the
circuit to the load, and the output is 0. When
switch A is open, i.e., equal to O, the relay
completes a closed circuit to the load, and the
output is 1.

27

|lou

]

f(A,B)=A+B

— 0 — O |W®

o 0
0] |
1 |
| [

A+8

©

12.134
Figure 3-14.—The OR circuit.

The logic diagram (fig. 3-15C) for the NOT
function indicates one input, say A, produces
the output function in Boolean form of A.

NOR Function

The NOR function is produced by negating
the output of an OR circuit (fig. 3-16A). Thus,
the logic diagram mechanization is as illus-
trated in (fig. 3-16B). The truth table of the
NOR function is illustrated in figure 3-16C,

NAND Function

The NAND function is produced by negating
the output of an AND circuit (fig. 3-17A). Thus,
the logic diagram mechanization is as illus-
trated in (fig. 3-17B). The truth table of the
NAND function is given in figure 3-17C.

The Boolean algebraic symbols for the AND
and OR circuits may be usedtodescribe various

DATA SYSTEMS TECHNICIAN 3 & 2

LRl

A O
L " o l'
B -\ F(4)
@ i
- e
—[_
A | f(A)= 4
T
0 [

12.135
Figure 3-15.—The NOT function.

combinations of these circuits as illustrated in
figure 3-18. Between points 1 and 2 switches
A, B, and C are in parallel and may be repre-
sented in Boolean form as A + B + C. Between
points 2 and 3, switches D and E are in series
and may be represented as DE. Thus the
parallel series combination between points 1
and 3 is equal to (A + B + C)DE. Between points
4 and 5 the parallel combination of Fand G is in
parallel with the series combination of H and I.
Thus the Boolean expression for the circuit
between points 4 and 5 is F + G + HI.

Between points 3 and 6 the series arrange-
ment of switch J, K, and L, may be represented
as JKL. This combination is effectively in
parallel with the circuit between points 4 and 5
and the circuit between points 3 and 6 may be
represented in Boolean form as F + G + HI +

28

e b
1
= | A B
IIO“ IIO)O
nln nI»
\loﬂ “l"
-
® T
A -
A+ B
B
Al B| A+8 f(4,8)=4+8
@ 0] 0 0 |
(O | 0
| | O | 0
| | | 0]

67.89
Figure 3-16.—The NOR function.

JKL. The circuit between points 3 and 6 is in
series with the circuit between points 1 and 3;
thus the entire circuit from point 1 to point 6
may be expressed as DE (A + B + C)(F + G +
HI + JKL).

LOGIC DIAGRAM MECHANIZATION

.Figure 3-19 illustrates the switching circuit
diagram for the Boolean expressions (A+B+ C)
ABA(B + C+AD) and [AB (A+B+C) + CDE] EB.

Chapter 3—NUMBER SYSTEMS

A
T
A \
O P N f4,6)
—J:_
A
A8
B
A\ B | AB | F(4B)=48
oo 0 l
0| I 0 |
{0 0 |
L] 1 o}

67.90
Figure 3-17.—The NAND function.

We now have a method of describing switching
circuits mathematically with Boolean algebra.
This algebra, like conventional algebra, follows
certain laws and axiomatic expressions. These
laws and axiomatic expressions are used to
simplify Boolean expressions. These methods
of simplification are discussed in detail in
Mathematics, Vol. 3. It is advised that the
reader study the applicable chapters in order

-to grasp more fully number systems and basic

29

logic.
VEITCH DIAGRAMS

The Veitch diagram, a very quick and easy
way for finding the simplest logical equation
needed to express a given function, is discussed
in the following paragraphs.

Veitch diagrams for two, three, four, five,
or more variables are readily constructed. Any
number of variables may be plotted on a Veitch
diagram, though the diagrams are difficult to
use when more than four variables are involved.
The Veitch diagrams for two, three, and four
variables are illustrated in figure 3-20.

Since each variable has two possible states
(0 and 1), the number of squares needed is the
number of possible states (two) raised to a
power equal to the number of variables. Thus,
for four variables the Veitch diagram must
contain 24 or 16 squares. Five variables require
25 or 32 squares. An eight-variable Veitch
diagram needs 28 or 256 squares—a rather
unwieldy diagram. If it becomes necessary to
simplify logical equations containing more than
six variables, other methods of simplification
are available and are discussed in Mathematics,
Vol. 3.

An exploded view of a four-variable Veitch
diagram 1is shown in figure 3-21. Notice the
division marks which divide the diagram into
labeled columns and rows. The location of each
square represents the combination of the vari-
ables labeling each row and column,

To illustrate the plotting of the Veitch
diagram, the Boolean equation f (A,B,C,D) =
ABC + ABD + AC + ABCD + AC, will be used.
Keep in mind the purpose of the plot is to
simplify the given equation. First plot the
equation by placing 1’s in appropriate blocks
corresponding to the variables ABC and D of
the various terms (fig. 3-22).

Then simplify the plot using certain rules
(fig. 3-23) to obtain the simplified form (fig.
3-24) of the given equation.

The plot is begun by placing 1’s for the
first term in the indicated squares as follows:

f(A,B,C,D) = ABC squares 14 and 15.

Consider the extensions AB and C (fig. 3-21)
to be cut out and placed over the original
diagram (center portion) so the numbered
squares on the extensions coincide with the
corresponding numbers on the original. Only
squares 14 and 15 are common to all three
variables A, B, and C.

DATA SYSTEMS TECHNICIAN 3 & 2

<-A+B+C—>

g

5

HL . S

re—— F +G +HI|+ JKL ———

(A+B~+C)(DE)(F+G+HI+JKL)

T g/c L
N e
< F+G +H|—>

67.92

Figure 3-18.—A switching circuit.

In a similar mamner the second term ABD
of the given equation is plotted by placing 1’s
in squares 12 and 14. The entire process of
plotting this equation is summarized as follows:
f(A,B,C,D) = ABC. ...
+ABD . ..
+ég._'_' .
+ABCD . .
=+AC

squares 14 and 15
squares 12 and 14
squares 12, 13, 9, and 8
square 0

squares 6, 7, 3, and 2

The completed Veitch diagram is illustrated
in figure 3-22. Notice that when representing
a term which does not contain all the variables
(A, B, C, and D) the plotting will represent
both the complemented and the noncomplemented
forms of the variables which were missing from

30

the term. Refer to the plot of AC. One’s are
placed in squares 12, 13, 9 and 8. The missing
variables in this term are B and D. Their
complements are B and D. Note that squares
12, 13, 9, and 8 represent the plot for AC and
also for the missing terms B and D and their
complements B and D.

TRUTH TABLES

The decimal numbers in the upper lefthand
corner of each square in figures 3-21 and 3-22
correspond to the decimal numbers in the left-
hand column of table 3-1. These numbers identify
the various combinations of the variables ABC
and D in the Veitch diagram. The equation

f= ABC + ABD + AC + ABCD + AC satisfies

Chapter 3—NUMBER SYSTEMS

>

"% "

o

o

%%

F

—o/oégo/H

(A+B+C)(ABA)(B+C +AD)

F

ot

[AB (A+B+C)+CDE]EB

67.92

Figure 3-19.—Switching circuit examples.

f =1 for certain conditions illustrated in the
truth table and they are the ones plotted on the
Veitch diagram (fig. 3-22).

Figure 3-22_shows the Veitch diagram of
f ABC + ABD + AC + ABCD + AC. We will
also use this expression in discussing the use
of the Veitch diagram in simplification.

To obtain the simplified logical equation
from a Veitchdiagram of four variables, observe
the following rules: (fig. 3-23).

a. If 1’s are located in adjacent squares or
at opposite ends of any row or column,
the variable appearing in its comple-
mented and noncomplemented form of the
variables may be dropped.

If any row or column of squares, any
block of four squares, or the four end
squares of any adjacent rows of columns,
or the four corner squares are filled
with 1’s, two of the variables which are
contained in the complemented and non-
complemented forms may be dropped.

If any two adjacent rows or columns, the
top and bottom rows, or the right and
left columns are completely filled with
1’s, three variables may be dropped.

To reduce the original equation to its sim-~
plest form, sufficient simplification must be
made until all 1’s have been included inthe final
equation. One’s may be used more than once,

31

Table 3-1.—Truth Table of f = ABC +
ABD + AC + ABCD + AC.

Decimal A B C D f
0 0o 0 0 0 1
& 1 0 0 0 1 O
& 2 0 0 1 0 1
i) @ 3 0 0 1 1 1
o 4 0 1 0 0 O
g 5 0 1 0 1 o0
Gy
g 6 0 1 1 0 1
= 7 o 1 1 1 1
=9 8 1 0 0 0 1
2 g 9 1 0 0 1 1
g’; @ 10 1 0 1 0 O
el -} 11 1 0 1 1 0
g bt 12 1 1 0 0 1
- 13 1 1 0 1 1
& 14 1 1 1 0 1
15 1 1 1 1 1

and the largest possible combination of 1’s in
groups of 8,4, or 2 should be used.

To proceed with the simplification of
f = ABC + ABD + AC + ABCD + AC:

1. Squares 12, 13, 9, and 8 may be com-
bined using rule (b) to yield AC.
2. Squares, 6, 7, 3, and 2 may be combined

using rule (b) to yield AC,

DATA SYSTEMS TECHNICIAN 3 & 2

A | A
B
é,
2 VARIABLES
A V)
B
B
C c C
3 VARIABLES
A A
D
B
D
B -
D
C C C
4 VARIABLES

124.20
Figure 3-20.—Veitch diagram.

32

Chapter 3—NUMBER SYSTEMS

A 4
12 14 (] q
13 15 7 5
9 Il 3 |
8 10 2 0
ORIGINAL DIAGRAM - FXTENSIONS

R S S

2 ia 6 |4 A | a D
5 2 14 e |a _/
35 7 B | ™. D
Bz 17 5 —" 13 15 |7 5
o Tt |3 h 04— 15 THE | D
s [u |3 i 5
- 8 [lo0 |2 o —
B g a7 D
0 2 0 \
c c ’5 8 Jlo0 |2 0 5

12 14 6 4

13 15 7 5

9 I 3 |

8 10 2 0
c c c

124.21
Figure 3-21.—Exploded Veitch diagram.,

3. Squares 12, 14, 13, and 15 may be com- this, the Veitch diagram is modified as in

bined using rule (b) to yield AB. figure 3-24, All 1’s have been used at least
4, Squares 0 and 2 may be combined using once, therefore, the Boolean expression can now
rule (a) to yield ABD. be written in its simplest form as
To keep track of the squares combined, _ o
draw loops around the combined squares. Doing f=AB + AC + AC + ABD.

33

DATA SYSTEMS TECHNICIAN 3 & 2

A 4
12 14 |6 4 =
gl] D
I3' I5I 7| 5
9 I 3| | 1%
_|
58 10 |2 (0] -
| BN
cl| ¢ C

124,22
Figure 3-22.—Veitch diagram of f(A,B,C,D) = ABC + ABD + AC + ABCD + AC.

34

Chapter 3—NUMBER SYSTEMS

- Figure 3-23.—~Veitch combinations.

35

4 | I 4 |2 4 | a
L] I 7] I | |D
B8 — B — B —
I
— D — D — D
D D D
cl ¢ ¢ cl ¢ |cC cl ¢ I¢C
ABD ABC BCD
RULE (a) RULE (a) RULE (a)
4 | a A a 4 | a4
! D D D
B — B T — B -
— D D 0
RERE
B —_ B — B —
[D D D
cl ¢ I cl ¢ |I¢ cl ¢ Ic
ADC BCcD ABD
RULE (a) RULE (a) RULE (a)
a | a |2 4 |l A A
1] D I] D 1] I D I I D
V24 T = B — B — 8 —
— D — D — D D
D I D D I I |D
cl ¢ I¢ cl ¢ ¢ cl ¢ ¢ C | | ¢
AB AD BD ch
RULE (b) RULE (b) RULE (b) RULE (b)
4 | I a4 | a a |l a A a
Pl b ol I Y Ll b g

8 = B = B — B =
L] RN I I

— D — D D — D

1] |l |1 I —

B — B — B — 5 —
1] D D [| |D Ll |D
cl ¢ I cl o ¢ cl ¢ Ic¢ cl ¢ |¢

A D c D
RULE (c) RULE (c) RULE (c) RULE (c)
124.23

DATA SYSTEMS TECHNICIAN 3 & 2

S

|)
\;/\‘_

C C C

AB + AC + AC + ABD.

36

CHAPTER 4

CONTROL UNIT

INTRODUCTION

The control unit is the coordinator or
director of all operations within the computer.
Its actions include: directing the reading of
information from memory; controlling the inputs
and outputs of the computer; directing the
operations within the arithmetic unit; and trans-
ferring information back into memory. To
perform these actions, it is necessary for the
control unit to be aware of each operation that
is to be performed, the location of the data
involved in the operation, and of course, where
to place the results,

Actually, the control section must be able to
tie together any circuit or group of circuits
necessary to perform any operation capable of
being performed by the computer. One might
expect, and rightfully so, that a maze of com-
ponents, wires, and circuits must be contained
in the computer. However, this is minimized
somewhat by design and by using a single
circuit to perform many functions.

This chapter treats the control section by
(1) considering the method of representing com-
puter instructions; (2) discussing the functional
operation of some circuits contained in the
control section; and (3) discussing a few of the
ways by which the control section coordinates
the computer operations.

SPECIAL PURPOSE AND GENERAL
PURPOSE COMPUTERS

There are two types of digital computers,
special purpose and general purpose. Special
purpose computers, as implied by the name,
are wired to perform specific types of oper-
ations in a planned sequence. Changing the oper-
ation and the sequence by which they are
performed necessitates changes in the wiring of

37

the computer. Of course, this limits the useful-
ness of this type of computer to special appli-
cations and to the solution of problems which
are not dependent on certain prevailing
conditions.

General purpose computers, again as the
name implies, are much more versatile since
their circuits are designed to perform many
different types of operations depending on the
programmed instructions. The general purpose
computer can be made to alter its sequence of
operations based on conditions which occur
while solving the problem. Thus, the pro-
grammed sequence can be changed or jumped
to any step in the program on ‘‘condition’’, i.e.,
if certain conditions prevail. The sequence may
be altered ‘‘unconditionally’’, i.e., without re-
gard to conditions.

This text discusses the operation of general
purpose computers although many of the circuits
and procedures are common to both types.

The general purpose computer performs its
actions as determined by a repertoire of instruc-
tions or program which has been previously
read into its storage or memory section in the
form of computer words. For this reason, the
general purpose computer is also referredtoas
a ‘‘stored-program’’ computer. Each computer
instruction word is intelligible to the computer
and is interpreted by the control unit and
executed in sequence unless conditions derived
during the calculations dictate otherwise.

INSTRUCTION WORD

It has been pointed out in an earlier chapter
that computer circuits respond to ‘‘on-off’’
pulses. The presence of a pulse usually repre-
sents a 1 condition, whereas the absence of a
pulse represents a zero condition. Each of the
on-off pulses in an instruction word is referred
to as a “bit.’”” In chapter 3 it is shown how 1’s

DATA SYSTEMS TECHNICIAN 3 & 2

and 0’s (bits) are combined to represent BCD
and octal digits. Table 4-1 illustrates how digits
in binary-coded decimal form are used to
represent 4593.

Table 4-1.—Binary-Coded Decimal
Representation of 4593,

BINARY-CODED 01000101 {1001 |0011
DECIMAL

REPRESENTATION

DECIMAL VALUE 4 5 9 3

In octal form the number 27563 is repre-
sented as shown in table 4-2.

Table 4-2.—Octal Representation of 27563.

BINARY VALUE 010{111101{110 {011
OCTAL

REPRESENTATION

OCTAL VALUE 2 7 5 6 3

Significantly, the number represented in
table 4-2 may not be interpreted by the control
section as twenty-seven thousand five hundred
and sixty three, but rather as an instruction
word. The two left-most digits may be a com-
puter code for ‘“‘READ-OUT.’’ The remaining
portion of the number (563) may be interpreted
as an address in memory. Thus, the computer
interprets the group of characters represented
in table 4-2 as an instruction word, meaning
to read-out the contents of memory address 563.

Computer words also represent data, and
in fact, it is often not possible (by visual
inspection) to distinguish between data and
instructions. It is therefore necessary to exer-
cise care when organizing words in storage and
to keep close track of thelocation of instructions
and data stored in memory.

OPERATION CODE SECTION

Each instruction word contains at least two
sections (table 4-3). The first section (65 in
this case), consisting of one or more digits,
indicates the function or operation code, i.e.,
ADD, SUBTRACT, etc. The second part can be

the operand, although it mostfrequently contains
the address (cr addresses) of the data (operand)
involved. The operand may represent the number
to be used in an arithmetic operation that is to
be performed, it may be transferred, left
shifted or right shifted, read-out, or any type of
computer operation.

Table 4-3.—Basic Instruction Word.

Operation Address

Code (or OPERAND)
OCTAL 6 5 5131|410
REPRESEN-
TATION
BINARY
REPRESEN-
TATION 110 | 101 {101|011]100 {000

38

The number of digits used to represent the
operation code is sometimes determined by the
number of different types of operations the
computer can perform. If it is assumed that a
given computer can only add, subtract, multiply,
and divide, the particular operation code could
be represented by the four possible combinations
of two binary digits. Here, 00 could represent
ADD; 01 could represent subtract; 10, multiply;
and 11, divide. Thus, the address/operand
section of the word will be preceded by one of
these codes depending on the operation desired.

Generally, computers can perform many
more than 4 operations as described above. In
fact, some computers can perform more than
200 different types of operations. Where this is
true, the operation code must contain a sufficient
number of digits to represent any operation
desired.

|ADDRESS SECTION

The second part of the instruction word,
namely the address section, generally repre-
sents the memory address (or addresses) of the
data to be operated on (operand). It should be
understood that in the stored program computer,
the instruction word does not normally contain
the operand but merely the address of the oper-
and.

To further explain this point, assume that a
certain computer has 32,000 memory address
registers, each of which .can store a computer

Chapter 4—-CONTROL UNIT

word (either an instruction word or an operand).
Assume further that the operation code 134
means ‘‘ADD to the contents of the accumu-
lator.’’ During the load routine, instructions may
be loaded into addresses 00000 to 20000. The
remaining memory registers are filled with
information words (data).

Now assume that memory address 00748
contains the instruction 13430155. Thisis inter-
preted by the computer as ‘‘ADD to the contents
of the accumulator the contents of memory ad-
dress 30155.’’ In this case, 134 is the operation
code and 30155 is the address of the operand.

Some computers operate with word lengths
which vary from word to word and are called
variable word length computers. Others use
fixed word lengths wherein each word contains
a fixed number of digits.

The use of either of the two types of words
has certain advantages and the choice of one
over the other is a design feature, The fixed
word length computer does not always lend
itself to an economic conservation of memory
registers since words which are normally
shorter than the fixed limit must be filled with
the spaces necessary to complete the word.
Several short words could therefore waste a
large number of memory spaces. On the other
hand, fixed word lengths which are compatible
with the number of bits that can be stored in a
register, facilitate orderly storage and simplify
the instructions necessary to store-in or extract-
from the memory section.

In the variable word length computer, one
block of data may be storedinone, two, or more
registers (depending on the length of the word).
Thus, variable word-length computers make
- possible far more compact storage of informa-
tion in memory by filling up all spaces (except
for word separators).

When this method is used, the stored infor-
mation is not referenced by location alone, but
by its position relative to other information in
the program. Instruction words must therefore
be made more complex in order to locate the
correct information to be used in a given
operation.

SINGLE AND MULTIPLE ADDRESS
COMPUTERS

Although the number of instructions neces-
sary to solve a given problem can be minimized
by using the multiple address computer, in-
structions which reference a single address are

much simpler. Generally a single-address com-
puter is one in which each instruction word
references a single address in memory. This
type of computer begins its operation at the
first or some specified instruction in the pro-
gram and continues by taking instruction words
one at a time from memory in sequence unless
interrupted by a stop or jump instruction.

For example, ADD THE CONTENTS OF
ADDRESS A TO THE ACCUMULATOR, is a
single-address instruction because only one
memory address is referenced (address A).
A variation of the single-address instruction
is a ‘‘replace ADD’’ instruction, which may
read ‘‘ADD THE CONTENTS OF ADDRESS A
TO THE ACCUMULATOR AND REPLACE IN
A.’? Again only one address is referenced.

Another variation of the single-address
method where the word length of the registers
permits, is to place two instruction words in
a single memory address. In this case, two
instructions will be performed each time a word
is read. This method is illustrated in table 4-4.

Table 4-4.—Two-Instruction Words Using
Single-Address Operation.

First instruction word Second instruction word

/-)

-~

OPERATION|ADDRESS|OPERATION|ADDRESS

The left instruction is usually executed first,
followed by the execution of the right instruction.
Where this method can be used, it increasesthe
operating speed of the computer by making fewer
references to memory and also provides a far
more expedient use of memory spaces.

A two-address computer word is shown in
table 4-5. As the name implies, the word con-
sists of a single operation code and the two
addresses (A and B) which are included in the
operations. An instruction for this type of
machine may read ADD THE CONTENTS OF
ADDRESS A TO THE CONTENTS OF ADDRESS
B. Here, two addresses are referenced by a
single instruction. The ‘‘replace ADD’’instruc-
tion may also be used such as, ADD THE CON-
TENTS OF ADDRESS A TO THE CONTENTS OF
ADDRESS B AND REPLACE IN A,

Table 4-5.~Two-Address Computer Word.

39

OPERATION CODE|ADDRESS A| ADDRESS B

DATA SYSTEMS TECHNICIAN 3 & 2

The two-address instruction word is some-
times used as illustrated in table 4-6. Because
the instruction specifies only one address in-
volved in the computer operations, this word is
sometimes called a one and one-half address
word to distinguish it from the conventional
two-address word.

Table 4-6.—Variation of Two-Address
Instruction Word.

OPERATION| ADDRESS| ADDRESS OF NEXT
CODE A INSTRUCTION

The three-address instruction word (table
4-7) generally contains the operation code, two
addresses (A and B) and an address C for
storing the results of the operation performed
on the information from the A and B addresses.

Table 4-7.—Three-Address Instruction Word.

OPERATION| ADDRESS |ADDRESS| ADDRESS
CODE A B C (for
- storing
the re-
sult of A
modified
by B).

The four-address word (table 4-8) contains
the operation code, twodata addresses (A and B),
address C for storage, and the fourth address
which is the address 'of the next instruction to
be performed.

Table 4-8.—Four Address Word.

OPERATION
CODE

AD- AD-
DRESS | DRESS
A B

AD- |AD-
DRESS |DRESS
C FOR|D
STOR- |NEXT
AGE |IN-
OF STRUCA
RE- TION
SULTS

The number of addresses in each instruction
word is a design feature. Words containing
more than four addresses do not seem practi-
cable at this time.

40

CONTROL CIRCUITS

To be able to gain a thorough understanding
of control operations, it is first necessary to
study and understand the functional operation of
such circuits as OR, AND, NOR, NAND, counters,
flip-flops, decoders, and inverters which are
used extensively in the control unit as well as
throughout the computer. Each of these circuits
uses semiconductor or solid-state components
such as the silicon diode or transistor. The
operation of solid-state devices is treatedinthe
Basic Electronics training course, NavPers
10087 (revised).

The OR, AND, NOT (inverter) NOR, and
NAND circuits are introduced in the discussion
of Boolean algebra in chapter 3 of this course
and are not repeated here. An understanding of
the material presented is importanttoanunder-
standing of the circuits which follow.

FLIP-FLOP

The basic flip-flop consists of OR circuits
and inverters as shown in figure 4-1A thru F.
The circuit has two inputs called the SET and
RESET inputs and two outputs similarly referred
to as the SET and RESET outputs. (The word
“RESET’’ may be used interchangeably with
“‘Clear’’.) The circuit is a form of multivibrator
and thus adheres to the principle that one side
is conducting while the other side is cut off.

For simplicity we will refer to the left OR
circuit as G1 and the right OR circuit as G2.
We will assume that G1 (fig. 4-1A) is non-
conducting (and thus has both inputs in the “0”’
state) until the arrival of the pulse at the ‘‘a’’
input (fig. 4-1B). The 1 input at‘‘a’’ of Gl pro-
duces a 1 output at ‘‘¢’’ and atthe set output. The
1 output at ‘“c’’ is coupled to the inverter at the
input of G2 where it is converted to 0 at ‘‘a.”
The 0 input at both OR inputs of G2 produce an
0 output at ‘‘c’’ and a 0 reset output. The 0 out-
put is inverted and reproduced at ‘‘b’’ of Gl as
a 1 input. This output sustains the flip-flop in
the 1 state after the input pulse is removed.

Note that each side of the flip-flop is now
producing a logical output: G1 produces alogical
1 and G2 a logical 0. The circuit will hold this
position indefinitely, and is thus capable of stor-
ing binary digits.

The circuit at figure 41-C shows that no
change takes place in the binary output when the
1 pulse is removed from the set input. Because
the input at ‘‘b’’ of G1 is 1 the set output remains

Chapter 4—CONTROL UNIT

SET
OUTPUT [

®

G | NON..CONDUCTING

" SET

®

AFFECT WHEN O PULSE IS APPLIED TO RESET INPUT
WHEN CIRCUIT IS ALREADY RESET THE APPLICATION
OF A I INPUT AT b of G2 HAS NO AFFECT ON
FLIP-FLOP OUTPUT.

CONDITION NF CIRCUIT WHEN RESET PULSE
IS APPLIED TO RESET INPUT.

OUTPUT

INITIAL 1 PULSE APPLIED TO CIRCUIT VIA SET INPUT.

RESET

CONDITION WITH NO PULSE
OR A O PULSE APPLIED TO
SET INPUT.

g2

SET

OUTPUT RESET

$—— AN —o—ANN—rp OUTPUT

0
Y Y 'W%//

FLIP~FLOP CIRCUIT DIAGRAM

124.25

Figure 4-1,—Basic flip-flop.

in the 1 state, Neither a 1 nor 0 input at ‘“a’’ of
G1 will affect the output.

Now assume that a 1 input is applied to the
reset input as shownat ‘“b’’ of G2 in figure 4-1D.
This condition causes a 1 output at ‘‘c’’ and at
the reset output. The 1 output at ‘‘c’’is inverted
and reproduced at the ‘‘b’’ input of G1 as a 0,
This action changes the G1 output to the 0 state.
Simultaneously, the 0 output at ‘‘c’’ of G1 is
inverted to 1 and applied to the ‘‘a’’ input of G2.
This action does not change the reset output
since it is already in the 1 state.

If the reset input is removed the condition
of the flip-flop is unchanged at the output of G2.
This condition is illustrated in figure 4-1E, The
condition of the flip-flop will be altered only

41

when a 1 pulse is applied to the set input of G1.
Figure 4-1F is a circuit diagram of a conven-
tional flip-flop using NPN transistors.

One flip-flop symbol is a rectangle (fig.
4-2A) with terminals extending from opposite
sides to indicate set and reset input terminals
and set and reset output terminals. The OR cir-
cuits and inverter contained in the flip-flop are
not shown in the symbol, although an under-
standing of the operation of these circuits inthe
flip-flop is essential in determining the effect
the various types of input pulses will have on
the output.

A second flip-flop symbol (fig. 4-2B) uses
a toggle (T) or trigger input terminal. An input
signal on this terminal is applied to both halves

DATA SYSTEMS TECHNICIAN 3 & 2

INPUTS TOGGLE
—_— OR
TRIGGER
INPUT
SET l RESET SET RESET
(CLEAR) INPUT INPUT
S c s T c
FF FF
| 0 [)
SET RESET
SETl IRESET OUTPUTI IOUTPUT
@ OUTPUTS
124,26

Figure 4-2.—~Flip-flop symbol.

of the flip-flop and causes both sides to change
their conducting condition, i.e., from Oto 1 or
vice versa. Stated another way, a signal on the
““T?’ input terminal produces the 1’s comple-
ment of the binary number held in the flip-flop.

COUNT-BY-2 CIRCUIT

The circuit shown in figure 4-3 can be used
to count every other pulse, or, count by 2. In
the discussion which follows, a set output from
the flip-flop indicates a count. The circuit is
basically a flip-flop to which has been added
two AND circuits, D1 and D2, and associated
delay circuits. The delay circuits introduce a
controlled time lapse between their input and
output pulses to ensure positive triggering and
eliminate interference. Delay circuits are ex-
plained in detail later.

Consider the circuit at A, with a 1 input at
‘“b’> of D1 and at the reset (R) output of the
flip-flop prior to the application of the input
pulse at tg, (see waveform). The circuit will
remain in this condition from tQ to tg. At tg the
input pulse will simultaneously appear at ‘‘a’’
of D1 and ‘‘b’’ of D2 (fig 4-3B). The input pulse
at ‘“‘a’”’ of D1 along with the 1 pulse state pre-
viously stored at ‘b’’ of D1 will produce a1
pulse output at ‘‘c”” of D1 which enters the
delay line. The set input pulse to the flip-flop
will be delayed for a period greater than the
period to to t3. Thus, when an output pulse does
appear at the set output of the flip~-flop (and at
the ‘‘a’” input of D2) the trailing edge of the
input pulse (at t3) will have returned to 0 and
the D2 circuit will not produce an output. This
condition is illustrated in figure 4-3C. The cir-
cuit has now counted 1 pulse and will remain in

42

the condition shown in figure 4-3C for the period
from slightly after t3 to t5. Although the circuit
is triggered into action at tg, the delay lines
prevent a set output return to zero until slightly
after tg as explained below,

At t5, a 1 input appears at ‘‘a’”’ of D1 and
“p’’ of D2 (fig. 4-3D). The simultaneous appli-
cation of pulses at ‘‘a’’ and ‘‘b’’ of D2 produce
an output at ‘‘c’’. This pulse is applied to the
delay line, At the trailing edge of the pulse-
period (tg), the voltage at ‘‘a’’ of D1 and ‘b’’
of D2 returns to 0. The output from ‘‘c’’ of D2,
which is fed to the delay line, appears, (after
the delay period) as a reset input to the flip-
flop. The reset input also causes the flip-flop
to switch its condition so that the reset output
goes to 1 and the set output goesto 0 (fig 4-3E).
The reset output is applied to ‘“b’’ of D1. No
output appears at ‘‘c’’ of D1 since the ‘‘a’’ input
is 0. The circuit remains in the state shown in
figure 4-3E until the arrival of the leading edge
of the pulse at tg.

At tg, the condition shown in figure 4-3F
prevails. The inputs at ‘‘a’’ and ‘b’’ of D1
produce an output at ‘‘c’’, which after a delay
greater than the period from tg to tg, appears
at the set output of the flip-flop (fig. 4-3G), and
at the ‘‘a’’ input of D2. The set output remains
in this condition from slightly after tgto slightly
after tj9. The leading edge of the pulse at t11
(fig 4-3H) produces an output at ‘“c’’ of D2,
After a delay greater than the period from tq1
to t19, the input from ¢‘c’”’ of D2 produces a
reset output from the flip-flop (fig 4-3A). This
action causes the reset output to change to the
1 condition and the set output to assume the 0
condition. The circuit, having now returned to the
condition illustrated in figure 4-3A, repeats this
action for every four pulses received at the
input. The 1 output at the set terminal indicates
a count for alternate pulse inputs and the circuit
is appropriately called a ‘‘count-by-2’’ circuit.
This circuit is used extensively in computer
applications.

FLIP-FLOP COUNTER

Several count-by-2 circuits can be arranged
in cascade so that they can count any number of
pulses. Such an arrangement is shown in figure
4-4, The basic flip-flop symbol (discussed
earlier) is altered to represent the count-by-2
circuit as indicated by the single input terminal.

Both the set and reset outputs are used in
the count process. The set output indicates the

Chapter 4—CONTROL UNIT

INPUT PULSES
!

0
o tir fiz2 3 ta fs te '}7 Y8 fie ot M2 s 'i:a
RENERERRRARRY
I | 4
SET OUTPUT PULSES } } Il i } l
[I N i
T [[
o | || L1 L [
tlo t t213 t4 ts te t7 tg to tioty ti2 M3 tie

INPUT INPUT

R[1

S R

[*) OUTPUT CONDITION
FROM tg to tp

O CONDITION at tp

INPUT

INPUT

s
0 CONDITION at tg !

S R
%) CONDITION FROM |
SLIGHTLY AFTER tg

to SLIGHTLY AFTERtg

INPUT INPUT

, DELAY

(DELAY PERIOD
> PERIOD t2t0 t3)
R

S| o|R
CONDITION at tg

Sl ofR
CONDITION FROM
SLIGHTLY AFTER

t3 to SLIGHTLY
AFTER tg

INPUT

\ CONDITION FROM
SLIGHTLY AFTER tg
to SLIGHTLY AFTER t)2

o] |

R
CONDITIONat 1)) o

124.27

Figure 4-3.—Count-by-2 circuit.

count, i.e., 0 or 1 at a particular level (23, 22,
21, or 20). The weight of a digit increases in
value from right to left so thatifa count of 1111
exists, the binary 1 at the set output of FF3
represents the most significant digit. A 1 count
at the output of FF2 will indicate the second
most significant digit; at FF1 the next significant
digit, and so on.

Now consider the actions inthe count circuit.
We will first assume all flip-flops are in the

43

reset condition and the output is 0000 as shown
at the set terminals.

You can make a mechanical training aid of
figure 4-4 with some paper clips (short straight
ones). Open the book to form a flat horizontal
surface for the figure. Use four of the paper
clips as switch blades of single pole double-
throw switches pivoted at top center of the flip-
flops. At the start all switch blades are in the
reset (R) position (top center to lower right).

DATA SYSTEMS TECHNICIAN 3 & 2

2 3456 7 89I10111213141516

Juuuyu
/nput
FF3 FF2 FFI FFO
S R S R S R S R
6“0" 6"0" o lloll U"O“
PULSE
OUTPUT of FF3 QUTPUT of FF2 OUTPUT of FF I OUTPUT of FFO COUNT
0] 0] 0 ! |
0 0 | 0] 2
(0] (0] | | 3
(0] I 0 (0] 4
0 | 0 | 5
(0] | | 0 6
(0] | I | 7
| 0 9] 0 8
! 0 0 I 9
| 0 | 0] 10
| 0 i ! I
| I 0 0 12
| | 0 I 13
| | [0 r4
| | | | 15
0 0 (0] 0 0
124.28

Figure 4-4.—-Flip-flop counter.

Place a fifth paper clip at the top of the pulse
count column to keep track of the decimal count.

Before starting the count remember a flip-
flop will produce an output to the next flip-flop
to the left, only when going from set (S) to
reset (R). When the switch blade is on R, the R
output is 1 and S output is 0. When the switch
blade is on S the S output is 1 and the R output
is 0.

Start the count by moving the pulse count
clip to decimal 1. This indicates a pulseto flip-
flop 0 (FFO0), causing FFO to flip from R to S.
This action produces a set output of 1 as

44

indicated in the first row of the table, under the
FFO column.

The reset output of FFO is 0 and the initial
pulse does not get through to FF1. The other
three flip-flops remain in the 0 state and the
count of decimal 1 in binary form is 0001.
Move the pulse count to decimal 2. This pulse
causes FFO to change state from S to R. Move
the FFO switch blade from S to R. Now the R
output is 1 and the S output is 0. This action
causes FF1 to flip from R to S and the FF1
output is 1 (second row of column FF1), The R
output of FF1 is 0 and the outputs of FF2 and

Chapter 4—CONTROL UNIT

FF3 remain 0. The count of decimal 2 in binary
form is 0010.

Move the pulse count to 3. FFO flips from
R to S and the count is 0011 (no output to FF1).

At the count of 4 FFO flips from S to R.
This actior flips FF1 from S to R which causes
FF2 to flip from R to S (no pulse to FF3). The
count is now 0100 (fourth row of the table).

In this way you can go through 15 counts to
produce 1111, On the next (16th count) all flip-
flops revert to 0.

Any number of these circuits can be con-
nected in cascade to produce a particular count.
Neon lamps (or other indicating devices) can be
connected in the set output circuits so that they
light when a given flip-flop is in the 1 condition.
When used, the lamps are displayed onthe com-
puter console to give the operator an indication
of a particular internal count.

SERIAL AND PARALLEL OPERATION

- Computers may process information pulses
in either serial or parallel form. In serial
form the pulses occur as a timed series, one
pulse at a time (fig. 4-5). In parallel operations
each pulse occurs simultaneously and is trans-
ferred within the computer on separate trans-
mission lines. Serial and parallel data are
explained in detail in a later chapter.

The counter circuit shown in figure 4-4 is
versatile in that it may perform several com-
puter operations. For example, if we consider

1 | (0] |
M=
SERIAL FORM

Il
Il

INPUT ON
LINE |
—_—

INPUT ON
LINE 2
—

INPUT ON
LINE3

—_—

INPUT ON
LINE4
——

PARALLEL FORM

A 124,29
Figure 4-5.—Serial and parallel coded pulses.

45

a series of pulses at the input to the first
counter, say 4 pulses, the counter will advance
to a state where the set outputs will represent
0100, which may represent a computer word.
Because the counter is a static device and will
remain in this condition unless subsequent
pulses are applied, the circuit remembers or
stores this count. In this respect, a flip-flop
counter may be used as a REGISTER, since it
stores a computer word.

A second application of this circuit is seen
when we assume that 5 additional pulses are
applied to the counter input. The count now
advances to 1001 (9) which is the sum of the two
input pulse series. This process is called serial
addition. This circuit arrangementthusactsasa
basic accumulator,

PARALLEL ADDER

The -circuit shown in figure 4-6 is used to
illustrate the basic example of parallel addition.
Note that 4 binary digits (bits) are received in
parallel, one at the input of each flip-flop. If
we assume that the number previously storedin
the counter is 0011 (3, as shown in the first
column below the set terminals) and the parallel
input pulses are 1010 (10), the counter will add
these pulses. In the following explanation of the
addition process it is assumed that the set
position of the flip-flop, as well as a significant
pulse, is represented by a 1 condition. Con-
versely, a reset output, as well as a no signifi-
cant pulse input, represents 0. Further, we will
assume a flip-flop of the type shown in figure
4-3 to be the basic unit.

A delay line is connected between successive
flip-flops. The output of each flip-flop is used
to provide a significant pulse tothe delay circuit
on its left only when the set cutput of that flip-
flop changes from 1 to 0 and the reset output
changes from 0 to 1.

A 1 input, whether at the parallel input or
from the associated delay line, causes a flip-
flop to change its state. Thus the flip-flop will
change whenever it receives a 1 pulse from any
source.

Because the original condition of the counter
is 0011, the following changes will occur when it
receives 1010 at its parallel inputs: v

1. FF2 and FFO receive no significant

pulses from the parallel input and remain
unchanged for the present.

2. FF3 and FF1 do receive 1 pulse from

the parallel input and both change states.
FF3 now reads 1 and FF1 now reads 0.

DATA SYSTEMS TECHNICIAN 3 & 2

INPUT
| o | o]
f ! 11
ld— la r
Ll Ll
FF3 6 FF 2 6 FFI FFO
S R S R S R S R
y
OUTPUT
[] (]] o
0 o . e]
| | 0] | | SuM AFTER

124.30

Figure 4-6.—Parallel adder.

3. Of the four flip-flops only FF1 has
changes from 1 to 0. Therefore, it is the
only flip-flop to send a 1 pulse (carry)
through its delay line to FF2,

4. This pulse changes FF2 from 0 to 1. The
adder now reads 1101 (13), which is the
correct sum of 0011 (3) and 1010 (10).

Note that the diodes prevent pulses from the

parallel input (assumed to be positive-going in
this case) from interfering with the adjoining
flip-flops, while the delay lines prevent the
pulses from being fed to the adder and any carry
pulses from appearing at any flip~flop input
simultaneously. In a sense, then, the delay units
are used to perform the carry operation,

RING COUNTER

Several flip-flops can be connected toform a
ring counter (fig. 4-7); the name isderived from
the fact that the output of the lastflip-flop (FF3)
is sometimes connected back to the input of the
first (FF0). This is not a requirement, however,
as other means can be provided to initiate the
action in the first circuit at the proper time.

In most applications of this circuit, only one
of the flip-flops is in the ‘‘on’’ (set) condition
at a given time. An advance input pulse, which is
applied to all flip-flops simultaneously, causes
the ‘‘on’’ flip-flop to change its conducting state,
and, in turn, transmit an input pulse to the next

[OUTPUT TONEXT FLIP-FLOP OR (ouTPUT SIDE OF FLIPFLOPSY]
70 THE INPUT OF FFO (OUTPUT SIDE OF FLIPFLOPS) ‘
)) | DELAY,LINE | DELAY [INE | DELAYLINE | |

S C D3—s c D2 15 c I s c I
FF3 FF2 FFI FFO

I 0 0 o) |

(1t |Gl (s) (R s (R) (st R}

(INPUT SIDE OF FLIPFLOPS)

Figure 4-7.-Ring counter.

46

<

124.31

Chapter 4—CONTROL UNIT

flip-flop to the left. The pulse output from the
affected flip-flop is delayed until after the
trailing edge of the advance input pulse has
dropped to zero to prevent double-triggering.
However, after the delay period, the input pulse
to the next flip-flop changes the conducting state
in that circuit from ‘‘off’’ to ‘‘on’’.

The next advance pulse will cause the ‘‘on’’
condition to be established in the next flip-flop.
This action continues until the ‘‘on’’ condition
has advanced from FFO0 to FF3. A subsequent
advance pulse will cause the ‘‘on’’ condition to
be transferred either to FFO or to the next
flip-flop in the ring.

The circuit in figure 4-8 is essentially a ring
counter to which input paths are added for the
purpose of reading-in (in parallel) the desired
binary digits. As stated before, the four flip-
flops make up a register. Because the action
within the ring counter is to shift one digit one
place (either left or right but left in this case),
an advance input pulse applied simultaneously to
each flip-flop in the register, will cause the bit
previously stored in a stage to be shifted to the
next higher order flip-flop. The bit previously
stored in FF0 will be shifted to FF¥1; that pre-
viously stored in FF1 will be shifted to FF2; the
FF2 bit will move to FF3; and finally the bit
previously in FF3 will be transferred to FFO.
Thus, if 1011 has been stored before the arrival
of the advance pulse, the register now contains
0111. The advance pulse flips FF3, FF1, and
FFO from S to R. Slightly later a pulse from

delay line 1 flips FF1 from R to S. Delay line
2 transmits a pulse that flips FF2 from R to S.
Delay line 3 does not transmit a pulse, and FF3
remains in the reset condition. Delay line 4
transmits a pulse that flips FFO from R to S.
Thus, the 0111 condition is stored. This type
register is called a ‘‘shift register’’. Left-shift
registers are used extensively in computers to
perform multiplication (as will be shown in the
next chapter). Right-shift registers are used in
the division process.

The ways in which flip-flops can be used to
perform computer operations are too numerous
to consider here. The reader must therefore
study flip-flops and the application of these
circuits as presented in this discussion until he
is certain of their operation. Only with a thorough
understanding will he be able to comprehend
other applications of this circuit which are not
so elaborately explained.

DELAY LINES

It has been stated that one of the basic func-
tions of the control unit is totime all operations
within the computer. Further, it was stated that
the time to execute an operation depends on the
type of operation to be performed. For example,
a multiple operation generally required more
time than an add operation, a divide operation
required more time than a subtract, ete. To
perform in this manner, the control unit must
contain circuits which will (1) generatethe basic
timing pulses (say in a stabilized multivibrator

INPUT TERMINALS
(PARALLEL INPUT)
4 i
DL4 DL3 pL2 DL
8 FF3 6 FF2 FFI 6 FFO
s R 5 R s R S R

ADVANCE
INPUT

124.32

Figure 4-8.-—Left shift register.

41

DATA SYSTEMS TECHNICIAN 3 & 2

or crystal oscillator); (2) it must provide pulses
to start an operation at a certain time; and (3)
it must contain circuits which will count the
timing signals and produce a pulse which will
terminate a particular operation after a specified
time.

The circuit in figure 4-9 (called anartificial
transmission line, or delay line) is used to
explain one of the basic timing principles. The
action is explained in more detail later in this
chapter.

If a voltage is applied to the input terminals
of the line, a definite amount of time passes
(dependent upon the number of LC sections)
before the voltage appears at the output ter-
minals. The LC sections thus give the line the
ability to delay the output voltage.

Assume that a voltage must be applied to
the circuit in block B one or two microseconds
after it has been applied to block A. This
cordition can be satisfied merely by constructing
the 1 and 2 sections of the line for the desired
delay.

A B
I \
| 2 3
INPUT 1 l . I OUTPUT

124.33
Figure 4-9.—Delay line.

To avoid the bulkiness of an actual trans-
mission line, an artificial line may be built of
coils and capacitors. Such lines have approxi-
mately the same characteristics as actual
lines but occupy a smaller space. This is the
usual method of constructing delay lines.

MULTIVIBRATOR DELAY 1.5u's DELAY I.5us DELAY I.5us
DI D2 D3
PULSE AT PULSE AT PULSE AT
to J ty
L L] L7 THE ONE STATE ON
Al A2 THIS LSINE AT tp
>~ READS-OUT |
> . 4 FROM FFO
ABSENCE J3 I
s N \scg}lAL
THIS LINE AT 1,
READ-OUT Oy J2 _ READ-OUT
> -0 o0—
m
—>- Ji O
| X [101]
THE ONE STATE ON
THIS LINE AT to
READS-OUT | FROM
| 0 | FF2
| ez | | FR1r | FFo |
) R S R s R
N
PARALLEL 0
READ-IN | I
(INPUT SIDE OF FLIP-FLOPS)
RESET INPUT
(CLEAR)

124.34

Figure 4-10.—One method of using delay lines for serial read out.

48

Chapter 4—CONTROL UNIT

Now suppose it is necessary to read into a
register containing FF2, FF1 and FFO (fig 4-10)
in parallel form and to read the information out
(at 1.5 ws intervals) in serial form.

One method of performing this operation is
described below. Initially all flip-flops are
cleared or reset by an input pulse on the reset
line. The information to be stored (in the form
of 1’s and 0’s) is fed over parallel lines to the
appropriate flip-flops. A 1 input to any flip-flop
will produce a 1 set output. In the following
discussion the set output is taken to represent
the state of the flip-flop.

Assume that the multivibrator feeds a single
pulse to delay line, D1, and to the AND circuit,
Al, Because the set output of FF2 is inthe 1
state, the coincidence of the inputs to the AND
element (Al) causes this circuit to produce a
1 output during the period tg. This pulseis read
out at J1.

The pulse applied to D1 at tg emerges from
the delay line at t1 and is applied simultaneously
to D2 and A2. The presence of this pulse at one
input of A2 will not cause the AND element to
produce an output (the set output of FF1to A2 is
0) and the read-out from J9 at time t1 is 0. The
pulse delivered from D2 at time t2 is applied

simultaneously to D3 and A3. Because the set
output of FFO is in the 1 state, the A3 AND cir-
cuit will produce an output to Jg at time ty.
Thus, the serial read-out of the register is
accomplished at the specified intervals, as 101.

CONTROL OPERATIONS

The two basic functions within the control
sections are (1) to obtain instruction from
memory, and (2) to execute these instructions.
The control function performs these actions in
two cycles-first fetch, then execute. The fetch
cycle is performed under the direct influence
of the stored program so that the instructions
are read in a fashion which will lead to the
correct solution of the problem.,

INSTRUCTION REGISTER

Each instruction read from memory is fed
to an INSTRUCTION REGISTER (fig. 4-11). This
register holds the instruction throughout the
execution cycle.

gk > | 1o
r, Wo - MEMORY
s .
o -
?((?)259:— E >
ttitttitte |l —
OPERATION ADDRESS
DECODER SELECTOR
4 A \ r}
INSTRUCTION OPERATION ADDRESS
REGISTER REGISTER REGISTER

il

T

W
INSTRUCTION FROM MEMORY

124.35

Figure 4-11,-Instruction register.

49

DATA SYSTEMS TECHNICIAN 3 & 2

Operation Register

The instruction register is divided into two
smaller registers; the OPERATION REGISTER,
which receives and holds the operation code
part of the word, and the ADDRESS REGISTER
which receives the address of the operand., The
operation code is fed to a decoder matrix or
operation decoder which decodes the operation
and produces a static output on a particular line
depending on the type of operation requested.
This output is held constant during the entire
execution cycle and is generally applied to any
number of switching elements (OR’s, AND’s,
FLIP-FLOP’s, ADDERs, etc.) throughout the
computer. All OR circuits which receive this
static input will produce an output, which, in
turn, will cause some particular action as
necessary to execute the instruction. AND cir-
cuits receive this static voltage as a single 1
input but will remain inactive to perform their
given steps in the execution of the operation
until a clock pulse or some other form of
timing pulse is received at the second input.
The decoder output is fed to all of the circuits
in the computer as necessary to execute the
particular operation.

Address Register

The address register, after receiving the
address of the operand, enables an address
selector, which, in turn, locates the operand
and transfers it to an intermediate register
(shown 1later). The intermediate register is
used as a form of buffer for reading information
into or extracting information from the memory
section.

In a stored-program computer, instructions
are read and executed sequentially unless altered
by conditions derived while executing an instruc-
tion, or, unless directed to transfer uncondi-
tionally. Normally, an instruction counter reads
the instructions into the instruction register
in the programmed sequence, starting at 0 and
progressing in numerical order, 1, 2, 3, 4, etc.
During the execution of each instruction, the
instruction counter is advanced by 1. At the
end of the execution cycle, switching circuits
in the control unit initiate a command ‘“READ
NEXT INSTRUCTION’’; whereupon the instruc-
tion cycle is again started by an enabling signal
which is sent to the instruction counter causing
the next sequential instruction to be read into
the instruction register. Many other operations

50

(not pointed out at this time) are accomplished
in preparation for the next instruction.

CONDITIONAL AND UNCONDITIONAL
TRANSFERS

If conditions are derived which necessitate
a jump or conditional transfer to some step in
the program other than the next sequential step,
certain signals will be generated and fed to
switching elements in the control unit to cause
the necessary jump to be executed.

The unconditional transfer, as the term
implies, is accomplished without regard to
prevailing conditions. It is initiated by an
instruction which may state in effect, GO FROM
PRESENT ADDRESS (say address 00030) to
address 052175,

To illustrate the need for unconditional
transfers, consider the following example. It is
understood by this time that instructions and
data are necessarily stored separately inmem-
ory. Normally then, a certain number of ad-
dresses (say the lower numbered addresses)
are reserved for and contain instructions. We
will assume that the data addresses begin at
the next higher address immediately after the
instructions, but that several of the highest
numbered addresses are not used. Now if all
instructions and data are loaded accordingly and
it is later discovered that more instructions
must be loaded in order to solve the original
problem or to solve another phase of the
problem we would logically decide to store the
additional instructions in the vacant address
rather than extract all data, load the additional
instructions, and reload the data. Inorder touse
these added instructions, we must instruct the
computer control to jump to the address of the
first added instruction ‘‘unconditionally.’’

SYNCHRONOUS CONTROL METHOD

There are many ways presently being used
in control units to execute instructions. Every
computer seems to have some unique control
feature peculiar to that particular machine.
There is no one so called ‘‘best method’’ since
the control method cannot, in most cases, be
decided without considering several other fac-
tors; such as storage access time, input-output
devices, and the nature and time required to
perform arithmetic operations.

Synchronous and asynchronous methods of
control are explained in the remaining part of

Chapter 4—CONTROL UNIT

this chapter. Synchronous control is a mode of
computer operation characterized by a fixed
time period for the execution of each operation,
Conversely, asynchronous control uses varying
amounts of time to execute its operations, de-
pending, of course on the type of operationbeing
performed. In the asynchronous control method
the advance to the next command is signaled
when the execution of the previous command
has been completed.

The myriad operations performed in even
the simplest control unit would be too great to
explain in every detail. This is complicated by
time considerations, i.e., showing all of the
control signals which are fed throughout the
computer during many small timed intervals.
Thus, the control methods discussed below are
hypothetical and are intended to show basically

how the control unit orders and executes the
major operations in the computer.

Consider the circuit in figure 4-12. A multi-
vibrator receives trigger pulses from a crystal
oscillator and provides input pulses to a delay
line consisting of sections DO through D5. The
number of sections is arbitrarily chosen. The
time required for a pulse to traverse the line
is slightly less than the period of the free-
running multivibrator so that the output pulse
at t5 will arrive at the multivibrator input at
the time this circuit is about to produce its
next pulse. This action synchronizes the multi-
vibrator and keeps the multivibrator-delay line
arrangement compatible.

Output pulses from the line, taken at t0, t1,
t2, t3, t4, and t56 are applied during their re-
spective intervals to various switching elements

D2 D3 D4 D5
i t2 t3 tq ts
~(—(I)_T(I >r(Il T [)—pere
P PRV PP
AT Mt AT [AT [AT
MV th | 13 4 ta l 1 | COMMAND LINES
2> CLEAR A, TRANS. Op TO X
——"5a00 X TO A | PROGRAM ADDRESS
t2 COUNTER
DERIVED } ——— 2,
CONTROL SWITCHING ELEMENTS ts
X INPUTS) — e (INSTRUCTION
os _— —— > ADVANCE COUNT, C+| COUNTER)
5
—lREAD NEXT INSTRUCTION AT tg
(1 A4
INSTRUCT -
EXECUTE
(FLIP-FLOP) TRANSFER AT
NOTE: to
ONLY ONE OF
THESE LINES WILL SIoract
PROVIDE CONTROL OF _ .
THE SWITCHING CIRCUITS (S-REGISTER)
PER INSTRUCTION. THE LINE
SELECTED IS DETERMINED = - CLEAR A AT
BY THE TYPE OF =4 to
OPERATION TO BE SEr<
o £ .
PERFORMED 882zt B ACCUMULATOR DATA & INSTRUCTIONS
<F0 0w W (A-REGISTER)
MEMORY
ADD X TOA ADDRESS
AT, SELECTOR
-
X-REGISTER [5_ | l
OPERATION “'

DECODER

4
|
1
1
]
1

=

]

OPERATION
REGISTER

REGISTER REGISTER

r———-

T

|
ADDRESS | INSTRUCTION
|
|
|

Figure 4-12.—Basic synchronous control operation.

51

124.36

DATA SYSTEMS TECHNICIAN 3 & 2

throughout the computer. These circuits, (OR’s,
AND'’s, flip-flops, etc.)are too numerous to show
in detail and are represented here by a single
block from which a few of the outputs are shown
on ‘‘command lines.’’ The timed inputs, i.e.,
the pulses from the delay line at t0, t1, {2, etc.,
tell these circuits ‘‘when’’ to perform a given
operation,

Now consider another aspect of control. As
stated earlier, the instruction counter, or pro-
gram address counter, as it is sometimes
called, receives control pulses which are sent
via the address selector to memory, thereby
causing a particular instruction to be read from
the memory into the instruction register. Each
instruction word, as you recall, consists basi~
cally of the operation code and the address of
the operand. In reading the instruction from
memory, the operation code is fed to the oper-
ation register while the operand addressis read
to the address register.

Accordingly, the operation register feeds the
operation code to the operation decoder, which,
in turn, decodes the operation (as stated earlier)
and supplies a static voltage output on a single
decoder output line, the one selected, of course,
being determined by the type of operation to be
performed. This static voltage is fed to those
switching circuits which are to perform some
action in the execution of the instruction. In a
sense, it is this static voltage which tells the
computer circuits ‘‘what’’ to do. Knowing when
to do each step, as dictated by the delay line
inputs, and what to do, as dictated by the oper-
ation decoder output, the computer proceeds
to execute the instruction.

The address register, immediately upon
reception of its input, energizes the address
selector circuits to cause the operand to be
read intc the S-~register. The operand remains
in this register until the instruction is exe-
cuted or until it is transferred to some other
register.

‘Now, consider the action in more detail.
Given the following instruction ‘‘ENTER THE
OPERAND IN THE A REGISTER”’, we will
follow the major steps in its execution.

"The instruction is read into the instruction
register from memory under the influence of the
instruction counter. The operation decoder de-
codes the operation code and activates the
“ENT A’’ line. This line, in turn, is fed to all
of the switching circuits involved in the execution.

The address selector, by instruction from the
address register, fetches the operand from the

52

section of memory which contains data and
stores it in the S-register.

The arrival of the t0 clock pulse to the
switching circuits causes a command line to be
enabled at t0, and the following part of the
operation is executed: CLEAR THE AREGISTER
(accumulator), and TRANSFER THE OPERAND
TO THE ‘X’’ REGISTER.

The accumulator receives data by adding
data to its contents. Thus, clearing the accum-
ulator returns the register to 000. Adding a
number to the accumulator after clearing is
therefore no more than entering that number
in the accumulator.

The arrival of the tl clock pulse to the
switching circuits causes the ADD X TO A
command line to be enabled. This command adds
the operand to the accumulator and the execution

‘is completed.

Note that the execution of this instruction
(in this example) does not require the use of the
clock pulses from t2 and t3. A more complex
instruction requiring a multiply or divide opera-
tion may use all clock pulse enable inputs.

Also note that during the execution cycle the
instruction counter receives a signal as initiated
during clock pulse period t4. This action nor-
mally causes the instruction counter to advance
its count by 1 in preparation for reading out
the next instructionfrom memory. The ““ENT A’’
instruction is completed. At t5, the command to
“READ NEXT INSTRUCTION’’ is initiated.

If a conditional transfer is initiated during
the execution of an instruction, certain signals
will be derived to cause the conditional jump.
These signals are fed to the switching circuits
as derived control inputs.

Because all operations are performed in
synchronism with the clock pulses, this method
of control is described as ‘‘synchronous
control.”” Each operation requires a certain
number of clock pulses, and consequently the
time to complete any one of the various oper-
ations is an exact multiple of the clock pulse
period.

ASYNCHRONOUS CONTROL

An example of asynchronous control is ex-
plained with the aid of figure 4-13. A one shot
multivibrator simultaneously feeds a pulse to
AND circuit Al and delay line D1, The pulse at
Al in coincidence with a 1 input from the
inverter, causes a 1 output at Al to initiate
READ NEXT INSTRUCTION. The D1 input is

Chapter 4—CONTROL UNIT

< COUNT
BY 2
NORMALLY Al READ NEXT FF3
"O"|NPUT — INSTRUCTION 3 R
ol END OF INSTRUCTION STEP
’——C:[[> LOOP | LOOP 2 LOOP 3 LOOP 4TO B
[. >
ADDITIONAL
Sus LOOPS IF
NECESSARY
MV |I-SHOT] —7 >
A2 A3 A4 A5 e
>— FROM
START OPERATION
DECODER
CLEAR A, TRANS z-»:j/‘
STEP A7 L /
ol STEP B STEP A
S>A D2
|| J
il J)
| sterc BB
NEGATE { R sus| |P7
STEP B ' ||
\ |
MISCELLANEOUS L |P3 A7 \C STEP D
INPUT CLEAR C ~—— J
STEP D D6 STEP E
NEGATE STEP B RIGHT SHIFT
ENABLE
(STORE) A+C STEPE
STEP F B>A
AlO
RIGHT
SHIFT

124.37

Figure 4-13.—Asynchronous control.

delayed .5 us (in this example)to allow sufficient
time for the instruction cycle (thetime required
to read an instruction into the instruction
register from memory and performs all other
operations in preparation for the new
instruction).

Loops 1, 2, 3, etc.,aredesigned respectively
to perform a single type of operation, although
miscellaneous control inputs to a loop may alter
the loop, and thereby permit other very similar
operations to be accomplished. Thus, a control
unit of this type will contain almost as many
loops as the total number of types of operations
it can perform.

The pulse from the multivibrator, after delay
in D1, is applied simultaneously to one of the
inputs of the AND circuit at the input of each

53

loop. The loop selected to execute aninstruction
will be determined by the operation decoded
output. Each decoder output line is tied to a
different AND element, or loop, except where two
or more similar operations are performed by
the same loop; whereupon control of such
similar operations will be directed from the
decoder to the same loop.

Consider the execution of a three-address
instruction as follows: ADD THE CONTENTS
OF REGISTER S TO THE ACCUMULATOR:
ADD THE CONTENTS OF REGISTER BTO THE
ACCUMULATOR: STORE RESULTS IN REGIS-
TER C.

Loop 1 is used to illustrate the timing se-
quence of operations progressing from steps
A thru F. The actual operation is hypothetical

DATA SYSTEMS TECHNICIAN 3 & 2

and is used here merely to show how certain
parts of an instruction are executed at certain
times.

Step A begins as soon as a 1 output is pro-
duced at A2. This part of the sequence causes
the A register to be cleared, and the contents
of the Z register (intermediate storage register)
to be transferred to the S register.

After the D2 delay, enabling signals are
produced (simultaneously) to cause step B
(transfer S —~ A), step C (negate step B, if a
miscellaneous input is received at the lower
input terminal of (A6) and step D (clear C). We
will assume that the miscellaneous input to A6
is not received, and step B is executed. Trans-
ferring S — A (read S to A) is the equivalent
of adding the contents of S to A as explained
earlier,

After delay in D3, step E is executed and
the contents of the B register are added to the
accumulator (A).

Finally after delay D4, the contents of A
which now represent the sum of operands stored
in the S and B registers, are transferred to the
C register (Step F).

Now consider the instruction: ADD THE
CONTENTS OF B TO THE ACCUMULATOR
AND STORE IN C. Note the similarity of this
instruction to the one just considered. If step
B (S —A) is eliminated, loop 1 can again be
used and only the contents of the Bregister will
be added to the accumulator. Thus, we assume
here that the required miscellaneous input is
received immediately after the delay in D2 and
step B is negated. With this understanding a
further explanation of the execution of this
instruction is not necessary.

Note that at the end of the D4 delay, the
output from this line is also applied through
OR circuit 01 to the multivibrator. The 01 input
triggers the multivibrator, and causes an output
pulse to be fed to Al, This action causes the
next instruction to be read from memory.

A right or left shift operation can be accom-
plished using loop 2 to produce the required
number of pulses to execute the desired shift
count, Step A is not involved directly inthe shift
action, but is shown here as an enabling output
to all other circuits involved in the execution
of all other phases of this operation, even those
which adjust other computer circuits for the
up~-coming shift.

At step B, OR circuit, 02, passes a pulse
into a ring circuit consisting of 02, A9, D6, and
the amplifier. The circuit of A9 has an inverter

54

at its input so that if a 1 input pulse is not
received at J, the pulse from D5 will continue
through 02, A9, the delay line D6, the amplifier,
and back to 02. OR circuit, 02, again permits the
pulse to re-enter the ring. The amplifier com-
pensates for losses in the pulse amplitude each
time around the ring.

Shift outputs are taken from the line during
each ring count and applied to one of the inputs
of AND circuits A8 and A10 respectively. A left
enable or right enable static voltage is applied
as a miscellaneous input to either of the two
AND elements depending on the type of shift
desired.

When the shift has advanced through the
desired count, a 1 input pulse is applied at J.
This ¢‘1’’ input simultaneously disables A9
(stopping the ring action) and produces an output
from A7 through 01 to the multivibrator so that
a multivibrator output will be generated and the
next instruction will be read.

Because of the inverter at the right input of
A", the circuit is disabled only during the time
when a pulse appears at the output of D5. An
output pulse cannot be developed by A7 during
this period, neither is such an output desired.
However, after the trailing edge of the D5 output
pulse, the inverter at A7 will again produce a
1 at the right terminal.

Loop 3 is designed to supply control pulses
to various computer circuits at timed intervals.
The particular operation performed is not im-
portant. Rather, the sequence and timing of
control pulses as necessary to execute the
operation is the significant consideration.

Here, the output pulse at step A causes
the execution of the first part of the operation.
After the delay in D8, a single pulse is passed
through OR circuit, 03, to D9, Step Bis executed
before the D9 delay and is followed after the
delay in D9 (.2 us in this case) by the execution
of step C. Count-by-2 circuits FF1 and FF2
are reset by the step B and step C enable
pulses, and therefore do not produce the step D
and step E enabling pulses at this time.

Note that the pulse from D8 is also fed into
the D7 delay line. The delay in this line is long
enough to permit steps B and C, totaling.4 us,
to be executed before the D7 pulse evolves.
When the D7 output is developed, OR circuit, 03,
produces an output pulse which initiates step D
by setting FF1, Setp E will be executed after
the D9 delay and the setting of FF2. Enabling
pulses for steps B and C will be produced for
each output pulse from 03.

Chapter 4—CONTROL UNIT

4

In order to maintain the static operation
decoder output, it is necessary to hold the
instruction being executed in the instruction
register throughout the execution cycle. The
count-by-2 circuit (FF3) at the D9 output
produces an ‘‘end of instruction’’ pulse only at
its set terminal, thus it prevents the first

55

pulse from D9 (after the execution of step C)
from triggering the multivibrator and thereby
prevents the start of an instruction cycle until
after steps D and E have been executed.

Note that in this method of control the time
required to execute an instruction varies, de-
pending on the type of instruction.

CHAPTER 5

ARITHMETIC UNIT

INTRODUCTION

The obvious purpose of the arithmetic unit
is to perform arithmetic operations. Though
this is true, the operations performed in this
unit are not limited to addition, subtraction,
multiplication, and division. Other operations
such as shifting, complementing, and comparing
are also performed.

In order to understand how arithmetic op-
erations are performed, it is necessary to ac-
quire a knowledge of logic equations, diagrams,
and symbols. These topics aretreated in chapter
3 of this training course. The relationship be-
tween logic and mathematics makes possible the
use of logic circuitry to perform the operations
of arithmetic. When a problem in arithmetic is
broken down to its basic operations, it becomes
a problem in logic. Consequently, a circuit that
is used to perform an arithmetic operation can
always be broken down into a specific combina-
tion of logic elements.

For a simple illustration of this concept let
us consider the arithmetic subtraction of two
binary digits. It can be seen thatthereare three
possible subtracting combinations of these digits
as follows:

S =)
= OO
o n
ot

The fourth combination,
0 -1
is not considered at this time.
INHIBITOR CIRCUIT
A circuit that will produce the correct re-

sult for each of the three possibilities is the
“‘inhibitor’’ (fig. 5-1). For simplicity the action

56

is illustrated by using the inhibitor symbol
(fig. 5-1A). A truth table, showing the inputs
and outputs from the circuit, is shown in
figure 5-1B.

The inhibitor circuit produces anoutput when
there is a signal on M but not S. An inverter
connected in the S input path causes the S input
to the AND-element tobe inverted. (The inverter
output to the AND-element will be 1 when the S
input is 0, and 0 when the S input is 1.) Thus,
a 1 output is produced when (and only when) the
voltage pulses at the input represent MS. For
all other input combinations the inhibitor output
will be 0. The actions of this circuit thus satisfy
the basic requirements of a binary subtractor.
Although this is a relatively simple illustration
of the relationship between mathematics and
logic, it is representative of logic principles
used to perform more complex arithmetic
operations.

The circuit diagram of one form of inhibitor
is shown in figure 5-1C. Voltage divider R1-R2
permits a positive potential to be applied to the
base of the PNP transistor of sufficient magni-
tude to produce collector current cutoff. A
negative-going input at M produces a heavy
current flow through R2 and the increased volt-
age drop across this resistor causes the base
potential to become negative with respect to
ground. The transistor conducts and a positive-
going voltage is produced at the polarity marked
terminal of the T2 primary. By design, the
transformer secondary produces a negative-
going output. This action occurs only when the
M input is negative-going (a 1 condition in this
case) and the S input is 0.

Now consider the action when M and Sinputs
(both negative) are received simultaneously,
i.e., when two 1 inputs are applied. The 1 input
at M causes a drop across R which is negative
to ground and tends to make the transistor con-
duct. At the same time however, the voltage in-
duced at the polarity marked terminal of the

Chapter 5—ARITHMETIC UNIT

T1 secondary is positive to ground. This action
keeps the base positive with respect to ground.
The transistor does not conduct, however, and
consequently, no output pulse is produced when
M and S are both in the 1 condition. Stated
another way, a 1 input at M will produce a 1
output if an S input is not applied simultaneously.

A second form of inhibitor circuit is shown
in figure 5-1D, Here the circuit uses an NPN
transistor connected in a grounded emitter cir-
cuit. The input circuit (emitter-base)is reverse
biased and the collector current is normally
cut off. You will recall that changes incollector
voltage have little effect on collector current,
Thus, inputs across A donot produce a transistor
collector current, and the greater portion of
the input pulse is developed across Ry, at the
output.

If positive-going input pulses are simul-
taneously applied to the A and B inputs, the
pulse input at B will produce a forward base
emitter bias permitting a heavy collector cur-
rent, In this condition the collector to ground
voltage is low (negligible in this case) and
practically all of the input pulse is developed
across R1. The small voltage developed across
Ry, in parallel with the transistor is not of
sufficient magnitude to be regarded as an output
pulse. Thus, when the input combination of pulses
represents AB an output pulse is developed
across Rjy,. No output pulse is produced for any
other combination of input pulses; this circuit
performs as a binary subtractor.

Although an inhibitor is basically a sub-
tractor, its uses are not limited solely to sub-
tractor circuit operations. The inhibitor isused
in the exclusive OR circuit. The truth table
for the Exclusive OR function is shown in fig-
ure 5-1E.

THE EXCLUSIVE- OR CIRCUIT

A conventional OR circuit with inputs A and
B produces an output signal if:

(1) A signal exists at A: or

(2) A signal exists at B: or

(3) A signal exists at both A and B.

Sometimes a computer needs a circuit that
will produce an output only for condition (1) or
condition (2). This type circuit, called an ex-
clusive-OR circuit produces an output signal
at F (see the truth table in the fig. 5-1E) if
a signal exists at A (but not at B) OR at B (but
not at A). No signal is produced at the output if
a signal exists at both inputs. In other words,

57

an output is obtained only if the inputs are
different. Symbols make this more obvious:
F = AB + AB.

Before continuing, let us reexamine both of
the terms at the right of the above equation.
You can see that AB and AB are the symbols
for an inhibitor. Therefore an exclusive-OR
circuit is simply a set of two inhibitors con-
nected by an OR, (fig. 5-1F).

The same circuit can be simplified to two
inputs as shown in figure 5-1G. A third con-
nection of this function is shown in figure 5-1H.
Here both inputs feed simultaneously into an
OR circuit and an AND circuit. The OR output
is the ‘‘regular’’ input to an inhibitor circuit,
while the AND output becomes the inhibiting
input. Note that A and B, appearing simultane-
ously, activate the AND circuit to inhibit an
output at F.

A study of the circuit in figure 5-1I will
reveal that an input signal (i.e., a positive
pulse) at A only, or one at B only, always
produces an output signal. A signal at both A
and B, however, produces no output, because
each input inhibits the other. (Both emitters
swing as far positive as their corresponding
bases hence neither is forward biased into
conduction.)

An exclusive OR circuit using a single tran-
sistor and 6 diodes is illustrated in figure 5-1J.
The transistor in the circuit is normally cut
off. When there is no input at A or B, diodes
CR1 through CR5 are nonconducting and CR6 is
conducting.

When the A and B inputs are 0,CR6 remains
in the conducting state, CR1 through CR5 remain
nonconducting and the output is 0. If both A and
B are in the 1 state (positive), CR1 and CR2
conduct and a positive potential is developed
across R1 of sufficient magnitude to cut off CR6.
This action tries to produce a positive going
voltage at F, However, the positive A and B
inputs are also applied to CR3 and CR4 and a
positive voltage is developed at the base of the
transistor (with respect to the emitter) which
is sufficient to cause the transistor to conduct.
This action causes CR5 to conduct a transient
pulse through C1, causing the voltage across R2
to remain the same as it was when CR6 was
conducting and the voltage at F to remain in the
0 state.

Now consider the action if either A or B is
in the 1 state. First note that if CR6 is cut off

DATA SYSTEMS TECHNICIAN 3 & 2

INHIBITOR
INPUT
OUTPUT

INVERTER
1 o 1
1 1 o

A symsoL
B TRUTH TABLE

1L e

o AN\
INPUT A R1
°—_| N AB
RLS ouTpuT
INPUT B R2

01 eo

:o —‘-—'.I=1 — —_— -
D CIRCUIT (NPN)

Figure 5-1.—Inhibitor.
58

4 OUTPUT INPUT

S j— MINUEND (M) SUBTRAHEND (S) DIFFERENCE (MS)

=0 o (A) o (B) (AB)
o)

Chapter 5—ARITHMETIC UNIT

8—O

B—

INPUT OUTPUT
A B F
1 1 o}
1 o] 1
0 1 1
0 0 o}
E TRUTH

—

A—Q

EXCLUSIVE OR
USING FOUR INPUTS

D
} F-AB+AB
o
-

A .

) -
B8 — F= AB +AB

G EXCLUSIVE OR USING
TWO INPUT

A—y ‘
B

F = AB +AB

EXCLUSIVE OR USING AND,
H AND INHIBITOR CIRCUIT

CR1
g

A
CR2
(1)

.
-j CR3

CR4

Figure 5-1.—Inhibitor —Continued.

59

+E

I ExcLusIVE OR USING
TWO TRANSISTORS

+E

R2
CR6 F=AB+AB
CRS
R

J EXCLUSIVE OR CIRCUIT

USING A SINGLE TRANSISTOR
AND DIODES

124, 38

DATA SYSTEMS TECHNICIAN 3 & 2

and CR5 remains in its normal cut off state,
(either A or B input alone is not sufficient to
cause the transistor to conduct) the voltage at
F will rise, If A isinthel state (and B is zero),
the conduction of CR1 produces a voltage across
R1 which causes the cathode of CR6 to go posi-
tive by an amount which cuts off CR6, This
satisfies the condition AB and a 1 state is
produced at F. The same action occurs when B
is 1 and Aiszero,andthel output at F indicates
the condition AB. Thus the exclusive OR func-
tion is performed.

ADDERS

A binary adder circuit responds to binary
numbers (in the form of on-off pulses received
at two or more of its input terminals) ina
manner which produces the sum of the received
pulses at its output.

The addition process in adder circuits is
complicated somewhat when ‘‘1’’ inputs are
received in a manner which creates a ‘‘carry’’
to the next higher level. Adder circuits which
are not capable of advancing the carry digit are
called ‘‘half-adders.’”’ Conversely, adder cir-
cuits which can advance the carry digit to the
next higher level are called ‘‘full-adders.’’ '

Before studying either of these circuits,
consider the following addition of 0011 and 1010.
The augend (1010) is the number to which another
number is to be added. The addend (0011) is the
number which is to be added to another number
(the augend). The carry is the number generated
when the sum of two or more binary digits ex-
ceeds 1. Thus, 1 plus 1 is 0 with a 1 carry.

BINARY DECIMAL
AUGEND 1010 10
ADDEND 0011 3
CARRY 1

1101 13

All of the steps in this addition can be sum-
marized by the following three rules:

1. If the addend and augend bits in a column
are different, write 1 in the sum,

2. If both addend and augend bits are 0,
write O in the sum.

3. If both addend and augend bits are 1,
write 0 in the sum and carry a 1 to the next
significant column.

60

These three rules can be expressed even
more concisely in the form of the following
truth table.

Table 5-1.—Conditions for the Addition
of Two Binary Numbers.

ADDEND AUGEND SUM CARRY
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

The possible conditions for the addition of
two binary numbers depicted in table 5-1 do
not include all possibilities. When the addend
and augend contain more than two columns, a
circuit designed to execute such additions must
be able to accept and add a carry digit from a
previous column. Table 5-2 shows all possi-
bilities which may be encountered in the addi-
tion of such numbers where C representsapre-
vious carry which is now to be addedto the sum
of the addend and augend in that column, Cp
represents a new carry which is to be added to
the next column, and S represents the sum.,

Table 5-2.—f(A, B) Showing Previous Carry,
New Carry, and Sum,

A B C S Cn
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

From the truth table (table 5-2) it can be
seen that the minterm equation (condition of the
variables for which f = 1) for the sum (S) is:

S =ABC + ABC + ABC + ABC

Chapter 5—ARITHMETIC UNIT

and that the minterm equation for the carry
digit is

Cn = ABC + ABC + ABC + ABC

The truth table (and consequently the equa-
tions) indicates that the sum is 1 when only one
input (either A, B or C) is 1, or when all inputs
(A, B and C) are 1. The condition when A and B
are 1 is not present in the sum equation since
the sum output for this condition is 0. The Cp
equation indicates that a new carry is generated
whenever any two of the variables A, B or C is
1 or when all variables (A, B and C) are 1,

The Cp equation can be simplified as follows:

Ch = ABC + ABC + ABC + ABC

Simplifying C,

ABC + ABC + AB(C+C)
ABC + ABC + AB(1)
ABC + ABC + AB

The Veitech Diagram Simplification is con-
structed as shown in figure 5-2. Thus,

C, =

n AB + AC + BC

AND, OR, and INHIBITOR circuits can be
combined as shown in the lower portion of fig-
ure 5-2 to produce a 1 condition atthe sum out-
put when any one of the conditions shown in the
sum equation exists at the input. Likewise, the
logic circuit arrangement in the upper portion
of the figure produces a 1 carry output to the
next higher order when any of the conditions
contained in the carry equation exist at the input.

Remember, that this circuit is designed to
accommodate only two binary digits plus a carry
digit contained in a single column. The addition
of several columns of digits would require a
similar circuit for each column (for parallel
operation) or sufficient time between the applica-
tion of binary inputs during serial operations
to permit the carry function to be executed.

SERIAL AND PARALLEL OPERATION

Adder circuits can be designed to accept
input pulses in either serial or parallel form.
In parallel operation, eachbit of a binary number
is carried on a separate transmission line. In
serial operation the binary information is
carried in the form of a series of timed pulses.
The relative advantages and disadvantages of

61

O® >

AB AC BC

>l

A

JADE
5L\

c c C
Cn=AB+ AC+ BC

ABC

p~1)
2]
(@]

Figure 5-2.—Three-input adder,.

each form of data transmission are fairly ob-
vious. Parallel operation is much faster be-
cause all bits are transmitted simultaneously,
while serial transmission can pass only 1 bit
at a time. On the other hand, serial transmis-
sion is much cheaper than parallel and requires
less equipment. However, a true evaluation of
the two methods is not quite so simple. For
example, because the carry digit must be ac-
cumulated in the next higher order, the addition
of N number of digits involved in an addition
in a parallel machine is not necessarily ac-
complished N times as fast as can be done by
a serial machine. Neither is it true that a
parallel machine requires N times as much
equipment. Thus, it would not be accurate to
say that either of the two types of machines
has a net advantage over the other except where
all features of the system are known and
evaluated.

DATA SYSTEMS TECHNICIAN 3 & 2

The choice of serial or parallel operation
is also affected by the type of storage and the
accessibility of stored data, The time required
to read-up data from storage and to write in-
formation in storage are important considera-
tions which add to the total time required to
complete an arithmetic operation in both serial
and parallel machines. This time is inherently
available in serial machines because of the time
between pulses in a train, but must be made
available in parallel machines by introducing
delay periods.

HALF-ADDER

We will first consider a form of adder cir-
cuit used in serial machines. A serial half-adder
circuit is shown in figure 5-3. The OR circuit
(fig. 5-3A) produces an output when there is an
input pulse applied to either the A or B input.
The lower AND circuit produces an output when
A and B input pulses are received simultane-
ously, a condition which produces a carry. Note
that this is the same circuit as that for the ex-
clusive OR of figure 5-1H,

First consider the action with 010 at the A
input terminal and 101 at the B terminal as
shown, Although the inputs are applied simul-
taneously to the OR circuit and the lower AND
circuit, only the OR circuit operates to produce

INPUTS OUTPUT

A_010 SUM OR
— INHIBITOR paRTIAL SUM
§101 i
CARRY
A
INPUTS INHI OUTPUT
001 tor NHIBITOR prgTiaL sum
= | 100
101
. |inv
001
10§ oot CARRY
8
124. 40

Figure 5-3.—Half-adder.

62

an output. The two simultaneous 1 inputs neces-
sary to produce a 1 output from the lower AND
circuit do not occur in this example and thus no
carry is produced. The output of the OR circuit
(111) is therefore the true sum of the binary
numbers appearing at A and B. The inverter
at one terminal of the second AND circuit (in-
hibitor, discussed earlier) causes this input to
be in the 1 state when the lower AND circuit
output is 0 (as in this case) and the 111 output
from the OR circuit is passed through the in-
hibitor to the half-adder output.

The addition process is not so simple when
two 1 inputs occur simultaneously in the numbers
to be added as shown in figure 5-3B. Here, the
OR circuit produces a 101 output (which is not
a true sum of inputs A and B) while the AND
circuit produces a 001 output. The 1 inputto the
inverter at the inhibitor input causes this cir-
cuit to block the passage of the 1 output from
the OR-circuit in the right (least significant)
column, in this case, and the inhibitor output is
100. This, again, is not the true sum of the
input binary numbers (001 and 101). Further,
a true sum of these numbers cannot be obtained
in a half-adder circuit. In order to obtain the
true sum, the carry generated by the AND-
circuit must be utilized in a subsequent half-
adder circuit (2) as shown in figure 5-4,

FULL ADDER

In this circuit, the actions to produce the
100 inhibitor I1 output and the 001 carry output
from Al are the same as described above, The
100 output of I1 is fed to the upper terminal
of OR circuit G2, The carry output from Al is
delayed one bit-time (a delay equal totheperiod
of one binary digit) by D1, so that the 1 output
from D1 will be applied to the lower terminal
of G2 displaced one position to the left—to the
next higher order column. This action advances
the carry to the next higher order, and thus
produces a 110 output from G2. Because there
is no further carry generated at the output of
A2, inhibitor, I2, passes the number 110 to the
sum output terminal. This is the true sum of
the Aand Binputs. The circuitis called a ‘‘full-
adder’’ because it is able to produce a true
sum of two (or more) inputs by generating and
utilizing the carry when two 1 inputs occur
simultaneously.

The full-adder circuit in figure 5-5 is de-
signed to advance a carry (in serial addition)
through as many columns as necessary. This

Chapter 5—ARITHMETIC UNIT

HALF—ADDER (1)

: HALF - ADDER (2)
|
]

A INHIBITOR, I 1 INHIBITOR, I2
101 101 | 100! 110 “SOUM
INV A/ 010 100 INV
101 i K
2
001 mt_o010 | a2 500
(DELAY EQUALS
PERIOD OF ONE
BINARY DIGIT)
124,41
Figure 5-4,—~Full-adder.
INHIBITOR, 11 THIS DIGIT INHIBITOR, I 2
1y ty t b, ot f PRODUCED BY
2|1=o IR l'al'z:'i to SECOND CARRY |t3192|1“t° =t3|t2:f,|t°|
ANA ENEHET ! 51:0!0. - Mg N
i 101glg 1 i O P ! |
INV eirsT cARRY—"| | Lhnngv] AR
INPUT TO G211 | | I [
to) tyit FROM DY 11 : P SUMMARY
11 2! ito Lo 100 | N R
o o Vel ort DELANDL HoL iyl N 0 s). e ' 1o T T
- CARRY T 1911919, ofofo]o
! l ojo|1]o
crz & ::351,2{ '3) olofolo
L1 1 1£SECOND CARRY INPUT QTREEN | 1 [o[o]o
100 TO G2 FROM Di
CARRY FEEDBACK fsum]t]oft]o
124. 42

Figure 5-5.—Full-adder for accumulating multiple carry digits.

action is accomplished by circulating a carry
digit through the carry feedback circuit com-
prising A2, CR2, and D1, each time a 1 condi-
tion exists at the A2 output. The following
example will illustrate this feature.

Consider the additionof 111 and 011 as shown.
The serial columns are applied at times/To,
T1, and T2, respectively. OR-circuit, G1, pro-
duces a 111 input to one terminal of inhibitor,
I1, with one pulse applied during each time in-
terval. AND-circuit, Al, produces an inhibitory
input to I1 during time intervals t0, and t1 so
that the output of I1 is 100.

The carry digits (011) from Al are also fed
through CR1 (an isolating diode) to delay line,

63

D1, where each digit is delayed one bit time.
The output (110 corresponding to time intervals
t2, t1, and t0 reading from right to left) is ap-
plied to the lower input terminal of G2, causing
the output of this circuit to be 110 during the
time intervals shown.

Note that the input to G2 during the intervals
t2, t1 and t0 is also applied to one terminal of
AND circuit A2, and that the first carry output
(110) is applied to the other terminal. Thus,
A2, produces a 100 output during intervals t2,
t1, and tO0.

The 1 output of A2 during period t2 causes
the 1 input to I2 during the t2 interval to be in-
hibited, and the output of I2 during this period

DATA SYSTEMS TECHNICIAN 3 & 2

is 0. The I2 output during intervals t0 and t1
appear uninhibited. Thus, the output from t2 to
t0 is 010.

The presence of a 1inthe A2 output indicates
that a carry is yet to be added to one of the re-
maining columns before the true sum can be
produced, The carry digit is fed through CR2
to D1 where it is delayed and shifted into the
period t3. The second output of D1 (shown as
the second carry input to G2) is passed through
G2 during the t3 interval and combined with the
serial train already at the output. This action
produces the true sum (1010) of the binary in-
puts at G1. Note that a carry has been advanced
from the first column to the fourth. Ina similar
manner, this circuit can advance the carry
through any number of columns as required.

A parallel adder circuit which uses flip-
flops as the basic elements is treated in chapter
4 of this text. In the discussion of parallel addi-
tion it is shown that a carry digit is generated
when any flip-flop changes from the set to the
reset condition and that this carryisfedthrough
a delay circuit to the next higher order. The de~
lay circuit prevents the accumulation of the carry
digit in the next higher column until after the ad-
dition of the augend and addend in that column.

Addition can be accomplished with a circuit
which is designed to perform only subtraction
operations. Thus we can obtain addition by sub-
traction. Consider the following example:

Suppose it is desired to add A + B by sub-
tracting only. If we first subtract A from 0 we
obtain -A. If we then subtract B from -A we
get -A-B, which by simplification is -(A+B).
Now subtract - A-B from 0 to obtain A + B
which represents the sum.

BINARY SUBTRACTER

A basic binary subtracter is a device that
accepts the minuend and subtrahend digits at
its input and produces a difference and borrow
at its output. A truth table representing the con-
ditions arising from the subtraction of 2 binary
digits is shown in table 5-3. This function is
illustrated earlier in this chapter by the use of
inhibitor circuit, fig. 5-1.

Table 5-3.—Single-Column Binary Subtractor.

MINUEND (M)
SUBTRAHEND (S)

DIFFERENCE (D)
BORROW (B)

[Nk NoNo]
O |om
N =)
co|rm

64

The Boolean equation which represents the con-
ditions which produce a difference in table 5-3
is:

D

Ms + SM.

All other conditions produce a 0 difference.
The borrow shown in the table exists when B =
MS.

As was true with addition of binary digits,
more than 1 binary column is usually involved
in the arithmetic process. Thus, the table in
5-3 although valid, is very limited. When more
than one column of digits containing minuend
and subtrahend is to be subtracted, each digit
of the minuend is decreased by the amount of
the subtrahend digit in that column, and if the
minuend is reduced to a value less than 0 in the
process the minuend digit of the next higher
order must be reduced by 1—the process by
which the borrow is obtained. This is the method
of subtraction most familiar to us and, in fact
is a method in wide use in computer circuits.

This table is also useful in a process called
‘‘half-subtraction’’ which does not take into
account a borrow from a previous order.

Table 5-4.—Subtraction Table Showing
Minuend (M), Subtrahend (S), Borrow
(B), Difference (D) and New Borrow

o~ loo+
[y el e =)
QOO
HEl—mo o
oo |HOH
OO
| et et

Now consider a more complete subtraction
table (table 5-4) which shows the minuend (M),
subtrahend(S), borrow (E, which is advanced to
that column from a lower order not shown),
difference (D), and the borrow (By) which isthe
new borrow generated in the column in which
the subtraction is taking place. From this table
the difference equation can be derived by con-
sidering the conditions which produce a 1 as
follows:

D MSB + MSB + MSB + MSB

simplifying
D=M + S + B) MS + SB + MB) + MSB

Chapter 5—ARITHMETIC UNIT

Although a subtracter unit could be mech-
anized from this equation, the process of sub-
traction can be more easily accomplished by
complementing and adding. The complement
method is the most widely used and is therefore
treated in detail,

The complement method of subtraction is
used in both serial and parallel machines. This
method is used in serial machines as illustrated
in figure 5-6A, by complementing the subtrahend
number enroute from storage beforeitisapplied
to a serial adder. The minuend number is not
complemented. Thus the action in the serial
adder produces the true difference.

The block diagram arrangement in figure
5-6B is more representative of present day
methods of serial complement subtraction. In
this case an accumulator is used which con-
tains the minuend digits, Upon receiving con-
trol pulses, the number stored in the accumulator
is fed to the adder circuit as the minuend. As
in the previous example the subtrahend number
is fed from storage (when the control pulses
are received) through the complementer to the
serial adder. The result of the addition is fed
to the accumulator for storage.

Parallel subtraction figure 5-6C is accom-
plished in much the same way. The information
from storage is fed through the complementer
(on parallel lines) to the parallel adder. After
receiving control pulses, the accumulator feeds
the minuend to the adder. The results of the
addition are stored in the accumulator.

End-around carry is accomplished when
necessary by adding 1 to the 0 column. The 1
digit that occurs in the 21 column, called the
overflow digit, is dropped.

MULTIPLICATION

Like all other arithmetic operations, multip-
lication can be accomplished in computers in
several ways. One of the most commonly used
methods is multiplication by accumulation. This
method basically involves left-shifting of the
multiplier and adding whenever a one bit is
encountered in any one of the multiplier orders.
A similar and probably more familiar method
of multiplication used with the decimal system
is done by using over-and-over addition.

Consider the example using 236 as the multip-
licand and 52 as the multiplier in the decimal
number system. If we add 236 using the hundreds,
tens, and unit columns in that order 2 times,
and 236 entered into the thousands, hundreds

65

and tens columns 5 times, the sum (or product)
will bedisplayed as 12272, Similarly, any number
can be multiplied in this manner,

A circuit which is designed to perform mul-
tiplication of binary numbers by the accumulation
method is illustrated in figure 5-7. The number
of switching elements used is determined by the
number of digits to be multiplied. The multip-
licand is applied on lines A through E, and
remains as the static input throughout the multip-
lication process. The multiplier digits are
applied as control inputs on lines W, X, Y, Z.

If a 1 bit is present in the first order of
the multiplier a shift is not required and the
multiplier input lines (multiplication control
lines) X and Z are placed in the 1 state. A
careful study of the AND and OR elements will
reveal that a nonshifted output is developed at
the lower terminals I through M. This output
represents a partial product which is fed to
adder circuits in the accumulator. Now, if the
second order digit of the multiplier is a 1 bit,
a.shift of 1 place to the left is desired before
addition and lines W and Z are in the 1 state.
Thus, a left shift is produced (1 place to the
left) in the upper part of the circuit and is
passed through the lower section under the
influence of the Z input. The output from termi-
nals H through L represent a second partial
product which is fed to adder circuits in the
accumulator.

If the third place digit of the multiplier is
a 1, the multiplication control lines X andY are
placed in the 1 state. This produces a third
partial product output between terminals G and
K which is fed to the adder circuits in the
accumulator.

Similarly, the multiplication control lines
W and Y are used to generate the fourth partial
product output between terminals F and J which
is added in the accumulator to produce the true
product.

SERIAL MULTIPLICATION BY REPEATED
ADDITION

The arithmetic unit contains several reg-
isters usually referred to as the X, Q, and A
registers. These registers are capable of storing
or holding a computer word of a length deter-
mined by design. In most cases, during multip-
lication, the Q register (fig. 5-8), holds the
multiplier, the X register the multiplicand, and
the A register (the accumulator) holds the sum
or partial product. Because the product of two

DATA SYSTEMS TECHNICIAN 3 & 2

SERIAL DIFFERENCE
—1 STORAGE ﬂCOMPLEMENTER I—’ ADDER OUTPUT
CONTROL
INPUTS
—» STORAGE
STORAGE
)
SERIAL
_ srorace |— comr T
COMPLEMENTER ADDER L—\
COMPLEMENTER
CONTROL A
INPUTS ﬁ
PARALLEL
ADDER
\-———" ACCUMULATOR
y
1 ACCUMULATOR

a, Subtraction by complement-
ing and serial
addition.

b. Subtraction by complement-
ing and serial addition
using an accumulator.

c. Subtraction by complement-
ing and parallel
addition.

124. 43

Figure 5-6.—Subtraction.

numbers each containing n digits, can contain
as many as 2n digits, the accumulator must be
capable of holding twice as many digits as
either the multiplier or the multiplicand.

The X register reads its input (the multip-
licand) into the serial adder in serial form
at the same time that the accumulator input is
being read through in serial form. Initially the
accumulator is cleared to 0.

The multiplier or Q register is actually a
counter which determines the number of times
the particular multiplicand must be added to
yield the correct product. If the multiplicandis
to be multiplied by 4, the Q register will
initially be set to 4 and will count backwards 1
digit at a time, with the multiplicand and the
accumulator contents being added in the proper
order for each count.

Because the accumulator is initially set
to 0000.... the first addition will produce the
multiplicand in the accumulator., The second

addition is delayed for 1 word length by D1
to compensate for the difference in wordlengths
of the accumulator and the X register inputs.
The delay assures that at the beginning of each
count the least significant digit of theQregister

and the least significant digit of the A reg-
ister will arrive in the serial adder
simultaneously.

After the first addition, the contents of the
Q register is decreased by 1, and, after delay,
the second addition begins by again adding the
contents of the X register to the accumulated
sum. A second delay now takes place in D1,
again to ensure that the lowest orders of the X
and A registers will enter the serial adder on
the third count at the same time. The process
continues until the contents of the Q register
is reduced to 0 whereby the.addition has been
repeated the number of times dictated by the
multiplier and the accumulator contains the
product. k2

66

Chapter 5—ARITHMETIC UNIT

MULTIPLICAND INPUTS

A“””’/’/// ﬁx/

w
X
l Y Y Y ¥ Y Y v ¥ Y 1 ¥
MULTIPLIER
INPUTS
Y
yA
Y y \ Y
F G H 1 K L M
124.44
Figure 5-7.—Parallel left shift logic circuit.
n-DIGITS (1 WORD LENGTH) n-DIGITS (1 WORD LENGTH)
. D1 . X—REGISTER
DELAY (MULTIPLICAND)
~>- —————— —— T
SERIAL :
2n (2 WORD LENGTHS) ADDER }
]
» A-REGISTER .
(ACCUMULATOR) Q-REGISTER
(MULTIPLIER)

67

124. 45

Figure 5-8.—Serial multiplication by repeated addition.

DATA SYSTEMS TECHNICIAN 3 & 2

A similar method which can be used with
parallel adders and right shifting is illustrated
in figure 5-9A in the form of a flow chart.

Before proceeding with this method first
observe the example below. It can be seen
that the same product is obtained when the
addition of the multiplicand is accomplished
using the digits in the multiplier from right-to-
left, or from left-to-right.

PROBLEM: 234 Multiplicand
x123 Multiplier
234 234
234 234
234 234
234 234
234 234
234 234
28782 28782

Equivalent of
left-to-right shift

Equivalent of
right-to-left shift

Thus, multiplication can be (and is) performed
by either left-shifting or right-shifting the
multiplier.

The blocks in the flow chart in figure 5-9A
represent the sequence of events necessary to
arrive at a desired result, in this case the
product. In general, flow charts actually provide
a graphical presentation of a procedure, All
of the steps involved in arriving at this pro-
cedure are accomplished under the directinflu-
ence of the control unit.

Assume that the multiplicand is 11111 (31)
and that the multiplier is 101 (5)inthe following
example. The control sequences are as follows:

Transfer the multiplier (101) tothe Q register
(fig. 5-9B).

Place the multiplicand in the X register and
clear the accumulator (A-register). Setthe shift
counter to equal the word length (9 bits in this
case). The next command is to reduce the shift
counter by 1 (this does not produce a shift
in the AQ register at this time). Now examine
the lowest order bit in the Q register. If this bit
is a1, i.e.,ifQgg=1, add X (multiplicand) to the
A register. This action places 11111 in the
accumulator. The next command is to shift the
contents of the A and Q registers to the right
1 bit. In executing this function the A and Q
registers are joined together as a single 18 bit
register and the least significant digit in the A

68

register is shifted into the higher order bit posi-
tion in the Q register, This action drops the
one bit in the lowest order of the Q register
and the 0 in the second order is now the least
significant digit in the Q register.

At this point we examine the shift counter,
to determine if the count has been reduced to 0.
If the answer is ‘‘no’’ as it will be in this case
since 8 counts remain, the command is issued
to reduce the count by 1, and a subsequent com-
mand examines the Q register to determine if
the lowest order bit is a 1. In this case the
answer will be ‘‘no’’ since the 0 bit has been
shifted to the least significant bit position.
Because this answer is ‘‘no’’ it isnot necessary
or required that the ‘“add X to A command’’ be
issued and this step is bypassed as indicated in
the flow chart. The next command therefore
shifts all bits in the A and Q register to the
right one bit position, and a 1 bitnow appears as
the least significant digit in the Q register. The
following step again checks the shift counter to
see if the multiplier count has beenreducedto 0.
The answer is again ‘‘no’’ as there are 7 addi-
tional counts, Thus, the command to reduce the
count by 1 is again issued, Upon checking the Q
register to see if the lowest order bit is 1, the
answer will be ‘‘yes,’’ and the command will be
issued to add X (multiplicand) to A. This action
adds the multiplicand to the previous accumu-
lator sum as shown in figure 5-9C.

A check of the shift counter reveals that the
count has not been reduced to 0and that 6 counts
still remain, Because each of these counts pro-
duce a ‘‘no’’ answer when the Q register is
checked to determine if the lowest order bit is
1, the shift AQ right 1 command will be issued
in sequential order as each bit is checked until
the shift counter shows the multiplier count
to be reduced to 0. At thistime the lowest order
bit inthe product will be in the lowest order posi-
tion of the Q register, followed at the left by
each higher order bit, revealing the highest
order bit in the product in the 8th bit position
to the left, Thus, the content of the Q register
is the true product.

DIVISION

Division can be accomplished by repetitive
subtraction as illustrated in the following ex-
ample using 36 (as the dividend) and 12 as the
divisor. The dividend is reduced by the amount
of the divisor for each subtraction.

Chapter 5—ARITHMETIC UNIT

L
LT

—

l 10011011
"X"REGISTER
MULTIRLIER EEEEDDIND
SHIFT COUNTER |
(SHOWS COUNTS |
REMAINING) |
X ,—-/“A" REGISTER |
MULTIPLICAND (ACCUMULATOR) | "Q" REGISTER
EAR haw o [[oJoToJoJoJoJoJoJoJoloJo[olofo o]]
| |
1
‘ |
SET MULTIPLIER 8 |
(SHIFT COUNTER) TO 9 I
(WORD LENGTH) [eToTolo T [T [[i] Tolo[olo oo 1 Tol1]
® | _|lofo]ojofofifi]t]ifr]ofo]ojofofo]i]o]
Y :
[}
REDUCE COUNT = I
BY 1 |
fofolofr]ojo]t]ijofifi]oJojoJojofofti]
1
1]
. & |[cTolofo] T Tofol [T o[1[1]o]oJo]o]o]0]
IS Q0O =1 NO | !
1
YES s|{oJo]ofolo]ifofofi]ifofi|i]ofofo]o]o]
u |
a|lojoJofo]ofofifofofififofi]i]o]o]ofo]
ADD X TO A !
| 1
|
. 3)lo]ojolofojofofi]ofofi[rfofi]ifojofo]
, - |
SHIFT AQ 2|lofofofofofofofofti]ofoft|t]o]t|1]ofo]
RIGHT 1 | !
)
1 {loJoJofofofofolofo[tfofoft[1]oft|t]o]
v || :
nol 1S SHIFT COUNT l -
(MULTIPLIER) ol[o]ofoJoloJofofofoJo[iJofo] - i]o]i]1]
EQUAL TO O
[YEs -

124. 46
Figure 5-9.—~Multiplication by addition and shifting.

69

DATA SYSTEMS TECHNICIAN 3 & 2

12)36

36

12 first subtraction
24

12 second subtraction
12

12 third subtraction

The number of subtractions completed is the
quotient, in this case, 3. Inbinaryform the same
example would be.

100100 (36)
1100 (12) first subtraction
11000 (24)
. 1100 (12) second subtraction
1100 (12)
1100 (12) third subtraction
000000 (0)

A block diagram for parallel repetitive sub-
traction is illustrated in figure 5-10A. You
will recall that binary subtraction canbe accom-
plished by complementing the subtrahend and
adding, This is the process used in the circuit
of figure 5-10A. The divisor is stored in the X
register, the dividend is in the accumulator
(A register) and the quotient, that is the number
of times the divisor is taken from the dividend,
is stored in the Q register. Becauseitis neces-
sary to subtract the divisor from thedividend
several times, depending on their relative mag-
nitudes, the X register output is applied to the
complementor and recirculated sothatitisagain
stored in the X register. This makes possible
the read-in of the divisor to the complementor
as many times as is necessary to reach the
final quotient.

When dividing by the repetitive subtraction
method it is possible to obtain a positive re-
mainder, a negative remainder, or 0. When
a positive remainder is obtained the subtraction
at that level is valid and abitis entered into the
Q register. However, when a a negative re-
mainder is obtained it implies that the divisor
was larger than the dividend and that the sub-
traction processes have been carried 1 step
beyond that necessary to obtainthefinal integral
quotient, When a 0 is obtained the divisor will
also be subtracted from the 0 and a negative

70

remainder will again be obtained. This, too,
implies that the subtraction has proceeded one
step too far. Thus, it is necessary to utilize
a sensor circuit which is capable of determining
whether the remainder is positive or negative.
If the remainder is positive the sensor must
feed the divisor input to the complementor to
permit the divisor tobe complemented and added.
The sensor element must permit complementing
each time the remainder is positive.

_ When a negative remainder is obtained (as a
result of a O difference or a divisor which is
larger than the dividend) the sensor must feed
the correct voltage to the complementor to
prevent complementing so that the amount sub-
tracted on the previous step will be added.
Thus the step beyond that necessary to obtain
the integral quotient is nullified.

Although this is a rather simple procedure
it is not very practical when we consider the
amount of time necessary to divide a large
dividend by a small divisor.

A more practical method involves division
by the familiar long-hand method. Inthis method
we make an inspection to determine the number
of times the divisor can be subtracted from the
highest order quantity which is greater than the
divisor within the dividend and enter this number
as the first digit in the quotient, We then get the
remainder and shift the divisor one position to
the right. Here we determine how many times
the divisor can be subtracted from this portion
of the dividend and enter this number as the
second highest order digit in the quotient. After
subtraction to obtainthe remainder we again shift
the divisor to the right one position and repeat
the process until the remainder after the sub-
traction from the lowest position is less than
the divisor. This yields the final quotient, This
process is illustrated below using decimal
numbers as follows:

3117,
15/46763.0
45

17
15

26
15

.

113
105
8

Chapter 5—ARITHMETIC UNIT

In binary division, (and common to the
shifting method of division) some procedures
must be used to determine the number of higher
order bit positions of the dividend into which
the divisor can first be entered to yield a 1 bit
in the quotient. In some computers, an attempt
is made to subtract the divisor from the higher
orders of the dividend. If the result is positive
the dividend is larger than the divisor, and a 1
bit is entered in the quotient. If the result is
negative, the machine automatically negates this
step and the divisor is shifted 1 bit position to
the right. This action, in effect, halves the
divisor, and, because the dividend now contains
1 bit position more thanthe divisor, the subtrac-

tion is valid and the division proceeds. This
procedure is illustrated below,
(Check for position of first
bit in quotient. When re-
mainder is negative, i.e., not
a real number, this step is
nullified.)
1011 (12)
1100(12)/10000100 (132)
1100
-100
10000100
Result of a right shift—s 1100
1001
1100
Not a real number ———— -101
10010
1100
1100
1100
0000

Unless the relative magnitudes of the dividend
and divisor are restricted to values betweentwo
extremes, it is possible that the first subtraction
at the higher order can producealbit and a re-
mainder which is greater than the divisor. An
example is shown below:

1

011/111100
011

100

71

This inevitably will produce an erroneous re-
sult, The error can be prevented by restricting
the minimum value of the divisor, the maximum
value of the dividend, or both. In the above ex-~
ample the divisor could be restricted to 100,
and/or the dividend to 101. In any case, the
relative magnitude of the two should be such
that the remainder will be less than the divisor
after the subtraction of the divisor from the
highest orders of the dividend.

In some computers (fractional computers)
the quotient is always less than 1 and all sig-
nificant digits appear to the right of the radix
point. In these computers the above stated
problem is solved, by ensuring that the divisor
is always larger than the dividend.

The division process illustrated in the flow
chart of figure 5-10B is similar to that dis-
cussed earlier for multiplication except that
left-shifting is used instead of right-shifting and
a subtraction is the arithmetic operation rather
than addition. The AQ register holds the divi-
dend, and the X register the divisor. The shift-
counter contains the number of subtractions per-
formed, which represents the true quotient
(not shown in the figure).

The contents of the AQ register are shifted
left one bit position after each subtraction., The
highest order bit in the A register is dropped.
At the completion of the division process the
quotient is contained in the Q register.

Note the comparisons after each left-shift
of the AQ contents to determine if A (the
dividend) is greater than or equal to X (the
divisor). If A>X then X is subtracted from A.
This step is followed by setting Qg to 1, that
is, setting the lowest bit in the Q register to 1.
If the A>X comparison results in a ‘no’’, a
subtraction does not take place.

At the end of the subtraction process (as
indicated when the shift counter reaches 0)
a ‘‘yes’’ result is produced for the interrogation
¢4s count = 0”’, Thus, the order ‘‘read next
instruction’’ (RNI) is initiated.

ENCODERS AND DECODERS

It has been stated that computers are de-
signed to operate on data which is in the binary
form, that is, either 1 or 0. In most computers,
however, it is not practicable to enter numbers
and other information into the computer in
binary form, as this would require the program-
mer to spend too much time in the detailed
effort of accurately representing large numbers
or complicated alphabets and symbols.

DATA SYSTEMS TECHNICIAN 3 & 2

\

DIVIDEND
TO AQ

3

DIVISOR
TO X

DIVISOR
(X-REGISTER) A
SET SHIFT
COUNTER TO ©
(WORD LENGTH)

F Y Y Y v

> COMPLEMENTER »| REDUCE DIVIDE
COUNT BY i

SHIFT AQ
Yy v 4 Q-REGISTER LEFT 1

PARALLEL ADDER - [[[T 1]

FTFTF T T Tk \ACCUMULATOR ‘o
' SENSOR (AzX?

y AR AR ‘ [

(A-REGISTER) X FROM A
DIVIDEND

A. BLOCK DIAGRAM SET

NO” count:=02)

YES

y

READ NEXT
B INSTRUCTION

FLOW CHART RN I

'

1217. 47

Figure 5-10.—Parallel repetitive subtraction.

72

Chapter 5—ARITHMETIC UNIT

Likewise it is not usually desirable to present
the final computer output in binary form as this
requires too much time in reading and inter-
preting. Thus it is necessary to perform con-
version on both input and output information.

Computers are generally equipped with
ENCODERS (units which change discrete inputs
into a combination of coded outputs) and
DECODERS which transform the internal binary
data to its more conventional form at the com-
puter output. Thus the programmer can use
the familiar decimal system or the octal system
to program the computer, depending on the en-
coder to convert the data to the binary form as
required internally by the computer. Also the
output of the internal circuits of the computer
is changed by the decoder back into the familiar
decimal form. The basic principle involved is
illustrated in figure 5-11.

The simple decimal-to-binary encoder (fig.
5-12) receives any one of 10 decimal numbers
at its input and produces abinary-coded decimal
output, This action can be seen by a study of
the circuit using OR logic. There are more
complex types of encoders, as will be studied
in a later chapter.

The basic principle of binary-decimal de-
coding (fig. 5-13) uses flip-flops which provide
the inputs to the AND element which in turn
produces the decimal output. This type circuit
produces an output only when the right combina-
tion of flip-flop outputs is applied to the inputs
of the AND element, Appropriateuse of inverters
makes possible the decoding of any binary-coded
decimal digit.

Although only binary-coded decimal conver-
sions are illustrated here, similar procedures

can be used to encode and decode numbers in
all number systems.

A more advanced form of encoding and de-
coding uses a matrix to translate between
number systems. This, by the way, is how
the matrix obtained its name. In mathematics,
“matrix’’ means a set of terms which operate
on one type of number to produce a second type;
in other words, a number translator.

As discussed earlier, binary arithmetic
uses only the two digits, 1 and 0. The manner
in which these digits are arranged determines
their numerical value. The advantage in using
the binary system in digital computers is that
the two digits (1 and 0) canbe easily represented
by the two possible stable states of certain
electronic circuits and components.

The operation of a matrix is based upon
certain principles which were first investigated
by Mathematician James Sylvester in the mid-
nineteenth century. You will recall that for
any particular circuit heretofore discussed,
a ‘single output is produced if some specific
combination of inputs exists. Further, there is
a fixed number of possible inputs combinations
(depending upon the number of inputs used) each
one of which is called a ‘‘minterm’’. A circuit

with two inputs, for example, has four minterms:

AB, AB, AB, and A B. A three input circuit has
eight mmterms ABC, ABC, ABC, ABC, A BC,

AB C, A BC, and ABC Thus it can be sald that
for “n” 1nputs, there are 21 minterms. Con-
sequently, for 2 inputs there are 22 or 4 min-
terms; for 3 inputs there are 23 or 8 minterms;

and for 4 inputs there are 24 or 16 minterms,

etc. Each minterm indicates one of the possible
input combinations that can occur.

—_— -
— D EEE—
— E INTERNAL £ —
/3 c —
— SECTIONS 0

——] 0 0 I——
] o OF COMPUTER E [
S | ——

DECIMAL DATA INPUT

DECIMAL DATA OUTPUT

BINARY—CODED
DECIMAL DATA

124. 48

Figure 5-11.—Basic principle of encoding and decoding.

73

DATA SYSTEMS TECHNICIAN 3 & 2

mmﬂm@&um—o

124. 49
Figure 5-12,—Decimal-~to-binary encoder.

The logic matrix differs in one respect
from other circuits discussed in this chapter
in that a matrix with ‘‘n’’ inputs has 21 outputs—
one output for each minterm., It produces a
signal at one specific output terminal for any
one combination of inputs.

Consider the simplified illustration infigure
5-14, The matrix has three inputs, A, B, and C,
each of which can be in either the 1 or O state.
Each combination of digits represents a binary
number, so that ABC is interpreted as 111, ABC
means 000, ABC means 010, etc. Intheillustra-
tion, a signal exists at A and at B, but not at C,
representing 110. The appearance of this com-
bination of signals at the input will produce a
signal on one specific matrix output. By connect-
ing this output to a numbered indicating device,
such as a lamp, the binary number 110 is
directly converted to its decimal equivalent, 6.

In general, each minterm represents a
specific number. For example, ABC = 000 = 0,
ABC=001=1, ABC=010=2, and so on
to ABC =111="17. In order to decode higher
numbers, the number of inputs and outputs
must be increased. Because a logic matrix
has an output for each minterm, and every
minterm represents a binary number, each out-
put can be labeled with the appropriate decimal
value,

Consider the circuit in figure 5-15, which is
used to decode the binary coded decimal number
1001 (9). When the magnitude of the voltage at
any one of the outputs decreases below the bus
voltage to that shown, one or more of the
diodes conduct. Because the resistances are

INPUTS TO FLIP~-FLOPS

e N

RESET
INPUT

Sy R Sy

FF3 FF2

FF1 FFO

124.50

Figure 5-13.—Decimal-to-binary decoder.

74

Chapter 5—ARITHMETIC UNIT

C
0

e {3
| ||

ABC & 7)
- \\J/
ABS SR b 6
- 7, 5
ABC >N
ABC = °
MATRIX A & a | DECIMAL
ABC - - OUTPUTS
ABC)
—_ & 2
ABC @ b 4
ABC @ o

124,51
Figure 5-14. —Three input matrix.

small and in parallel, most of the applied
voltage is distributed across Rp. A set output
is represented as 1 and a reset output is zero.
When, and only when, the flip-flops are in the
condition shown, that is from left-to-right set,
reset, reset, set, all diodes will be cut off and
because of the high R loadthe voltage at the out-
put rises in the positive direction. This rise in

voltage indicates the presence of a binary coded
decimal 9 at the input. Similarly, any binary
number can be decoded by connecting the diodes
to the proper flip-flop terminals.

A more versatile form of diode matrix is
illustrated in figure 5-16. Here, diodes are
connected to flip-flop terminals in a manner
which will decode any one of 8 conditions
representing 000 through 111. The diodes are
normally conducting (low voltage or zero output)
except when the associated flip-flop output is
positive going. (This back biases the diode).
Thus, a 0 is produced at the matrix output
(rise in voltage on the zero level) when all
flip-flops are in the reset condition. (Reset
terminal is positive going.) A 1 output is pro-
duced when both FF2 and FF1 areresetand FFO
is set. A 5 is produced when FF2 and FFO
are set and FF1 is reset. In other words the set
outputs of FF2 and FFO and the reset output of
FF1 are positive going sothatalldiodes on the 5-
level are cut off and the output voltage on that
level is positive going. A study of the matrix for
various combinations of flip-flop outputs reveal
the conditions which exist when representing any
decimal digit from 0 to 7. Higher order numbers
can be decoded by increasing the number of
flip-flops and connecting additional diodes to
indicate higher counts,

1 0 0 1
<~ FF3 < FF2 < FF1 < FFO le—— INPUT
s R
¥ R O e s R
SMALL SMALL SMALL SMALL
R R R R
w
! & BYS o . LOUTPUT
HIGH
Rg R
+E LOAD_:
124. 52

Figure 5-15.—Simple flip-flop decoder.

DATA SYSTEMS TECHNICIAN 3 & 2

jt— >
l—

le— |
le— O
le—O|

FF2 FF FFO

MATRIX
OUTPUT

A

<
Fgra

124.53
Figure 5-16,—Diode decoder matrix.

76

CHAPTER 6

MEMORY AND STORAGE UNITS

A computer is designed to perform specific
operations looking toward the solution of a
problem. But before it can solve the problem,
it must be instructed or directed as to the
steps necessary.

Before the stored-program computer can
solve a problem, or perform an operation, it is
first necessary to store, in memory, a sequence
of instructions (called the ‘‘program’’) and all
figures, numbers, and other data which are to
be used. With this information, the computer
begins its operations, starting at the first
instruction in the program or at any other
instruction dictated by the operator or deter-
mined by conditions previously established.

MEMORY DEVICES

Memory requirements of the computer are
largely responsible for the use of binary rather
than decimal arithmetic. The circuits designed
to perform arithmetic operations using binary
numbers are simpler than those which would be
required for decimal arithmetic since only two
conditions, rather than ten, are represented.
Likewise, the storage of binary numbers is
simpler since any on-off device can be held in
either one of its two stable states to indicate
the 1 or O condition, respectively, of the bit
represented.

Of the many types of storage devices which
have undergone extensive study for use in the
memory section of computers in recent years,
few have emerged as practical. The most com-
monly used storage devices include; magnetic
cores, electrostatic tubes, magnetic drums,
magnetic tapes, acoustic delay lines, magnetic
disks, magnetic cards and thin film.

The principle involved in representing on-off
conditions using magnetic devices is easily
understood if we let the magnetized condition
of the material (or any small portion thereof)

77

represent the ‘‘1’’ condition, and the non-
magnetized or demagnetized portions represent
the ‘‘0’’ condition. In the case of magnetic
cores, each core is small and the entire core
is magnetized in one direction to represent a
€1’ state and in the opposite directiontorepre-
sent the ‘‘0’’ state. Magnetic drums and tapes
represent data as small magnetized or non-
magnetized areas indicating 1’s and 0’s re-
spectively, or areas of one polarization for 1’s
and of the opposite polarity for 0’s on the
surface of the device.

Electrostatic storage involves the develop-
ment of a small static positively charged area
on the face of a cathode-ray tube to represent
a ‘“1”’ condition and a negatively charged area
(or an area of zero charge) to represent a ‘‘0”’
condition. In many applications, conventional
cathode-ray tubes of the type used in oscillo-
scopes or in commercial television sets are
used.

Storage of binary digits in acoustic delay
lines is accomplished by using a column of
liquid (usually mercury) into which mechanical
vibrations are introduced to represent the ‘‘1”’
condition. The absence of these vibrations repre-
sents the ‘‘0’’ condition. A detailed treatment of
each of the types of memory devices is given
below.

ACCESS TIME AND CAPACITY

Two terms are usually used to describe any
storage device. These are access time (howfast
data can be extracted from the storage device)
and capacity (the amount of data that can be
stored). The form of the stored data can be
considered to be a third factor involved in the
description.

In magnetic storage devices associated with
digital computers, magnetic fields are used to
representbinary 1's and 0's with current pulses
being translated into magnetic fields and vice

DATA SYSTEMS TECHNICIAN 3 & 2

versa, so that data can be used by both the
storage device and the computer,

Access time is determined by the nature of
the device. In certain devices, such as cores,
equal amounts of time are required to read out
any group of stored bits. A core storage system
is thus a device with random ‘‘access.’’ Any
core can be selected for data extraction, and the
desired data is available in a fraction of a
microsecond.

When magnetic tapes, drums, and discs are
used, a fixed amount of time is requiredto read
or write on the surface. However, there is a
second and variable amount of time required to
position the desired material under the read-
write head (discussed later), There is an
expression among computer engineers that
states: ‘“You always know where your desired
data is; it has just passed under the head.”’
This means that you have to wait for the next
complete cycle of surface travel (sayfor adrum
to revolve) in order to position the desired data
under the head. Surface storage devices are
usually classified as nonrandom access devices.
The access times given for these devices are
often equal to half of the maximum possible
access time.

MAGNETIC CORES

Magnetic cores are generally constructed
by either one of two methods. The first type
of core, called a tape-wound core (not shown),
is fabricated by wrapping a tape of magnetic
material around a nonmagnetic toroidal form.
A toroid is a term used todesignate a doughnut-
shaped solid object.

The second type is called a ‘‘ferrite’’ core,
It is made by molding finely ground ferrite
(a ceramic iron oxide possessing magnetic
properties), into a toroidal form. The ferrite
particles are then heat fused or ‘‘sintered’’ by
the application of heat and pressure.

A representative tape-wound core has a
diameter of one quarter of an inch. The tape
that is used for the winding usually has a width
of about one-eighth of an inch and a thickness
on the order of one-thousandth of an inch,

A representative magnetic core is shown in
figure 6-1. Its outside diameter is 0.050 inch;
its inside diameter is 0.030 inch; and its thick-
ness is 0.015 inch. The ferrite core is magnet-
ized by the field produced by a current flowing
in a wire (drive line) that is threaded through

78

Figure 6-1.—A magnetic core.

the core (explained later). It retains a large
amount of this induced flux when the current is
removed. Flux lines can be established clock-
wise or counterclockwise around the core,
depending upon the direction of the magnetizing
current. These two unique states represent ¢‘0’’
and ‘‘1’’, respectively.

In this discussion it is assumed that the
time required to switch a core from one state
to the other is approximatelyl.2us. The drive
pulse is presumed to be2us in duration with a
total of .8us rise and fall time and 400 milli-
amperes maximum current.

MAGNETIZATION

The state of magnetization of a coreis shown
on the hysteresis loop in figure 6-2 which plots
magnetic flux density in gausses (B) as a func-
tion of the field (induced by the current) in
oersteds (H).

In this diagram it is assumed that the
core is already in some state of magnetization,
such as shown at-Bp. If a current flow with a
direction (+) that produces a mmf (H) of a
given magnitude, + Hp,, is applied to the drive
line (fig 6-1), the flux density increases to
saturation as indicated by +Bg. When the current
is removed, the flux density retained by the
core drops slightly along the curve to the level
indicated by +By (remanence), or the residual
flux density. This state isarbitrarily designated
here as the '"0" state. Another pulse of +Hp,
would now merely shift the core to +Bg again,

Chapter 6—-MEMORY AND STORAGE UNITS

" "
O STATE +Bs

+Br

+
~—— el

COERCIVE
FORCE

NES

He +Hm

-

-Br
-Bs

X
~—"1"STATE

124,55
Figure 6-2.—Hysteresis loop of a
ferrite core.

and after the pulse is removed, the core would
return to +By.

If a current pulse of the same magnitude,
but in a direction to produce a mmf -Hp,, is
applied to the drive line, the flux density
shifts along the curve to -Bg causing areversal
of the flux in the core. When the current pulse
is removed, the residual flux density is at
-By, the state that is arbitrarily designated
here as the ‘17’ state.

CORE WINDINGS

In order to be able to apply more than one
drive current and to sense or inhibit changes
in the core condition, it is necessary to use
several core windings (drive lines). These
windings are indicated in figure 6-3.

Any change in the flux of a core induces
a voltage in all wires passing through the
core, Hence, the induced voltage on the sense
line (winding) is sampled to see if the core
switches from -B, (fig 6-2) to +Bg when +Hpy
is applied, If a large induced voltage is sensed

79

X DRIVE
LINE

FLUX DIRECTION
FOR "I"
FLUX DIRECTION

FOR O

Y DRIVE
LINE
INHIBIT
LINE

iy
e
>

Y

WRITE—*

<——READ

124.56
Figure 6-3.—Magnetic core showing ‘X',
‘“Y’’ inhibit and sense lines.

(over 50 millivolts), the core was in the ‘1”’
state and has been switched from -Bp to +Bg
(the ¢“0’’ state). Because the contents of the
core are determined in this manner, the current
pulse corresponding to mmf +Hy, is called a
‘‘Read pulse.’’ Because the condition stored be-
fore sensing is destroyed during read-out, a
memory utilizing this type of magnetic core
storage element is referred to asadestructive-
readout memory. If the data which was stored
is to be used again, a restore (or rewrite)
function is initiated to return the core to its
original state.

OPERATION OF A CORE MATRIX

In operation the memory section contains
thousands of cores which are arranged in a
matrix. The windings through the cores actually
consist of single wire conductors as shown in
figure 6-4, The conductors threaded through
cores along the horizontal (‘X’’) axis are
called ‘“X’’ drive lines, The conductors threaded
through cores along the vertical (‘‘Y’’) axis
are called ‘“Y’’ drive lines.

DATA SYSTEMS TECHNICIAN 3 & 2

INHIBIT LINES

[

DRIVE
LINES

Y
DRIVE LINES

-124,57
Figure 6-4.—Basic construction of a
magnetic core matrix,

The sense line (fig. 6-5) is threaded through
all the cores in the matrix (four matrices are
shown- one in each quadrant of the board).
Maximum voltage is induced in the sense line
when a core switches from 1 to 0.

The inhibit (I) lines (or windings) may be
threaded vertically (parallel to the X drive
lines) or horizontally (parallel to the Y drive
lines). A pulse on the inhibit line prevents
switching of any core on that line although a
drive pulse is present on the associated X or
Y drive line. In some cases the inhibit lines
are vertical in some sections and horizontal
in others to equalize the loading effect on drive
lines by the inhibit lines.

HALF-CURRENTS

The operation of core matrices depends on
the ability of each core to distinguish between
current levels on its read/write windings (R/W
drive lines fig. 6-3). Each core in a plane is
linked by four windings. Two of these windings,
the X’ and ‘Y’ drive lines, determine the
address of the core. Tooperate onthe addressed
or selected core, ‘‘half-amplitude’’ current
pulses are applied to each selected drive line

80

so the core attheintersection of the two selected
drive lines is the only core that receives a
net mmf, or full amplitude pulse, of H All
other cores on the two selected drive lines
receive only the half-strength field associated
with the half-amplitude current on one drive
line.

As seen in figure 6-2, the coercive force,
He, is the mmf required to reduce the core
magnetism to zero. The drive currents are
selected so that Hy,/2 (half current) is less
than He and, as a result, is insufficient to
switch the core. The sum of the two drive
currents, Hy,/2 + Hy,/2 = Hy, is greater than
He and switches the selected core in just over
one microsecond.

When a core receives a half-current pulse,
the mmf produces a change in the fluxdensity of
the core. Assuming that the core is in the “‘1’’
state at -Bpr, a half-read pulse causes the core
flux to shift along the hysteresis loop to the
point x limited by Hy,/2 and then return to a
slightly lower remanent value, such as point
B when the mmf is removed. Since the core is
now operating in a slightly smaller loop, further
half-current pulses again reduce the remanent
flux to point ‘“C’’, This effect soon reaches a
limit as at point D. When the core is in the ‘‘0’’
state (+By), half-write pulses produce a similar
effect.

The shift in flux, caused by a half-current
pulse, induces a small voltage in the sense
winding. The amplitude of this voltage is a
function of the squareness of the hysteresis
loop. The squareness ratio, Rg, is defined as
the ratio of the flux density value at Hp/2 to
that at +Hm. Values of Rg range from a practical
limit of 0.7toanideal limitof 1.0, A representa-
tive squareness ratio value for cores used in
computers is about 0.9. A core withalow Rg has
a greater shift in flux for a given half-current
pulse.

In an earlier discussion it was pointed out
that the computer must store large numbers
of instruction words in memory-—the exact
number depending on the particular program and
the amount of data involved in executing the
programmed steps. In a given computer if each
instruction word contains 48 bits and if the
program to be stored contains 4000 instruction
words, 192,000 cores must be available inmem-
ory for instructions alone. Several times this
number of storage locations is sometimes needed
for storing the data involved. Actually some
computers containover a million cores. Although

Chapter 6-MEMQRY AND STORAGE UNITS

X DRIVE LINE
l"
I-1 0 2 4 6 10 21 1416 S-3
S-1 vUJ}:\ ﬁ‘\ <&‘.~ oél %!‘T <))¢n c’l Y :JJ/U 1-3
%\\ Bar—iezl Db N s ,.\.\:
¥ Zazanh
4~ .
i e D YLS
'3 =/4 E F /] 12 Y DRIVE
“~N) LINE
H 3
— [110
=3 — % S > N
- R, A Jo] DD o 1 AV — /v X
" A
s ‘\ q\
>0 14
| o .
3 J F ,
1K .
' —/‘ b \/" [o}
1-0 n/ 4 /b" l(} N4 3 o s-2
&, % RS < b RS L ~
Y P et S rdl|
-0

S [3 5 7

13 15 17 1-2

124.58

Figure 6-5. —A simplified magnetic core board, 16 by 16 array.

this is a large number of cores, their small
size and inherent ability to switch from one
binary state to the other make them especially
suitable for use as computer storage components.

READ-OUT

Several memory core planes are illustrated
in figure 6-6. It is assumed that the ‘“X’’ and
‘Y’ drive lines are pulsed to read-out data
previously stored in the cores located at the
intersection of the drive lines. The sense lines
read the data from each of the cores simul-
taneously so that the entire output (top tobottom
1101101) is read in one bit time (parallel). Also,
the data can be read serially—one bit of the
word in each of seven bit times. In operation
one memory plane exists for eachbit inthe word.

81

The sense output is amplified and sent to
specified registers where it enters into certain
arithmetic or other types of operations. Re-
viewing briefly, the drive pulse drives from a
zero to a 1 during the write cycle and from a 1
to zero during the read cycle.

The X drive pulse and the Y drive pulse
are each equal to 1/2 Hp,. Two pulses are
required simultaneously to either set or reset
the core. This action is called the coincident
pulse type of operation of magnetic core
memories.

The selection of a particular Y drive line
and X drive line will select a particular core
and this in effect is its so called address.
Reviewing briefly, the drive pulse drivesfroma
zero to a 1 during the write cycle or from a 1
to zero during the read cycle.

DATA SYSTEMS TECHNICIAN 3 & 2

DRIVE LINE

SENSE LINE

-

Figure 6-6. -Memory read-out.

124.59

82

TERMINOLOGY

The use of magnetic cores as described
provides high-speed, random-access, non-
volatile storage. A storage component is con-
sidered nonvolatile if it retains its binary
state when all power is removed from the equip-
ment. The term high-speed memory is defined
relative to the time required to gain access
to data in memory when other types of storage
elements such as magnetic drums or tape are
used. It may be defined in terms of the shortest
access time of two or more systems which use
the same type of storage element. In all cases,
the term ‘‘high-speed’’ is relative.

With some types of memory devices, the
time required to read-out a certain bit of data
may be considerably longer than the period
required to read-out other data as mentioned
earlier. Thisisparticularly true where magnetic
tapes or drums are used as the main storage
medium. On the other hand, the use of magnetic
cores as the basic memory components permits
any data in memory to be read-out in approxi-
mately the same time. Thus, if two data words
are randomly chosen, the access time (time
required for read-out) for both words will be
substantially the same. Because of this feature,
magnetic-core storage may be referred to as
random-access storage.

MAGNETIC DRUMS

Magnetic drums provide a relatively inexpen-
sive method of storing large amounts of data.
A magnetic drum (fig. 6-7) canbe made by using
either a hollow cylinder (thus the name ‘‘drum’’)
or a solid cylinder. The cylinder can consist
entirely of a magnetic alloy, or it canhave such
an alloy plated upon its surface. Many drumsare
made by spraying on a magnetite, such as iron
oxide. The surface is then covered with a thin
coat of lacquer, and buffed.

A representative drum has a diameter of 5
to 20 inches. The surface of the drum is
divided into tracks or channels which encircle
the drum. A number of read and write heads
(at least one for each track) are used for
recording and reading. The drum is rotated so
that the heads are near but not touching the
drum surface at all times.

Drum-driving motors (not shown) range
between one-fifth of a horsepower to one and
one-half horsepower. Larger drums are driven
more slowly than smaller ones. Driving speeds

Chapter 6—~-MEMORY AND STORAGE UNITS

MAGNETIC
SURFACE

READ/ WRITE
HEAD

DATA TRACKS
OUTPUT IS FED TO

READ / WRITE CIRCUITS

TIMING TRACK

124.60
Figure 6-7.—Magnetic drum.

range between 120 and 20,000 rpm. Some
drums weigh about 50 pounds, while others
weigh well over 500 pounds. The access time
decreases as the diameter is decreased and
as the speed of the drum increases.

READ/WRITE HEADS

The read/write heads are placed about
0.002 inch from the surface of the drum.
This spacing is very critical. Spacing changes,
such as those produced by drum wobble, vary
the reluctance of the path and hence cause
variations in signal level. This can produce
faulty data and can result in intermittent opera-
tion. In order to avoid this, the space between
the drum and read/write head must be kept
constant. Thus, the drum must be perfectly
balanced and the bearings must permit very
little: wobble. In fact, if the drum ever makes
contact with the read/write head, the drum will
be grooved and ruined.

Drums wusually have a few tracks that are
reserved for identifying the data written across
the length of the drum. These tracks hold drum
addresses. The principle is explained later.

During the write process (fig. 6-8), currents
through wires wound around a pole-piece induce
small magnetic fields onthe drum surface within
the associated track. Each of these magnetized
areas is called a ‘‘cell’”” and is capable of
storing either a ““1’’ or ‘‘0’’ state.

83

INDICATES DIRECTION
OF FLOW OF MAGNETIZING
RREN J—

CURRENTS
DRIVE COIL
TO
READ/
WRITE
~— JCIRCUITS
POLE PIECE —
DIRECTION OF
INDUCED FLUX
LINES AIR GAP
FLUX FIELD ‘
SURROUNDING N S
MAGNETIZED
AREA (CELL)
— MAGNETIC
DRUM
~<——SURFACE
SURFACE MOTION
124.61

Figure 6-8.—Operation of read/write head.

The direction of current in the drive coil
determines the polarity of the induced magnetic
field. :

The pole-piece is constructed of a high-
permeability material which is capable of re-
versing its magnetic field quickly when a
minimum amount of reverse driving force
(measured in gilberts) is applied.

During a ‘‘write’’ operation the flux in the
air gap passes through the high-retentivity
magnetic surface and produces small magnetized
spots on the drum surface. Thus, the magnetic
field that existed during the instant when the
magnetic surface passed the air gap causes a
residual field to be stored on a small area
of the magnetic surface.

During a surface magnetic reading operation
the magnetized areas move past the air gap of
the head. Some of the flux from the cell on the
moving magnetic surface passes through the
pole pieces and a low amplitude voltage is in-
duced in the drive coil.

In some applications, separate read and write
heads are used. When the head is used for both
read and write operations, suitable external
circuitry must be used to isolate the associated
driving and reproducing circuits. '

Each read/write head is connected in a
separate circuit so that read or write operations
can take place on any or all tracks simultane-
ously. The data which appears under all heads
at the same time form a ¢‘slot.”’

In some applications, the magnetized spots
may represent ones and unmagnetized spots

DATA SYSTEMS TECHNICIAN 3 & 2

zeros. In other applications ones and zeros
are represented as magnetized spots of opposite
polarity.

RETURN-TO-ZERO ME THOD

In a recording system which uses a pulse
to indicate a 1, and no pulse to represent 0,
the pulse-no-pulse representation of the binary
word 101101 would appear as shown in figure
6-9A. This method is called a positive-pulse
return-to-zero system and is abbreviated RZ.

In some applications, the voltage does not
return to zero after each bit but only when the
data to be represented requires such a change.
This method of representing data is called the
‘‘non-return-to-zero’’ method, and is illustrated
in figure 6-9B.

NON-RETURN-TO-ZERO METHOD

The non-return-to-zero method is used
where compactness of data is important. Note
that in this method the change from 1 to 0 or
from O to 1 requires only one change in voltage
level. Using the return-to-zero method, each
change from a 0 to 1 requires two changes in
voltage level, i.e., from zero to maximum volt-
age and from maximum voltage to zero. Thus,
more time is required using the return-to-zero
method.

SERIAL READ-OUT

To further clarify this point, consider the
action for serial reading of the data represented
in figure 6-9C using the upper AND circuit and
the clock pulses (B1). The operation of the AND
circuit to produce the output (F=Aq B1) is un-
derstood. Because each bit of data using this
method (return-to-zero-method) rises from the
zero level to maximum voltage and remains
at that level for a given period (long enough to
permit the clock pulse to be ANDed with each
bit of data in coincidence), and return from the
maximum level to zero, the time between clock
pulses is necessarily long, and the overall time
to read a single bit is long in relation to the
actual AND operation, which, in itself, is the
read process. The unique way in which the non-
return-to-zero method lends itself to faster
reading is seen by studying the waveforms in
figure 6-9D and their actions to produce the
output (F=Ag Bg) from the lower AND circuit.
Note that the output produced in the b5us read

84

period for the return-to-zero method is still
110111 (6 bits), whereas the non-return-to-
zero output produced in the same period is
111100000011 (12 bits). Thus, serial data canbe
read in a shorter period using the non-return-
to-zero method since the clock pulses can be
applied at a higher clock rate.

WAVEFORMS

The pulses shown in figure 6-9E better il-
lustrate the flux and read voltage. You will note
that both a positive and negative voltage are in-
duced in the read head each time the flux pulse
stored on the magnetic surface passes the air
gap. This occurs because the magnitude of the
induced voltage is proportional to the rate of
d¢
at
tion of the flux change.

If it is asSumed that the flux rises as it
approaches the read head, it follows that itfalls
as it leaves the head. This produces a read
voltage output pulse of one polarity followed by
a second pulse of opposite polarity. This condi-
tion is of little consequence since either of the
pulses (the positive or negative) can be easily
eliminated.

change of the flux and its polarity to the direc-

ADDRESSING

A timing track (fig. 6-7) onthe drum contains
a series of permanently recorded timing signals
which are used to locate any drum slot. Some
drums use two or even three timing tracks. The
timing tracks are used for synchronizationpur-
poses and are sometimes calledcontrol or clock
tracks.

A drum with a diameter of 20 inches would
have a circumference of 62.8 inches. If the mag-
netic properties of the drum surface permit
the storage of 300 bits per inch the total number
of timing bits (using a single timing track) would
number 188,400. Because bits can be stored on
all tracks at the same density, 188,400 databits
can be stored in each of the four data tracks
shown and the drum capacity is 753,600 bits.

SYNCHRONIZATION

In chapter 4, it is pointed out that all com-~
puter operations take place under the influence
of the clock or timing pulses whichare generated
in a stabilized oscillator. It isagain emphasized
that the timing pulses establish the time scale

Chapter 6 ~-MEMORY AND STORAGE UNITS

@ (o] V-—I— l—| RETURN-TO-ZERO

— — NONRETURN-TO-ZERO

OUTPUT Fy=A;B4

INPUT Ay i‘= TIME = 5148 ———Jl

"{" STATE —=—+" U I—I |_| U_ A

"0" STATE —av-1d
© lov RETURN -TO-ZERO Fi=A1 By

INPUT B
" STATE/1JI/'| | ﬂ H ﬂ I_l I I | B
"0" STATE — 1OV CLOCK PULSES

INPUT A2 } {
"1" STATE .,-—._/lr]
nou STATE OV : ____.pAz
| NONRETURN-TO-ZERO | F2=A2B2
INPUT B2 | i 11 1 OO0 OO OO 1 1 |
|

"0" STATE IOV , |
| OUTPUT Fp =A2 B>
JUUU [
|
[e—— TIME =5US ———’l

1 1
| | 4 |_] ¥ TIME

WRITE VOLTAGE

—

®

1
WAVEFORMS OF THE POSITIVE-
PULSE RETURN-TO-ZERO (RZ) j\ J\

SYSTEM. + —+ t + » TIME
FLUX

—-ﬂv——'—ﬂ‘vﬂ&v—'—‘%——WTlME

READ VOLTAGE

B
=

67.95
Figure 6-9. —Data representation.

85

DATA SYSTEMS TECHNICIAN 3 & 2

to which all circuits throughout the computer are
synchronized. When core memory is used all
data is stored in the cores in a static condition
and can be located at a given place at any
instant and easily read from that location in
serial or parallel form to represent the same
data that was stored in that location.

Data stored on drums is in constant motion
(dynamic). Transfer of data is therefore
complicated.

Timing pulses are not used to synchronize
the drum speed (which may vary slightly from
time to time), and thus some method must be
used to ensure that data read into the drum
memory in a given bit position will be read
from memory with the same time reference.
(It is understood that in the case of dynamic
storage if data read into memory is not read
out with reference to the same time scale,
the information read 1is of little or no
significance.) The probability of anincompatible
time relationship between the drum speed and
synchronizing (clock) pulses makesitnecessary
to establish some means of compensating for
variations in drum speeds.

DATA REPRESENTATION

Before studying the methods used to ensure
accurate transfer of data from the drum, it is
first necessary to understand clearly the method
used to represent data and how clock pulsesare
used with data represented. To explain this we
will consider a system which uses the return-
to-zero method of pulse representation. Three
methods of data transfer are represented in
figure 6-10.

Each computer word contains digits, the
number dependent upon design. In figure 6-10A
it is shown thata word contains a number of bits,
again, dependent on design. Once the bits-per-
digit and digits per-word are established in a
computer which uses a fixed word length, each
computer word will contain the same number of
bit positions. Thus, all words in a fixed word
length computer are of constant duration.

Bit Parallel-Digit Parallel

The method of data transfer as illustrated
in figure 6-10A is called the bit parallel-digit
parallel or fully parallel method of transfer.
With this method a word can be transferred
(either recorded or written) in one bit-time.
Obviously this method provides for fast transfer,

86

but requires the use of separate lines (and
associated circuitry) for each bit contained in
the word.

Bit Parallel-Digit Serial

The method illustrated in figure 6-10B is
called bit parallel-digit serial. To illustrate
how this method of notation is derived, each
bit has been assigned a number and it is under-
stood that bits represented up and down the page
are transferred simultaneously (four at a time)
while bits represented across the page are
transferred in sequential bit-times.

Bit Serial-Digit Serial

In the fully serial, or bit serial-digit serial,
method of transfer, all bits in the word (and
therefore all digits) are transferred sequentially.
All bits are transferred over a single line and
use a single transfer circuit. Although circuit
requirements are simplified by using this
method, more time is required to transfer a
single word.

Because of time consideration as discussed
above, fully serial computers are not widely
used. In many cases, however, fundamental
timing techniques used in computers (both
serial and parallel) are sometimes more easily
or more clearly explained assuming serial
operation and using serial circuitry. For exam-
ple, if it were considered necessary to explain
in detail the operation of all circuits used in
the transfer of bit parallel-digit parallel data,
it would be simpler to explain the action by
using a single circuit and a single (recurring)
bit input.

TIMING

Now study the relationship (fig. 6-11A)
between the various pulses that exist within
the computer, particularly those usedfor control
(clock) purposes. In this example, which shows
the bit serial-digit serial method of transfer,
the duration of a clock pulse is taken as a bit
time.

Four bits make up one digit. Likewise,
four digits make up one word. The choice of
the number of bits and digits which comprise a
word is arbitrary. In practice, a parity bit
(discussed in chapter 3) is contained in each
digit to detect the loss of a bit or errors
resulting from inproper coding. Where sign-bit

Chapter 6—~MEMORY AND STORAGE UNITS

DIGIT
WORD
BITS
DIGIT
DIGIT
(A) BIT PARALLEL -
DIGIT PARALLEL
DIGITS (4)
L — A~
w wl
s 3 =
F - £
R e v
[12] 9 CE
le>! le»l ki PERIOD OF
it v It EACHDIGIT
5 |
(B) BIT PARALLEL - —> ~ —'O—IE_]_.Z——_
DIGIT SERIAL y = === _
|, sl T 3L WORD
16 12 8 4
—I—HAarR ==
R

i

f‘<——— DIGIT3 —»l«—DIGIT2 —»le—DIGIT | ——pleDIGITO —l

J (C) BIT SERIAL-DIGIT SERIAL

124.63
Figure 6-10. —Methods of data transfer.

817

DATA SYSTEMS TECHNICIAN 3 & 2

WO

RD

~<—DIGIT—>

NEnnn

CLOCK PULSES,Cp

[l

Ny

DATA, A,

r

=~
—L

WORD PULSES

=

DIGIT PULSES

I

rgr

rrLn

(CLOCK PULSES, Cp, AND
DATA,A, INPUTS

FROM ABOVE)

OUTPUT €,

A

s

|
l«- DIGIT 4 p
A
DD: 2
O [*DIGIT3 >
=] .
| | Ag
I Cp
I«—D[Gsz - > Fa= AzCp
As
I [‘l I"‘ Ay
! |
< DIGITI
! _—! Cp.
I DIGIT >
| PULSES | Ag

Figure 6-11. —Timing.

88

Cp
- F=A,Cp
A 2, OUTPUT

124.64

Chapter 6—-MEMORY AND STORAGE UNITS

notation isused, one or more of the bits contained
in the word will be used to indicate the sign of the
number represented by the numerical digits.

The AND element illustrates symbolically
how the input data is transferred. The bit
parallel-digit serial method of representing
and transferring the same data is illustrated
in figure 6-11B. Here, four AND circuits are
used in the transfer even though the complete
transfer takes place in one-fourth the time
required for the bit serial-digit serial method
(fig. 6-11A).

Now consider the process of data transfer
when drums are used at the main storage.
Particular attention is directed to the digit
and word pulses. The series of clock pulses
in figure 6-11A have little significance alone
and will be of little value if applied to the AND
element to cause the transfer of the data pulses
(A1) unless some other input is fed to the drum
to cause the beginning of the transfer to cor-
respond with a word-time and end of the

transfer to occur at the termination of a

word-time or a given number of word times.

In practice, the timing pulses which are
permanently recorded on one or more timing
tracks (as mentioned earlier) consist of word-
time, digit-time, and bit-time pulses. With this
arrangement, any changes inthe drum speed will
be accompanied by a corresponding change in
the time between timing pulses.

During the recording (writing) process, each
word placed on the drum is made to begin when
a word pulse comes under the head of the
timing track. Likewise, the read-outor transfer
of a word from the drum occurs in synchronism
with the timing pulses. Thus, by permanently
recording the timing scale on the drum, the
possibility of poor or jumbled read-out (caused
by a change in the relationship of the basic
timing signal at the time of read-out as com-
pared to the time when the data was written)
is eliminated.

SERIAL OPERATION

Each of the drum tracks is numbered and
divided into sectors. Each sector stores one
computer word. When using serial operation,
only one track at a time is written upon or
read from. The action takes place on a given
track in a given sector. Because each sector
is the same length as a computer word, a track
which stores 768 bits will accommodate sixteen
48-bit words and is therefore divided into 16
sectors. In the serial method of drum operation,

89

a specific address is referenced by indicating
the track and sector numbers. For a 48-bit
word, 12 bits may be used to specify the track
number, 12 additional bits to indicate the
sector number, and the remaining 24 bits may
be used for data.

Use of Three Timing Tracks

Drums which use three timing tracks fre-
quently use one track for bit pulses, one for
word pulses and one for indicating the sector
number. A given sector (on the sector track)
contains the number of the next sector which
will come under the read head. In this manner,
once the proper track is selected and the sector
determined, the read-out of the desired data
from the proper sector can begin at the onset
of a word pulse, by comparing a codedarrange-
ment of sector pulses with those read from the
drum. When the coded pulses (in static form)
and the pulses read (dynamic pulses) coincide,
a signal is issued to begin read-out at the time
of. the next word pulse. (In some computers
a space bit is provided between words. The
above example is not valid when this method
is used.)

When serial operation is used in conjunction
with separate read and write heads properly
spaced near the surface of a drum, (fig. 6-12)
the data written onto the drum is re-read some
short time later (duringa given drum revolution)
and is constantly re-circulated. The drum
surface isusedasadelay medium. Thisarrange-
ment is called a ‘‘dynamic register’’ since the
data stored is constantly changing its positionin
the storage medium.

Dynamic Register

A dynamic register may be used as the
illustrated

accumulator as in figure 6-13.

READ WRITE
AMPLIFIER AMPLIFIER
READ HEAD WRITE HEAD
124.65

Figure 6-12. —Dynamic register.

DATA SYSTEMS TECHNICIAN 3 & 2

INPUT CONTROL

INPUT DATA 5|

ADDEND
Dt

ADDER OUTPUT
o

RECIRCULATE ADDER
INPUT
(NORMALLY ™1
READ TO OUT- IN THE { STATE) AUGEND
PUT CONTROL DATA
e [
ouTPUT l—
READ WRITE
AMPLIFIER AMPLIFIER
< <
READ writE
HEAD HEAD
DRUM
STORAGE

124.66

Figure 6-13. —Dynamic register used as the accumulator.

Here, it is assumed that data (to be used as
the augend) is already circulating in the loop
comprising the drum, A2, Gl, the ADDER
circuit, and Al. This data continues to re-
circulate (without alternation) as long as two
conditions exist: (1) the re-circulate input to
Gl must be maintained in the high or ‘1%’
‘condition, and (2) the signals to the input control
and input data terminal of G2 must not permit
an addend input to the adder. The ADDER circuit
is not explained in detail here. It is sufficient
to say that the ADDER will permit the augend
data to pass to its output unchanged if the
addend input is maintained in the ‘“0’’ state.
Assuming the re-circulation loop to be
enabled, if the input control and input data
terminals to G2 are in the state which permit
an addend input tothe ADDER, the re-circulating
data (augend) and the addend (the new inputdata)
are combined in the ADDER and the output is the
sum, or difference of the two inputs. (The
output must be interpreted with regard to the
type of addition which takes place in the ADDER
and whether the addend represents the comple-
ment of some number.) The output of the ADDER
becomes the new contents of the register.
If it is assumed that a series of addend
numbers (each one word in length) is applied
to the ADDER, and that the result of each

90

previous addition is permitted to re-circulate,
the number stored on the drum at the end of
the series is an accumulation of sums and the
register is appropriately called the ‘‘accumu-
lator.”” (The circulation loop, as described
previously, comprises the drum, A2, G1, the
ADDER circuit and Al in, figure 6-13.)

Clearing the register is accomplished by
placing a ‘‘0’’ input on the upper or recirculate
terminal of Gl. This action prevents the old
or stored data read from the drum via A2 from
passing through G1.

In many cases, it is desired to store new
data on the drum while clearing the old. This
is accomplished by enabling the input control
terminal of G2, disabling (reducing the re-
circulate input to the ¢0’’ state), and applying
the new data to the input data terminal of G2.
The new data is passed along the addend line
to the ADDER. The ADDER circuit, by design,
will permit the addend to pass to the ADDER
circuit output unchanged. The data is sub-
sequently passed through write amplifier Al to
the write head, where it creates the necessary
flux about the write head to cause storage of
the new data on the drum. Thus, clearing or
erasing old data from the drum and recording
or writing new data on the drum are accom-
plished simultaneously.

Chapter 6—MEMORY AND STORAGE UNITS

MAGNETIC TAPES

A third type of storage device is magnetic
tape (similar to the tape used with commercial
tape recorders) which is used mainly for
secondary storage, i.e., it is used for storing
reference data and to provide large capacity,
long-access time storage. The magnetic surface
of tapes usually consists of a thin coating of
red or black iron oxide on a metal or plastic
backing. Tapes are approximately 0.0022 inch
thick and range in length up to 2400 feet. Most
computer tapes use channels or ‘‘tracks’’ along
the length of the tape. A separate read-write
head is used for each track, so that a number
of bits can be written or read simultaneously.

One type of tape used in digital computers
has seven tracks, and is thus capable of reading
or writing seven bits at one time. The seven
bits across the width of the tape is referred to
as one ‘‘column’’ of data. A spacing is auto-
matically provided between columns.

Tape travels across the read-write heads at
speeds ranging from 50 to 200 inches per
second. If it is assumed that a tape travels
across the heads at a speed of 75 in per sec,
data can be recorded at a rate of 18,600 bits
per second, one bit every 53.8 microseconds.
This means that —-—’——-—187200 or 248 bits are written
on each inch of a particular track (speed 75
inches per second), and that 248 x 7 or 1,736
bits are written on each inch of the seven-track
tape. The number of bits which can be recorded
per inch of tape is referred to as the ‘‘bit-
density.’’ Of course, there are spaces on a tape
where no data is stored. These spaces are used
to separate the ‘‘words’’ of one group of
stored data from another. These groups of data
are often called ‘‘records’’ or ‘‘blocks.’”’” A
single ‘‘block’’ or ‘‘record’’ of data is separated
by an inter-record gap before and after each
‘‘block’’ of data.

The spaces between records correspond to
the amount of tape that passes under the
read-write head while the tape drive is coming
to a stop at the end of each writing operation. An
inter-record gap followed by a single character
is used to indicate the end-of-file (end of tape).
The ‘‘end-of-file’’ space is sometimesareflec-
tive material on the tape which ranges in length
from one tape to another from 3/8 inch to
3 3/4 inches.

A 2400-foot reel of seven-track tape can
store all of the information contained on

91

approximately 20,000 eighty-column punched
cards. Newer tapes have ‘‘bit densities’’ of the
order of 800 bits per inch and hence larger
capacities.

TAPE DRIVING MECHANISM

The basic tape-driving mechanism (fig. 6-14),
consists of a group of motors, magnetic clutches,
linkages, and capstans, (rubber rollers with
metal hubs). These components are used in
conjunction with electrical control circuits to
stop, start, rewind, and drive the tape past
the read-write head assembly.

Two reels are used. The machine reel holds
the tape and the file reel pulls in the tape after
it has been written upon or read. This arrange-
ment is similar to the one that is used with
rolls of film on a motion picture projector.
Tape motion is produced by pressing the tape
against a motor-driven capstan. But using
solenoid-operated mechanical linkages, it is
possible to press the tape against either the
forward-driving capstan, the reverse-driving
capstan, or a nonrotating stopping capstan.

MACHINE REEL FILE REEL
o CAPSTANS 0

READ-WRITE
HEAD
ASSEMBLY

VACUUM
COLUMNS

49.162
Figure 6-14. —The basic tape drivz
mechanism.

DATA SYSTEMS TECHNICIAN 3 & 2

The mechanical inertia of the reels imposes
limitations on the starting and stopping of the
tape. In order to solve this difficulty, a large
loop of tape is used on both sides of the
read-write head assembly. These loops act as
buffers or overflow banks to minimize stresses
on the tape. When the tape is started, tape can
be drawn out of one bank by the drive capstan,
fed through the read-write head assembly, and
added to the loop on the other side. Meanwhile,
the reels can be accelerating up to full speed
in order to wind out more tape into one bank
and to take up slack from the other bank. In
this manner, tape passes the read-write head
assembly at the correct speed during the time
that the tape reels are accelerating or
decelerating.

Vacuum columns are used to hold the loops
of tape that are used as banks, and to keep the
tape taut so that it does not buckle at the
read-write head during the starting or stopping
of the tape reels. The vacuum columns are
vertical containers with rectangular cross sec-
tions. Air is pumped out of the bottom of each
column. As a result, the pressure of the air on
the inside surface of the loop keeps tape taut
and reduces air friction.

TAPE CODE AND ERROR DETEC TION

The seven-channel tape code (an IBM code)
is illustrated in figure 6-15. Some special
characters are shown. Because the code is
used to represent both alphabets and numerals,
it is called a ‘‘seven-bit Alphanumeric’’ code.

The channels or tracks are referred to as
C,B,A,8,4,2, and 1. The seven-bit code is popu-
lar mainly because it is a wide tape, yet it can
be handled easily. Wider tapes would require

0 3

ABCDEFG HIJ KLMNOPQRSTUVWXYZ

drive mechanism with greater mechanical abili-
ties. This would create new problems in starting
and stopping the mechanisms.

Some tape systems use a single read-write
head for each of the seven channels while others
use read and write heads separately. As can be
seen in figure 6-15, the ‘“C’’ bit for any column
is 1 whenever the total number of 1’s rep-
resented in the B,A,8,4,2, and 1 tracks for that
column is odd. If any vertical column contains
an odd number of 1’s when the ¢‘C’’ bitis
included, an error will be indicated.

As each record is written, the number of
1 bits in each of the seven (longitudinal)
channels is recorded. At the end of each
record, a bit is added to all tracks which
contain an odd number of 1 bits. When reading
the tape, an odd number of bits in any one of
the seven tracks of any record indicates an
error. Thus, checks are made across both
vertical and horizontal (or longtitudinal) dimen-
sions of the tape to ensure accuracy.

Tapes which use a single read-write head
cannot detect errorsduringa continuous record-
ing process. A reading of the tape after recording
will reveal the presence of errors, if, in fact,
errors exists. Tapes which use separate read
and write heads can perform a read operation
(for error detection) as the data is being
recorded. Data recorded on the tape at the
read head is written (or checked) an instant
later at the write head. The use of separate
read and write heads is therefore faster, since
errors are almost immediately detected and
may be corrected before the total recording
process is completed. Similar accuracy or
validity checks are made each time the tape
is read.

&:o—$x /2 %#0

| 23456789
A 1 [

N P o > T O

FEErer et I

N I
O O
Lererr o 1 I
I I ot
Ny I
N I

O I O e

124.68

Figure 6-15. —Seven-bit alphanumeric code.

92

Chapter 6—MEMORY AND STORAGE UNITS

Another common method of using the seven-
bit code involves the use of sixbitsto represent
two octal digits, such as 111g 011g (73g) and
the seventh bit for parity checking. This method
is used for representing numbers only.

MAGNETIC DISK

Magnetic disk memory involves the use of
a number of iron-oxide coated disks (which
resemble phonograph records) arranged in
much the same way as a record stack ina
modern ‘‘juke box.’’ All of the disks are
continuously revolving and spaced apart so that
a recording head which is driven by an access
mechanism can be positioned between the disks.

Data is recorded at a certain address on a
specified disk. When read-out of a particular
bit of data is desired, the recording head is
automatically positioned and the data is read
“‘serially’’ from the surface of the selected disk.
Air ejected from the recording head onto the
disk creates an upward draft which maintains a
given spacing of the head from the disk.

The main advantage of magnetic disk storage
is its high storage capacity obtainable from a
bank arrangement which contains several disks.
The access time for magnetic disks memory
banks is generally less than that for magnetic
drums. Some magnetic disk systems can store
up to 5,000,000 coded digits.

ELECTROSTATIC STORAGE

Electrostatic storage, as performed with
the aid of cathode-ray type tubes andassociated
circuitry, can provide a memory with access
time of the order of a few microseconds and
storage capacities of about 1,000 bits per linear
inch.

WILLIAMS TUBE

A representative tube that is employed for
this purpose is the Williams tube. The Williams
tube is used in a system arrangement similar to
the one shown in figure 6-16.

Construction

The overall construction and deflection sys-
tem of the Williams tube is very similar to
that of the familiar television picture tube.
However, the tube possesses two additional
features. The first is that poor conductor

93

DEFLECTION

ADDRESS I ¢|RCUITS

—_——

SIGNAL-PICKUP
PLATE

WILLIAMS TYPE

ELECTROSTATIC

STORAGE TUBE
SERIAL

REWRITE
DATA

BEAM
CONTROL
CIRCUITS

SHIFT
REGISTER

SERIAL
INPUT
DATA

4}

PARALLEL
DATA-READOUT

SERIAL
DATA—READOQUT

.

124.69
Figure 6-16.—Block diagram of electrostatic
storage using a Williams tube.

material, instead of the usual fluorescent
material, is used to coat the inside of the face
of the tube. The second feature is that a metal
‘‘signal-pickup’’ plate is placed in contact with
the outside of the glass face of the tube. Con-
sequently, a CAPACITOR is formed, consisting
of the inside coating, the glass face, and the
signal-pickup plate.

This capacitor is charged and discharged
by the electron beam within the tube. Let
us first consider how the charging operation
is accomplished. If the electron beam is greatly .
accelerated by a high potential at the accelerating
anode of the tube, electrons in the interior
coating are ‘‘knocked’’ loose by the impact of
the beam electrons. This phenomenon is known
as secondary emission. The interior coating
acquires a positive charge as the liberated
electrons are drawn away toanearby, positively
charged anode. Since this coating consists of a
poor conductor material, the positive charge
remains within the very small area of beam
impact.

Writing

By gating the electron beam on and off
(by means of the control grid) as it is swept

DATA SYSTEMS TECHNICIAN 3 & 2

across the face of the tube, it is possible to
store charges that represent the value of voltage
at different instants of time. This procedure
produces ‘‘writing.’’ If the gating voltage that
is applied to the control grid is a serially
applied binary word, the word will be stored in
the form of charged areas across the face of the
tube. These areas represent charges on many
individual tiny capacitors that share one common
electrode which is the signal-pickup plate.

Reading

Reading (capacitor discharging) is accom-
plished by using an electron beam sweep voltage
which is not gated on and off (as was true in the
writing process). The discharge path of each
one of the individual capacitors (charged areas)
is through the electron beam.

Note that there is a relationship between
time, which is provided by the beam sweep,
and the physical location of the individual
capacitors.

As the beam sweeps across the tube face, the
flow of each pulse of discharge current through
the signal-pickup plate indicates the presence
of a stored charge within a given area.

The series of pulses thus producedis usually
applied to a shift register (not shown). The
shift register shifts at a repetition rate that
is controlled by the tube sweep voltage. Con-
sequently, if NO PULSE appears at the instant
corresponding to a bit-position in the original
stored binary word, a binary zero is shifted
into the register. After all of the pulses have
been collected, the original binary word (as it
had been stored in the tube) is now present in the
shift register, and is readyfor any subsequent
parallel or serial readout and use. Readout
from the register involves a nondestructive
sampling of the voltage levels contained in the
register. Thus, readout of a given bit of data
can be repeated as many times as necessary.

Readout of data from the Williams tube is
destructive andthe storedcharge is ‘‘destroyed’”’
during the readout process. This data can be
restored by writing it back into the tube. This
is accomplished by feeding the contents of the
shift register through the beam-control circuits
to the control grid of the Williams tube in order
to repeat the writing operation.

Computer words are written across the
screen at a density up to 1000 bits per inch.
Selection of a given location on the face of the
tube for either reading or writing requires

94

accurate deflection of the electron beam. The
location of each word is therefore identified by
an ‘‘address’’: in terms of its X and Y coordin-
ates. This information which is digital, is con-~
verted into an analog voltage to permit the
beam to be directed to any spot on the screen.

COMPARISON OF ELECTROSTATIC AND
MAGNETIC CORE STORAGE SYSTEMS

When comparing electrostatic and magnetic
storage systems, the time required to select
a given address (access time)is slightly greater
using the electrostatic storage method than
for magnetic core memories due to the in-
crease in time necessary to produce a voltage
of the accuracy required to locate the desired
data. Further, once data is stored in cores, it
is seldom (if ever) necessary under normal
operating conditions to re-record the data lost
as a result of leakage. The retentivity of the
core stores the data indefinitely. Using the
Williams tube (electrostatic storage), data stored
must be periodically re-recordedtocompensate
for leakages in the glass dielectric between the
insulation material coated on the tube face and
the metal pickup plate outside of the tube.

ACOUSTIC DELAY LINE

One of the earliest methods of data storage
is the acoustic delay line. One form of acoustic
line is the mercury column (fig. 6-17). The
mercury column (sometimes called a mercury
delay line) consists of a tubular mercury
column and two piezoelectric crystals, one
mounted at each end of the column. A pulse
or group of pulses representing data is applied
to one crystal which transfers mechanical

MECHANICAL MERCURY CRYSTAL

VIBRATIONS

INPUT OUTPUT

A A—e—~
MERCURY COLUMN
CRYSTAL
{}
124.70

Figure 6-17.—Mercury column storage.

Chapter 6-—-MEMORY AND STORAGE UNITS

vibrations to the mercury column. These vibra-
tions travel through the mercury to the receiving
crystal at the other end. Here, the receiving
crystal translates the vibrations back into
electrical pulses which are amplified and re-
turned to the input crystal or gated to output
circuits. Data in the loop is made to circulate
in the loop as long as is necessary. Thus, the
mercury column (and its associated amplifier)
forms a loop which can store its input data.

As the length of the mercury column is
increased in an effort to store larger numbers,
a stable column temperature (which is required
in order to control the velocity of the pulse
through the mercury) becomes more difficult
to achieve. Likewise, the longer column the
longer the access time, i.e., the longer the
time required by the computer to locate and
transfer information to or from storage. These
factors limit the use of mercury columns as
storage devices.

OTHER USES OF MAGNETIC CORES

Aside from receiving wide usage as the
basic components of the memory section of
computers, magnetic cores are used in other
applications, such as ring counters, shifters,
and circuits used for data transfer.

' CORE TO CORE TRANSFER

In the following discussion of a core-to-core
transfer (fig. 6-18), actual core windings are
represented, rather than single wires, in order
to simplify the explanation. It is assumed that
core A is already in the ‘‘1’’ state and that
this 1 is to be transferred to core B which is
in the ““Q’’ state.

WNDING Sl
INDING—», b : :
< RITE SENSE
DIRECTIO SENSE \\:lllh:DlN WINDING
OF 4 WINDING
CURRENT |
TRANSFER (SHIFT) TRANSFER (SHIFT)
WINDING WINDING
124.71

Figure 6-18. —Core-to-core transfer.

95

An input pulse on the transfer winding (in
the absence of a pulse on the write winding)
clears core A tozero. The polarity of the voltage
induced in the sense winding (by the shift in the
condition of core A) is correct (plus toward the-
anode of CR1 and minus toward the cathode) to
forward bias CR1 and a current flows in the
write (on input) winding of core B. This action
switches core B to the 1 state.

A subsequent write pulse input to core
A will restore this core to the 1 condition,
but will cause an induced voltage in the sense
winding of the opposite polarity tothatdescribed
above and CR1 will be reversed biased. The
high back resistance of the diode prevents core
B from switching back to the ‘‘0’’ state.

CORE SYMBOLOGY

Cores are sometimes representedin shifting
(transfer) circuits and flip-flops as shown
in diagrams (A) and (B) of figure 6-19. The
core is represented by the circle. The 1’s and
0’s inside the circle in figure 6-19A signify
the action which takes place within the core
structure when a drive pulse appears on the
associated input. For example, if a pulse is
applied at the input line at A, a 1 condition
will be established in the core. If a drive pulse
is applied to the transfer (shift) line, the core
is returned to the ‘‘0’’ state. Finally, the ‘‘0’’
at the output (sense) terminal indicates that
a pulse appears in the output line when the core
switches from 1 to 0.

INPUT SENSE
TRANSFER
SET OuTPUT
B
RESET
124.72

Figure 6-19. —Core symbology.

DATA SYSTEMS TECHNICIAN 3 & 2

Magnetic cores are conveniently used as
flip-flops (fig. 6-19B) if the 1 condition of
the core (magnetized) is taken as the SET
condition of the flip-flop and the ¢‘0’’ (de-
magnetized) condition is taken as the RESET
condition. Cores used as flip-flops use the
familiar SET, and RESET terminals and an
OUTPUT terminal. An input pulse on the SET
terminal places the core, (and the OUTPUT
terminal) in the SET or 1 condition. A RESET
input clears the core to 0 and the output is zero.

RING COUNTER

Because cores can be used as flip-flops,
it follows that cores can also be formed into

storage and shift registers and counters. A
magnetic core ring counter is shown in fig-
ure 6-20.

If it is assumed that the shaded core (core
A) is in the 1 state, lamp 4 will be ‘‘on.”’
The first reset input will switch core A to
zero extinguishing lamp 4, and produce anoutput
which after delay in D1 is fed to core B. This
core, in turn, switches to 1 and lamp 1 goes
‘‘on.”” The next reset input pulse will switch
core B to zero and produce aninputto D2. After
delay in D2, an input is fed to core C causing
this core to switch to the 1 state. The action
continues to count 4 (the module of this particular
counter) whereupon the count process is
repeated.

RESET INPUT

124.73

Figure 6-20. —Magnetic core ring counter,

96

CHAPTER 7

INPUT/OUTPUT DEVICES

Input and output devices provide the computer
with a communications link to the outside world.
The input units supply data to the computer, and
output units print the final data or cause it to
be displayed at the output.

Conventional input devices read coded data
into computers from punched cards or punched
paper type (by holes punched in various posi-
tions of the cards or tape to represent data), or
from magnetic tape (by magnetized areas on
the tape). In some special military applications,
the computer input is received from special
purpose devices such as radar sets, gun plat-
forms, missile-guidance systems, or tactical
display consoles. Inscientific digital computers,
the input device may consist of a keyboard, while
the output device may consist of a plotting board
or an electric typewriter.

Data may be presented at the output in printed
form (English or numerals), in plotted form
(such as maps and graphs), on punched cards,
paper tapes, magnetic tapes or oscilloscopic
displays. Outputs in still other forms are avail-
able for special applications.

A computer must perform many repetitive
arithmetic operations. In early computers the
speed with which these operations could be
performed was limited by the speed of the rela-
tively slow electromechanical input-output units.

The problem then was to develop a method of
feeding data into and reading data out of the
computer at speeds compatible with the speed of
the computer’s internal operations. This is dif-
ficult to accomplish. Thus, two methods were
developed to ease the problem. The first method,
which is in wide usage today, is to program the
computer so that it performs other internal
operations on the available data while additional
data is being fed in. This, however, is actually
only a partial solution to the problem since input
devices must be used directly to read in the
initial programmed instructions. After feeding
in the initial instructions, further instructions

97

may be ‘‘boot-strapped’’ (discussedinchapter 2)
via a buffer unit, thereby releasing the other
sections of the computer for use in other opera-
tions. Only after all instructions have been
read into and stored in memory can this method
be effective.

A second method uses external devices (which
are designed to operate at slower speeds) to
perform many of the menial data processing
and handling operations. The processedandcon-
densed data from the external devices are then
transcribed to magnetic tape (one of the fastest
input/output media available) so that the maxi-
mum computer input speed can be attained.
When using this method, the computer can per-
form other jobs while the input data for one job
is being prepared externally. This method can
also be used for output data acquisition where
the output data is written on one tape unit and
then disconnected from the computer. The data
can then be transcribed more slowly into other
data forms (such as punched cards or punched
paper tape) without slowing up the computer.

Input/output devices (such as paper tape or
punched card machines) which are operated by
computer control are called ‘‘on-line’’ input/
output or peripheral equipments. Peripheral de-
vices which are not controlled by the computer
and which do not feed their data directly into
the computer are called ‘‘off-line’’ peripheral
equipments.

It is possible to have more than one tape
unit reading into or out of the computer at the
same time. When using this procedure, separate
input/output channels must be provided to and
from memory, along with separate control cir-
cuits. The number of input/output devices used
with a given computer is determined by the
needs and/or applications of that computer.

CARD-HANDLING EQUIPMENT

Thin punch cards (fig. 7-1) are used ex-
tensively for keeping records, storing data, and

DATA SYSTEMS TECHNICIAN 3 & 2

ZONES

)

4) DIGITS

~aoaaon
123456

80- COLUMN CARD

124.74

Figure 7-1.—Sample punched card.

computing. Small holes are punched into the
cards to represent (by their relative positions)
numbers, letters of the alphabet, and various
auxiliary symbols. You will recall that combina-
tions of letters and numbers are referred to as
alphanumeric characters. The card code is ex~
plained later. Card-handling machines are used
to process these 3 1/4 by 7 3/8-inch cards.

Punched cards are designed toaccommodate
80 and 90 alphanumeric characters respectively.
Card-handling machines which process these
cards can also be used to compute data as well
as to transfer data carried on cards to some
other medium. Some small-scale computers
have been made by combining appropriate card-
handling units.

Some conventional card-handling unitsinuse
are card punches, readers, sorters, card con-
verters (or translators), and verifiers.

METHODS OF WRITING AND READING
WITH CARDS

The actual operation of writing on a card is
accomplished by means of a number of solenoid-
driven punching bars or rods, as shown in fig-
ure 7-2. The number and locations of the punch-
ing bars or rods that are actuated for any single
punching operationare determined by the number
or letter that is being recorded.

The standard 80-column card uses various
combinations of punched holes in a maximum
of 12 rows and 80 columns for coding any num-
ber from 0 to 9, any letters from A to Z, or
any one of an assortment of special symbols.
Thus, a card puncher used for IBM cards
actuates one or more of 12 punch bars for each

Ll SPRING TO OTHER PUNCHING
TENSION BARS
\ / PUNCH
* > MOTION
PUNCHING
BARS
AV AV
d 11 q_ 1|
cARD , Ly
MOTION] o o o CURRENT
. - PULSES
124.75

Figure 7-2.—Card punching
mechanism.

Chapter 7—INPUT/OUTPUT DEVICES

character. The single-character column array
of punches is often called a punching station.
The outstanding features of the coding that is
used to indicate the various characters will be
described later.

One method of card reading consists of
passing a card between a contact plate and
spring-mounted electrical contacting fingers
or brushes. If a hole is punched in the card, the
brush makes contact with the plate underneath,
as shown in figure 7-3. As the cards move past
a column of contacts (often called a reading
station), the contacts close a selective toggle
switch each time a hole is encountered. Thus
the switch closes when a hole is present, and
opens when no hole is present. Card-equipment
devices use this open-close indicationtoactuate
other control and data-processing circuitry.
There are as many contacts as there are code
areas in a single column on the cardbeing read.

Another method of reading (fig. 7-4) uses
the card as an optical mask that is located be-
tween a source of light and a matrix of photo-
electric elements. This is the more rapid of
the two methods. When a hole is encountered,
light passes through the hole and energizes the
circuits to interpret this hole as a 1 condition.
The absence of a hole prevents light from
passing, and no output is produced. This causes
a 0 condition to be read from the card.

Notice that with both methods, the operation
of reading is accomplished by means of selec-
tive on-off indications.

Card Codes

A widely used card code for military applica-
tions is the Hollerith Code, illustrated in figure
7-5. A table of this code is shown in figure 7-6.

The first, second, and third longitudinal rows
from the top of the card are called the 12’s,
11’s, and 0 zones respectively. The remaining
rows, numbered 1 thru 9, are called the numeric
or digit rows. (The 0 rowis sometimes referred
to as a numeric row rather than a zone. It is
treated as a zone in the following discussion.)

It is seen that an ‘‘A’’ is represented by a
hole in the 12 zone and a hole in the 1 digit
place. An ‘‘N’’ is represented by a hole in the
11 zone and a hole in the 5 digit place. A «“Y”’

99

is represented by a hole in the ‘‘0’’ zone and
a hole in the 8 digit place. A study of the card
and the table in figure 7-6 will reveal the code
for all letters, numbers, and symbols used.

A computer which receives data directly from
cards has translating matrices that convert the
card-reader signals as required for use in the
computer.

SPRING STEEL
FINGER CONTACT

CARD
“MOTION
CONTACT ,
ONTAC CLOSED
NOTE: SIGNAL BETWEEN OPEN
ONE AND TWO
124.76

Figure 7-3.—Punched card reading.

Card Punching

Card punches are actuated by a manual key-
board, or in some instances by the computer.
The keyboard buttons, shown in figure 7-7, are
punched to open and close groups of switches
(not shown) which apply current pulses to

ARD

MOTION

SIGNAL
of

TIME

124.77
Figure 7-4.—Photoelectric card
reading.

DATA SYSTEMS TECHNICIAN 3 & 2

ABCDEFGHI] KLMNOPQRSTUVWXYZ 0123456789
DOooooooon

nnogooonn
nooooooo 0

12 ZONE
11 ZONE
0 ZONE
1 DIGIT
2 DIGIT
3 DIGIT
4 DIGIT
5 DIGIT
6 DIGIT
7 DIGIT -
8 DIGIT
9 DIGIT

-+ =,

a

noon
nnno

ooooonno

124.78

Figure 7-5. —-Hollerith Card Code (sample card).

solenoid-operated punches. Once the holes have
been punched in one column, the card punch
automatically advances the card so that the next
column is located under the punching station
punches.

One type of card punch machine is the IBM
Type 24 Card Punch, shown in figure "7-7. The
Type 24 punch consists of six main operating
sections. They are: (1) the keyboard, (2) the
program unit, (3) the card hopper, (4) the punch-
ing station, (5) the reading station, and (6) the
card stacker.

In operation, a ‘‘program card’’ (which has
been previously punched) is wrapped around a
drum which is a part of the program unit of the
card punch. A fixed reading station reads each
column of the program card as the drum is
rotated. Punched holes in certain zones and
digits in the program card cause certain columns
or number of columns to be skipped on the card
being punched. The program card also causes
automatic duplication of material that has al-
ready been punched in the same column of the
preceding card. Notice that using a program
card in this manner reduces the manual effort
that is required during repetitive card punching.

The machine is also used to coordinate the
timing of the various mechanical operations of
the card punch. These mechanical operations
include feeding the next card from the hopper
(the holder for unpunched cards) to the punching
station and advancing the card, column by
column, under the punches. Cam-driven switches
(not shown) are used to generate stepping pulses.

100

The stepping pulses actuate ring counters or
stepping switches which apply timing pulses to
the various electro-mechanical devices thatare
used to perform the mechanical operations.

The keyboard is a typewriter-like set of
manually operated keys. It is used to provide
the actuating signals to the punches. The card
hopper, which holds about 500 cards, feeds
blank (unpunched) cards to the card bed that
transports the cards past the punching station
and past the reading station.

The reading station brushes are used in
conjunction with the program drum brushes. If
the program card is punched to cause an auto-
matic duplication of data on eachcard, the manual
keyboard is disconnected from the card punch
solenoids until the duplicating process is
completed.

"Information stored in a given column of the
programming punched card, as indicated by the
reading station brushes, is used to control the
punching station solenoids to record the data on

. the card being punched.

The program-card drum motion is synchro-
nized both with the motion of the card at the
reading station and with the motion of the fol-
lowing card as it is fed to the punching station.
The three cards are advanced, column by
column, at the same time.

After the card passes the reading station, a
card stacker receives it and stacks it in a bin
for removal. The card that had been punched
previously then moves to the reading station,
and the hopper feeds the next unpunched card

Chapter 7—INPUT/OUTPUT DEVICES

Holes Holes Holes

Chamac- | pypcheds | Characs | pupcheds | Charae | pupcheds
“ Zone | Digit “ Zone | Digit “ Zone | Digit
A 12 1 v 0 5 = NP | 338
B 12 2 W 0 6 , 0 | 38
C 1273 X o | 7 $ 11 | 38
b 12 4 Y 0 8 . 12 | 38
. 2 Z Z 0 9 - 0 | 48
Z z ; 0 0 | NP* (0 | 48
u b g 1 NP 1 * 11 | 4,8
I 12 9 2 NP | 2) 12 | 48
J 11 1 3 NP 3 / 0 1
K 11 2 4 NP | 4
L 11 3 s NP | s
M 11 4 ¢ we | ¢
N 11 5
o I ’ 7 NP | 7
P 11 7 8 NP8
Q 11| s 9 NP9
R 1 ? Special
S 0 2 Characters
T 0 3 - 11 NP
U 0 4 " 12 | NP

* NP - No Punch

124.79

Figure 7-6.—Hollerith Card Code.

to the punching station. The punching process represent characters. A card reader is some-

is then repeated.

CARD READERS

times used as a computer input device, although
it is more frequently used to operate anelectric
typewriter or a printer in order to translate
card data back into written form. Card readers
are also used in conjunction with conversion

Card readers are used to translate theholes devices which convert and transfer card data
in a punched card back into the signals that onto some other medium. Methods of reading

101

DATA SYSTEMS TECHNICIAN 3 & 2

CARD
STACKER

READING
STATION CARD PUNCHING
BED STATION
124.80
Figure 7-7. —-IBM Type 24 card punch

machine.

data stored on cards into a computer are ex-
plained later.

CARD VERIFIERS

A card verifier (not shown) is an electro-
mechanical ‘‘proofreader’’ used as a peripheral
equipment. It electrically checks the alpha-
numeric characters that have been punched on
a card against the same data as typed by a
second operator. In effect, a verification con-
sists of a double manual-punch process which
is modified to include an automatic comparison
of the results. Any difference occurring during
the second typing indicates an error. If the two
runs agree, this fact does not provide a full
guarantee that there is no error, since it is
conceivable that both operators could have made
the same mistake. However, the probability of
this type of error is reasonably low.

CARD SORTERS

Card sorters (fig. 7-8) read portions of each
card that is passed through them, (and in some
cases compare certain data on the card with
data programmed into the sorter) and then route
the cards to separate bins or pocketsinaccord-
ance with the nature of the data contained on the
card. For example, if it is desired todetermine
the relative seniority of a group of servicemen,
punched cards containing extracts of each man’s
service record can be fed to a card sorter.
The sorter can be programmed to read those
columns on the card that indicate years of
service. The sorter transports the cards indi-
cating 30 years of service into the first bin, 25
years of service into the second bin, etc.

A representative card sorter can deliver
cards at a rate of 600 to 800 per minute. Some

faster models can sort up to 650 cards per

minute.

The card sorter in figure 7-8 uses both
mechanical and electromechanical principles to
perform card sorting. A column selector (not
shown) is used to select the column to be read.
To understand its operation, assume that it is
desired to sort all cards which contain a punch
(hole) in the 4’s row.

In figure 7-8A, a card (shown as a shaded
line in which the punch in the 4’s row is rep-
resented as an unshaded area) is advanced
beneath a reading brush by a driven roller. The
reading process begins atthe 9’s row (the bottom
row of the card) and ends at the 12’s row (the
top row). While the .card is still passing under
the reading brush, the leading edge (the bottom)
of that card is passing beneath the ends of
chute blades. Each of the numbered chute blades
terminate in an associated bin (not shown). The
ends of the chute blades are supported by a
moveable armature plate.

Figure 7-8B illustrates how the sorter
selects the right chute blade (and therefore the
proper bin) for the card. The tips of the chute
blades are spaced so that the read brush (also
called the ‘‘sort brush’’) drops through the 4-
punch in the card immediately after the leading
edge of the card passes under the tip of chute
blade number 5. The opening inthe card permits
the brush to make contact with a conductive
material beneath the card, thereby closing an
electric circuit.

The closing of this circuit causes two elec-
tromagnets to be energized. This action exerts
sufficient force against a spring tension (which
normally holds the armature plate as shown in
figure 7-8A) to cause the plate (fig. 7-8B) to
move downward. This permits all chute blades
beyond the forward end of the card todrop, thus
permitting the card to pass into the proper bin.

BUFFER STORAGE

Buffers serve as intermediate storage de-
vices to facilitate transfer of data between two
mediums whose operating speeds are difficult,
or impossible, to synchronize. It is frequently
necessary to read data from cards, paper tapes,
keyboards, etc., into the main (primary) com-
puter memory. The speed at which input de-
vices can supply data to storage cannot be
increased sufficiently to match the ability of

102

Chapter 7—INPUT/OUTPUT DEVICES

12] REJECT

ARMATURE
PLATE

ROLL ER

CHUTE BLADES

2 REJECT

ARMATURE

PLATE
'CARRIER

ROLL
| SHAFT

124.81X

Figure 7-8. —Card sorting machine—IBM Type 82.

the computer to read-in the data at electronic
speeds. The same incompatibility is encountered
when reading data from memory to output
devices. A buffer device is therefore designed
to read-in or write-out data at speeds which
are compatible with both the input/output de-
vices and the main computer memory.

Several types of buffers are in use. The
simplest type is an arrangement of flip-flop
registers into which data can be slowly ac-
cumulated but can be released or read-out at
electronic speeds. By design, data can be
read-into and out-of the registers in either
serial or parallel form. The buffer storage
must be capable of reading data slowly from
the input device, and, at a later time, writing
this data at electronic speeds into the main
memory. It must also be capable of reading-in
data at electronic speeds from the main memory
and writing this data slowly at the output device.

METHODS OF USING CARD READERS
WITH BUFFER STORAGE

To further understand the purpose of card
readers and also how they operate with buffer
storage, consider the following discussion. Some
card readers are designed for ‘‘on-line’’ oper-
ation with a computer. Further, the computer
may be capable of selecting any one of several
card readers as the input or output device.

The diagram and flow chart in figure 7-9
are used to illustrate one method of reading data
from a card reader into the computer memory.
Four readers are shown in figure 7-9A.

The request for read-in of data is generally
in the form of a programmed instruction. When
the instruction is issued, the control unit pro-
duces an input request signal on any one of the
four input request lines as determined by the
instruction. The same instruction (or in some

103

DATA SYSTEMS TECHNICIAN 3 & 2

cases a subsequent instruction) will select the
desired function, either read or write. (A card
reader is capable of performing bothfunctions.)

Some readers read the data directly into the
computer. This method is slow and does not
afford best use of computer time. A more
desirable arrangement and the one treated here,
uses a buffer storage. The card reader passes
its input over 80 transfer lines to the storage
medium. (Only one of these lines from each
reader is shown.) Cores are used as the storage
medium in this discussion because of their
simplicity.

The storage matrix contains 960 cores (only
top row shown infigure 7-9), each of which can be
in either the 0 or 1 state to represent any com-
bination of holes and no holes contained on the
card being read. The data are read-in (in
parallel form) longitudinally across the matrix
so that all 1’s in the 9’s row of the card are
entered first. All 1’s in the 8’s row are
entered next followed by those inrows 7, 6, 5, 4,
3, 2, 1, and 0, in that order. The 1’s in the 11’s
and 12’s row are entered (in that order) after
the 0’s row.

A row counter counts each row as it is
entered into the matrix. After entering the last
row (the 12’s row) the row counter produces an
output which indicates that the information is
ready for transfer to the computer. If the com-
puter is available to accept the data, a read
enable signal will be developed in the computer
and transmitted to the card reader to set the
read enable circuits. Subsequent instructions
will permit the data to be transferred (column
by column) into the computer as described later.

The C register provides temporary storage of
data en route to the computer. The column counter
initiates the ‘‘read next card’’ signal afterall 80
columns have been transferred to the computer at
high speed. Note that the data are read into the
core matrix at the speed of the input device and
into the computer at electronic speeds, limited
only by the ability of the computer memory to
accept and store the data. Thus, the core
matrix provides ‘‘buffer storage’’ between the
card reader and the main computer memory.

The flow chart (fig. 7-9B) shows how the
read-in process is executed. Upon receiving the
‘“‘input request’’ signal from the computer, the
order to ‘‘start card cycle’’ is issued (A). The
‘‘Read-Row’’ instruction causes the 9’s row to
be positioned at the reading station, and read.
After the holes and no-holes, or 1’s and 0’s in
the 9’s row are read, the ‘‘enable row drive

and store’’ instruction causes the drive lines
in the matrix (which correspond with holes in
the card) to be activated, and their selected
cores are switched to the 1 state. All other
cores remain in the zero state. (The memory
matrix is cleared before the read-in of each
card.)

The order ‘‘advance row count’’ places the
8’s row in the position for read-in. Because
the 8’s row is the next row to be read, the
answer to the question ‘‘is row=12+17?"’ is
“no’’ and a signal is produced to ‘‘read-row’’
(row 8 in this case). The process continues,
storing the data from the card row by row
into the matrix, until all of the card data is
transferred to the matrix. The 12’s row is the
last to be read-in. i

After reading row 12, the answer to the
question ‘‘is row=12+17?"’ will be ‘‘yes.’’ This
action causes a command to be issued which
sets the read enable circuits in preparation for
the read-out of the data from the memory
matrix. (Points and are connected.)
A command line from the computer (explained
under control unitinchapter 4) carries the signal
to cause the read-out of one vertical word
column of data (12 bits) each time this signal
appears on the line. The column counter is
advanced by 1 each time a 12-bit column is
transferred.

If a ‘“no’”’ answer is produced from the
“‘count=80+1 circuit,’’ and the computer is not
ready to accept the next word, a method is
provided for storing the word to be transferred
until the computer memory is able to accept
the word for storage.

After the transfer of all 80 columns, a
subsequent order to ‘‘advance column count’’
will produce a ‘‘yes’’ output from the inter-
rogation ‘‘count=80+1?’’ This permits an ex-
amination of conditions to determine if the
‘‘Read input is still active from the computer.”’
Stated differently, ‘‘is the computer still de-
manding the read-in of data?’’ A ‘‘yes’’ answer
causes the memory matrix to be clearedand the
entire operation to be repeated during the
read-in of the next card (points (A) and (A) are
connected). A ‘‘no’’ answer initiates ‘‘end read,’’
and all card reader operationsare discontinued.

To further understand buffer storage as it
applies in the interest of expeditious use of
computer time, consider the overall operation
and use of the computer with and without the
aid of buffer storage and a buffer controlled
sequence.

104

Go1

READ

SELECT INPUT

/ WRITE

FROM COMPUTER

—_—

SELECTOR

r

Y

CARD READER CARD READER CARD READER CARD READER
I ” # | #2 #3 #4
INPUT
REQUEST . 80 LINES FROM
! EACH READER ROW
COUNTER
}) { MAGNETIC
CORES !
o Lod g S04 4 ¥ 12 TO COMPUTER
~— C 0 7 lO' (INFORMATION READY
— | r 7 { S SIGNAL AFTER ALL 12
| € / 2 ROWS ARE ENTERED
T0 — | 6 / 3 IN THE MATRIX)
COMPUTERS, - | 1 0 b
-~ S ! 5
T 0 [6
- E / 7
| R / g
7 Jo
READ ~ BUFFER STORAGE
A COLUMN READ
OPERATION COUNTER ENABLE | SET READ ENABLE CIRCUIT
} rransFER
INPUT START ENABLE ROW ADVANCE
REQUEST —] CARD CYCLE » READROW DRIVE AND STORE ~ ROW COUNT
NO
YES/ COMPUTER READY
FOR NEXT WORD 7
T R ADVANCE NO
RANSFE VAN
SET READ .)IE{READ INPUT STILL _\NO
(—» » WORD — COLUMN - COUNT:=80+12? , }—> END READ
ENABLE HORD TeR oL ACTIVE FROM COMPUTER
YES
B FLOW CHART of READ OPERATION (R)ye—] CLEAR MEMORY |«
124.82

Figure 7-9.—Card reading operation using buffer storage.

SHDIAEA LAdLAO/LAANI—L 193dey)

DATA SYSTEMS TECHNICIAN 3 & 2

In the flow chart of figure 7-10, the
instruction issued to cause read-in designates
an address at which the read-in must begin
(first word address, fwa) and the address of the
last word (1wa). For a read-ininstruction, these

“addresses refer to the location at which the first
word and last word are to be stored in the main
computer memory. For a read-out instruction,
fwa and 1lwa would encompass the total data
to be read-out. The data are read into or out
of memory in sequential order from the ‘‘fwa’’
to the ““1wa.”’

A subsequent instruction causes the computer
to select the ‘‘“input device,’’ which in this case
is presumed to be a card reader. Next, the status
of the selected device is determined. If this
device is not availablg or other conditions are
not satisfactory (suchas ‘‘power switch noton’’),
a ‘‘no’’ output will result from the ‘‘ready’’
interrogation. In some cases, a light, alarm, or
other means of alerting the operation tocorrect
the situation is initiated. If the ‘‘ready’’ in-
terrogation produces a ‘‘yes’’ answer ((1) and
(1) are tied together), the command is issued
to select ‘“read.’’ This action selects the ‘‘read
function,’”” meaning that data is to be read into
the computer rather than written-out.

After all such preparations (as described)
are completed, the ‘‘initiate input operation’’ is
issued, and the card reading process begins. If
buffer storage is not used (the method described
here as NORMAL) the computer will issue the
order ‘‘input one word.’’ This is followed by a
store instruction which places the word in the
fwa in storage. The computer now causesa coun-
ter to increment fwa or count 1, and to examine
the new address number to determine if the new
word address is the same as the last word
address plus 1. If the answer is ‘‘no’’ the next
word is requested. This process repeats itself
until the output from the interrogation
““fwa =1wa+1?’ is ‘‘yes.’’

Because the numbers (2) and (2) represent
the same point, a ‘‘yes’’ answer from the in-
terrogation ‘‘fwa=1wa+1’’ causes the command
to be issued to permit the computer to resume
operations under the influence of the stored
program. Note that the computer isnotavailable
to perform any operations except read-induring
the time that the read-in is in progress.

Now consider the action using the buffer
method. All conditions and operations are the
same as described earlier up to and including
the ‘‘initiate input’’ operation. The fwa and 1wa

SELECT INPUT
(CARD) DEVICE

SET
fwa

SET
fwa

NO
GET STATUS READY ? YES ()

NORMAL

REQUEST

NEXT WORD

INITIATE
INPUT
OPERATION

SELECT
"READ"

INPUT
ONE WORD

INCREMENT
fwa

fwa =lwa +1

BUFFER

BUFFER CONTROL

@._.

INPUT

ONE WORD

RESUME
COMPUTE

MEMORY BUSY?

TO COMPUTER

STORE IN
WORD ADDRESS

|

INCREMENT
WORD ADDRESS

NO

BUFFER
COMPLETE

124.83

Figure 7-10.—Flow chart of normal and buffer read-in of card data.

106

Chapter 7—INPUT/OUTPUT DE VICES

are stored in a register in the buffer control
section so that the buffer operation will stop
when the action is completed.

As soon as the ‘‘initiate input operation’’
command is issued a buffer control unit begins
to operate and the main computer is releasedto
perform other operations (arithmetic, control,
etc.). Buffer control operates independently of
the main computer.

After buffer control has caused the read-in
of the first word, an interrogation is performed
to determine if memory is busy. (It is possible
that memory, and all associated drive line and
registers, are busy in the performance of some
other operation.) If the answer to this interroga-
tion is ‘‘yes’’ no attempt is made by buffer
control to enter the data into the maincomputer
storage until memory is available to accept and
store the data.

After storing the data, a counter increments
the word address (wa), and the new address is
compared with the previously stored code which
represents 1wa +1 to determine if the last word
has already been stored. If the answer is ‘‘no,’”’
the process repeats until a ‘‘yes’’ output is
produced. This ‘‘yes’’ output indicates that the
buffer operation is completed. Note in this case
that the computer is not directly involved in the
buffer operation.

The terms ‘‘buffer’’ and ‘‘buffer storage’’ are
used to describe almost any operation which
takes place in a computer with the aid of any
form of intermediate storage. However, the term
“‘buffer storage’’ is most frequently used to
denote the type of operation just explained. The
word ‘‘buffer’’ generally refers to a device or
arrangement of devices or registers whichper-
form temporary storage of data as they are
being transferred in the computation process.

CARD CONVERTERS

Card converters (not shown) make it possible
to change the coded data written on cards into
coded data of another form. Conversely, they
can receive data in one coded form, decode it,
and punch the data onto cards in card code.
Converters are used in conjunction with magnetic
tapes, paper tapes, other card-handling
machines, and radio and teletype transmission
systems.

Conversion Method

One method of converting card data to another
form is as follows. If an ‘‘A’’ is detected by the

card reader, a pulse is produced on the number-
12-position reading brush and simultaneously on
the number-1-position brush (see figure 7-5for
card code). H ‘“A’’ is to be represented by a
binary ‘“0001’’ in the new code to be used, the
two pulses representing ‘‘A’’ incardcode canbe
applied to a translating matrix. The matrix
sets the proper values into four flip-flops. If
the flip-flops are arranged so that the lowest
order circuit is on the right followedby ascend-
ing orders to the left, the first flip-flop can be
set, and the other three remain in their zero
state. Thus an ““A’’ (1, 12)incardcode produces
an ‘“‘A’” (0001) in the new code. Basically, this
type of conversion, or translation, occurs for
every type of converter.

Magnetic Tape Units

Although magnetic tapes are very popularas
storage devices for large quantities of data, they
are not considered practical for use asthe main
storage element of a computer due to their long
access time. Magnetic tapes provide excellent
secondary storage when the computer is pro-
grammed to read-in or read-out certain data to
the tape in the interest of conserving main
computer memory.

Other advantages of magnetic tape units are
(1) their ability to retain data over a long
period of time, (2) large storage capacity,
(3) low cost, and (4) ease of exchanging one
reel for another,

The principles involved in reading and writing
on magnetic tapes are similar tothose used with
commercial tape recorders. A detailed explana-
tion is treated in the chapter on Memory and
Storage Units in this text.

"A card-to-magnetic-tape converter translat-
ing matrix produces ‘1110001’ when an ‘‘A”’
card signal is applied (see seven-bit magnetic
tape code in chapter 6, figure 6-15). The
magnetic tape character, 1110001, is then con-
verted by a sequence of recording heads into
seven appropriately magnetized areas on the
tape. In addition to the translation circuitry,
tape and card units respectively require control
circuits to start and to control other internal
operations.

A card-to-magnetic-tape converter is gen-
erally used when it is desired to store large
quantities of data. For example, a single 2500-
foot reel of magnetic tape can store the data
recorded on 20,000 punched cards. In newer
tape units this figure is even higher.

107

DATA SYSTEMS TECHNICIAN 3 & 2

Tape units also provide faster read-intimes
than can be obtained with cards. The average
‘““fast’’ card reader can only read up to a rate
of about 1330 alphanumerical characters per
second (1000 cards per minute, 80 characters
to the card). Some card readers are slower
than this. A representative magnetic tape drive
can read continuously at a rate of over 100,000
alphanumerical characters per second.

Many data-processing systems use punched
paper tape (discussedlater)as their data storage
medium. It is often desirable to be able to
convert data from punched paper tape to cards,
and vice versa. Again, a translating matrix
is used. This time it drives either a paper
punch from a card reader or a card punch
from a paper-tape reader.

PAPER-TAPE UNITS

Punched paper tapes (fig. 7-11) are often
~used with military and commercial data-proc-
essing systems. The advantage of this form
of data recording isthat mostbusiness machines
can easily be modified or designed to punch
paper-tape records of their operations. These
paper tapes are punched in a modified teletype
code that can be transmitted over wire or radio
teletype lines.

Many large installations use paper-tape units
as preliminary data-processing devices at the
point of transaction. All pertinent data are sent
by teletype to a central data-processing in-
stallation. The paper tape data can be converted
and read onto magnetic tape (or some other
suitable medium), thenfed intoa large computer.

Paper tapes are available in several widths
(7/87, 177, 1-1/8”’, etc) and in 100-foot, 350-
foot, and 700-foot rolls. A sprocket channel (a

LETTERSA B C DE F G HI J KL M
CHANNEL1 | D 0 0 00 o o0
CHANNEL2 | o 0o o) o) 0000
SPROCKET o e R
CHANNEL-) ° °© o © © o o o o o
CHANNEL 3 [© o) o) 0 0 o
CHANNEL4 | O 0 0O o0 O o o
CHANNELS | © O oo 00

124.84
Figure 7-11.--Five-channel paper
tape code.

line of small circular holes that are punched on
the tape at the time data is recorded), appears
longitudinally along the length of the tape, as
shown in figure 7-11. These holes are engaged
by sprockets that drive the tape past punching
and reading stations. Reels are used to store
the tape.

PAPER TAPE WRITING AND READING

The writing and reading techniques used with
paper tapes are almost identical to those used
with punched cards. The holes that are punched
in the paper tape however, are round rather than
rectangular in shape.

The speeds used with paper-tape equipment
are, in general, lower than those used with
punched cards. A high-speed paper-tape punch
used with some commercial computers can
punch at a rate of 120 characters per second.
Most mechanical punches punch from 10 to 60
characters per second.

A type of reader whichuses the photoelectric
principle (rather than mechanical) provides the
fastest means of reading punched tapes. With this
method, a light-sensitive material is placed
beneath each of the longitudinal channels and the
sprocket channel (fig. 7-11). A light placed above
the tape and over the light-sensitive material
(not shown) causes an output signal to be pro-
duced from each channel in which a‘hole has been
punched. The signals are amplified and fed to
the computer as input information.

The sprocket hole outputs (which occur at
each reading point on the tape) signal the read
interval. Therefore, each channel output is
sensed when a sprocket hole passes the station.
The tape moves continuously until it is ordered

.to stop by a STOP instruction.

Photoelectric type readers canfeedup to 1000
characters per second into the computer. This
‘speed is comparable with that of the fastest
card reader available.

PAPER TAPE CODES

The paper-tape codes that are used with
data-processing systems are the five-, six-,
seven-, and eight-channel codes. One widely
used code (and the only one shown here) is the
five-channel, modified, teletype code (fig. 7-11).

"The section of tape shown illustrates how
letters are represented on the tape. Figuresare
similarly represented, although the keyboard
symbol for ‘‘figures’’ must be punched before

108

Chapter 7—INPUT/OUTPUT DEVICES

figures can be

5. CHANNEL DATA PROCESSING CODE *

recorded. The symbol for
‘‘letters’”” must be depressed at the keyboard
before letters can be recorded. Thus, the
“‘letters’’ character represented on the left of

by this code.

Table 7-1.—Five-Channel Data Processing Code and Tape.

(MODIFIED TELETYPE CODE)

the section of tape shown indicates that all
subsequent characters represent letters. Table
7-1 shows all letters and figures represented

Punched Punched
Character Channels Character Punched Channels Character Channels
A 1,2 U 1,2,3 CARRIAGE 4
RETURN
B 1,4,5 \'A 2,3,4,5
C 2,3,4 W 1,2,5 ADVANCE 2
PAPER
D 1,4 X 1,3,4,5
E 1 Y 1,3,5
F 1,3,4 Z | eee--
G 2,4,5 1 1,2,3,5
H 3,5 2 1,2,5
I 2,3 3 1
J 1,2,4 4 2,4
K 1,2,3,4 5 5
L 2,5 6 1,3,5
M 3,4,5 7 1,2,3
N 3,4 8 2,3
(0] 4,5 9 4,5
P 2,3,5 0 2,3,5
Q -——— FIGURES 1,2,4,5
R 2,4 LETTERS 1,2,3,4,5
S 1,3 SPACE 3
T 5
*NOTE Letters are preceded by the symbol for ‘‘Letters,’’ and numbers are preceded
by the symbol for ‘‘Figures.”’

109

DATA SYSTEMS TECHNICIAN 3 & 2

HIGH-SPEED PRINTING

In many military computer applications, such
as fire control systems, the computer output
is used to train weapons or other similar
devices (discussed in the NTDS equipment in
later chapters). In many other applications, the
end result is printed data. Punched cards,
punched paper tape, and magnetic .tape are
satisfactory for providing data in forms in-
telligible to computers, but numbers and words
are most easily interpreted by human beings.
Therefore, printing units are required totrans-
late internal computer data into words and
numbers that a human operator can understand.

A computer-operated electric typewriter can
print at speeds of approximately 10 letters or
numbers (referred to as printed characters or
digits) per second. Even though this results
in printing 600 characters per minute, as com-
pared with the 300 characters per minute that
are produced by the average human typist, the
electric typewriter is not fast enough for all
operations.

PRINTING PRINCIPLES

The operating principles of a mechanical
typewriter (figure 7-12A) are easily understood.
Downward force on a key actuates a mechanical
linkage. This moves an arm that holds a single
character. The type strikes an inked ribbon and
presses it in contact with a sheet of paper that
is held against a roller. The pressure that is
placed on the ribbon by the piece of type causes
the raised outline of the type to be printed on
the paper.

The electric typewriter (fig. 7-12B) uses a
rotating roller to drive the type arm linkage.
Pressing a typewriter key causes a particular
linkage to be pressed against the rotating
roller. With this arrangement a character can
be printed in a shorter time than is possible
with mechanical typewriters.

The bar printer (fig. 7-13) is a variation of
the typewriter. The type characters protrude
from the edge of abar. A characteris printed by
a hammer which strikes the paper and presses it
against an inked ribbon and the type bar.

The type characters are mounted so thatone
appears above the other. A particularcharacter
is selected for printing by raising and lowering
the type bar so that the desired character is
lined up with the hammer.

Groups, or ‘‘gangs,’’ of type barsare usedto
make up a multibar printer. The number of type

110

PAPER

TYPE
(= RUBBER
ROLLER

/

'INKED
RIBBON

KEY

MECHANICAL

9 LINKAGE

MANUAL TYPEWRITER

MOTOR
DRIVEN
ROLLER

@ DIRECTION OF

@ ARM
LINKAGE
ROTATION

ELECTRIC TYPEWRITER

124.85
Figure 7-12. —Comparison of manual and
electric typewriter principles.

TYPE
1G8
TYPE [
BAR i
]
:
2| B>
@ 0 || —— rawmer
ROLLED
PAPER

124.86
Figure 7-13.—Bar printer.

Chapter 7—INPUT/OUTPUT DEVICES

bars that are used depends upon the number of
characters that must be printed simultaneously.
The bars are geared so that they are similar to
toothed racks. The digitally operated pinions
(not shown) that move the racks are driven by
two stepping-switch mechanisms (one for each
direction of motion).

Let us assume, for example, that the letter S
is printed by stepping the type bar ten times.
An S in computer code must be converted into
ten stepping pulses which advance the type bar
ten times. The printing hammer isthenactuated
and the letter is printed. After printing, the type
bar is returned to a suitable rest position, or it
is permitted to remain at the Spositionuntil the
next stepping pulses are applied. These new
stepping pulses are automatically corrected to
allow for the fact that the bar is presently at
the S position.

Another type of printer has the character type
on the edge of a wheel (fig. 7-14). As many wheels
as desired are arranged in parallel. The type
wheels are continuously rotated. The striking of
the hammers against the paper and ribbon is
synchronized with the wheel rotation so that
certain characters are selected for printing.
This arrangement decreases the time required
to position characters under the hammers,
and provides higher printing speeds than the
gang printer.

PHOTOGRAPHIC PRINTING
Photographic printing is accomplished by

photographing the display produced by any one of
several types of electronic character-writing

s-- PRINT WHEE'—A//ROLLED PAPER

\\ ~

il —=
’c\ HAMMER
\
\‘
“-INKED RIBBON

124.87
Figure 7-14.--The type wheel printer.

111

tubes. The basic principle is illustrated in
figure 7-15A. The negatives produced using this
process can be used to make photographic prints
or for offset printing.

The electronic character-writing tube and its
associated circuitry (not shown) receive binary
signals that represent alphanumeric characters.
Translating circuits operate a cathode-ray (dis-
play) tube that is designed to display the
alphanumeric characters in English letters and
Arabic numbers.

The simplest display tubes use a form of grid
or matrix (fig. 7-15B) which, in effect, is an
electronic stencil. The electronbeamisaimedat
a specific character in the metallic grid plate.

LIGHT-PROOF COVERING -~~~

o
FILM
FILM
REEL
DRIVE
LENS N\ pispLaY
©) LieHT sourcE-* TUBE

A BASIC PRINCIPLE

B MATRIX (GRID)

124.88
Figure 7-15. —Photographic printing.

DATA SYSTEMS TECHNICIAN 3 & 2

\

The holes in the grid are in the shape of the
characters to be printed. When the beam is
deflected to the desired character the electron
beam that passes through the hole has the
shape of the character. A second deflection
positions the character-shaped beam to its
proper position on a flourescent screen. This
process is continually repeated, so that the
screen displays a series of characters which
are photographed.

Other photographic systems use waveshaping
circuits which generate voltages toapproximate
the component lines of each character, so thata
simple cathode-ray tube can be used to display
characters.

Both of the cathode-ray tube arrangements
that have been discussed require elaborate
beam-gating and deflection systems. However,
they possess the advantages of being extremely
fast and of requiring no mechanical moving parts.

The camera is usually contained in a light-
proof box that surrounds the face of the tube. An
optical system is used for recording the tube
display on film. The film is reel-fed, and is
stepped to the next frame each time that the
tube message changes. A shutter is not required,
since the cathode-ray tube blanking pulses per-
form the same function. The film-drive mechan-
ism is the only mechanical device in this entire
system.

The wire punch printer uses a different ap-
proach for forming characters. A matrix of
stiff wires is used either to print letters or to
punch holes (fig. 7-16). By using the proper
combination of wires, it is possible to punchany
character or letter. The wires of each matrix
are bundled together and are runtoacylindrical
code tube that has holes machined into its surface.
The wires are fanned out along the longitudinal
axis of the tube, with each wire resting against
the surface of the cylinder. When a particular
character is to be printed, the tube is rotated
and moved along its axis so that the correct

MATRIX
Q O slock
0
0
0 CODE_ TUBE
0 MOTIONS
0
MOVING o
PLATE o O
0
STIFF
CODE
PAPER INKED WIRE
RIBBON TUBE
SIDE VIEW

PRINTED LETTER
FRONT VIEW OF
MATRIX BLOCK

124.89
Figure 7-16. —Wire punch printer.

combination of individual wires is backed by
metal, and the other wires are located over
holes. At the printing end of the wire bundle,
a moving plate pushes paper into contact with
the matrix of wire ends. Those wires that are
backed by metal will exert sufficient force on
the paper to print the character. The remaining,
unbacked wires will not exert this force.

If the plate is smooth, and an inked ribbon
or carbon paper is placed between the wires
and the paper, the backed wires will press
against the ribbon and will print the appropriate
character as a group of black dots. The wires
are spring loaded (not shown on the diagram)
so that they will return to their original positions
when the plate pressure is removed.

112

CHAPTER 8

PROGRAMMING

Programming, as related to computers, in-
volves (1) the analysis of a problem, (2) the de-
velopment of a flow chart or a plan to solve the
problem, and (3) the formulation of each instruc -
tion necessary to arrive at the solution to the
problem. The organization of instruction obtain-
ed from this procedure is sometimes called a
‘“list of instructions,’’ or a ‘‘routine.’’

To further clarify the three distinct phases
of programming, consider the procedure one
would use to find the total resistance in a
circuit (not shown) which contains a resistor
Rs, connected in series with two parallel
connected resistors Ryl and R p2- We first
analyze the problem by constructmg the general
formula which must be used. This analysis
reveals that the equivalent resistance of R 1
and Rpp must be found by using one of
formulas which pertain to parallel res1stances,
i.e., the reciprocal formula, the ‘‘product-over-
the-sum’’ formula or the ‘‘like method.”’ It is
known that this equivalent resistance value is
series connected to Rg, and must therefore
be added to Rg to obtain the correct total
resistance value. This completes the analysis
phase of the problem.

The second phase involves formulating the
procedure to be used to accomplish the steps
necessary. Using the ‘‘product-over-the-sum’’
method to find the equivalent parallel resistance,
the general instructions would be:

Step 1. Multiply Rp1 X Rpg

Step 2. Add Rp1 and Rp2

Step 3. D1v1de the results of Step 1 by the
results of Step 2.

Step 4. Add result of Step 3 to Rg.

The final phase of programming the develop-
ment of a list of instructions is illustrated at
a later point in this chapter. For the present
it is sufficient to say that each detailed step
which must be accomplished by the computer
must be listed, and must be capable of being
executed by the particular computer.

The study of programming procedures, as
presented in this chapter, will be of little
value unless the reader has previously studied
and understood the material presented in all
previous chapters of this text. For example, the
block diagram discussion presented in chapter
2 points out the main sections of the computer
and how each section is involved in the opera-
tions necessary to arrive at a solution to a
problem. It also points out some of the general
capabilities of computers which, along with the
specific capabilities of a given computer, must
be known by the programmer so that any
program derived will contain instructions capa-
ble of being executed by the computer.

Chapter 3 treats number systems and Boolean
algebra. The basic arithmetic operations, such
as addition, subtraction, multiplicationand divi-
sion, and the basic circuits used for logic
mechanization of Boolean expressions, are vital
information which must be known before the
programming of arithmetic operations can be-
come meaningful.

The basic registers and control circuits
of the control unit and how the control unit
operates to read, interpret, and control the
execution of each instruction word is explained
in chapter 4.

In the preparation of a program, the com-
position of the computer word must be known.
The sign-bit, operation code (or functional
code), operand address, and various designator
portions (discussed later) of the word, must
be known before detailed instructions can be
written. The methods used toperform arithmetic
operations and for providing main storage must
also be known by the programmer. These topics
are treated in chapters 5 and 6, respectively.

TERMINOLOGY

It is well at this time to consider the mean-
ing of some of the terms used principally with

113

DATA SYSTEMS TECHNICIAN 3 & 2

regard to programming and not heretofore
covered. Those terms which are not presented
here are either defined at a later time in
this chapter when they can be better understood,
or have been treated in an earlier discussion.

SUBROUTINES

A subroutine is a portion of a routine that
is complete in itself and can be isolated from
the content of the larger routine. Stated another
way, a subroutine is a self-contained list of
instructions for executing some particular oper-
ation. If the subroutine contains the calculations
necessary to compute a function such as sin X
and tan X, it should be coded in such a way
that it may be used in a number of routines
(or in as many places as necessary in a given
routine) wherever such a function is needed.

WORD MODIFIERS

Each instruction which is used in the com-
putation process is first read from memory
into the instruction register (as described in
chapter 4 of this training course). The instruc-
tion is subdivided into the operation register
and the address register.

It is frequently necessary to alter or modify
the address portion of the word in the control
unit just prior to its use to obtain data from the
main memory. In such cases, one or more
address modifier sections are added to the in-
struction word to cause an automatic change in
the address to be referenced in memory.

Indexing

An index register is a counter which is
generally used (1) to change the numerical
value of the address portion of a computer
word to obtain an effective address, or (2)
to monitor subroutines (such as sin X, and
tan X).

The first action (changing the numerical
value of the address portion of a word to
obtain an effective address) is accomplished
by modifying the word address (the word in
the address register) by the absolute value
of a number stored in the index register.
The index process does not alter the computer
word or the number contained in the index
register, thus making possible the use of
the word as many times as necessary in its
indexed or non-indexed form.

The need for indexing is explained using
the following hypothetical example. Suppose
it is necessary to read-in data to storage from
a magnetic tape reader five times in the exe-
cution of a program and that ten instructions
are required to cause the entire read-in to be
executed. Without the use of indexing it is
necessary to write a total of fifty instructions.
If, however, the ten instructions for read-in
of the tape are stored in memory (as instruc-
tions) and the index register is setfive different
times so that it contains the proper numbers to
produce the desired addresses in memory
into which the data must be read, only ten
additional instructions will be necessary (five
to initiate read-in at the proper time and one
each time it is necessary to set the index
register with the desired index number).

The index register is generally referred
to as the ‘“‘B-register group.’’ The number of
registers in the group vary depending on the
computer. Each register is independent of the
other and is separately used. The contents of
any register in the group can be added to the
contents of the address register.

When a B register group is used, it is
necessary to add a section to the computer
word for the purpose of selecting and setting
the desired B register. This section is called
the ‘‘b-designator’’ and may be 01 to designate
the Bl register of the B register group, 02 to
designate the B2 register, etc. A single address
word may be modified asillustratedin table 8-1.

TABLE 8-1.—Sample Instruction Word Using
B-Designator.

101 01 1011010
Operation Index Register | Operand
Code designator Address
(b-desig-
nator)

If the Bl index register (designated by
01 in the instruction word in table 8-1) has
been previously set so that it contains 0000101,
the instruction in table 8-1 (when read from
tha main program) will produce an effective
operand address of

+1011010 Operand address in instruction word
+0000101 Contents of B1 index register
1011111 Effective address (represents ad-

dress to which reference is made
in memory).

114

Chapter 8 —PROGRAMMING

The second use of indexing is illustrated
using the following examples. Assume that it
is desired to repeat a given operation x num-
ber of times. If the number (x) is loaded into
the index register, the register will count
backwards (toward =zero) each time the in-
struction is executed until x counts have been
performed.

If it is desired to alter the address portion
of the instruction word by an amount n-1 for
X number of instructions and before each of
the instructions is executed, the action can be
accomplished by setting the index register with
the number by which the first instruction is to
be modified and altering the index register
contents as desired after each instruction to
produce the desired effective address before
the execution of the next instruction. After re-
peating this action x number of times, a pro-
grammed instruction causes an exit from this
procedure,

A similar action, called a ‘‘loop function’’
is accomplished by repeating a given set of
instructions (say a shift instruction) x number
of times before exiting from the loop action.
The exit may be caused by comparing the
number of times the instruction is repeated
with a number previously set in the index
register (called the ‘‘criterion’’), or by a
programmed instruction.

Word Arithmetic

Word arithmetic, as defined here, refers
to the process of removing a word from storage,
altering the word by some arithmetic process
in the arithmetic unit and returning the word
to the same address in memory. The process
may be repeated any number of times on the
same word. Thus, modification of a word using
arithmetic differs from modification by indexing
since, in the latter process, the word is not
changed in memory.

Designators

It has been shown that a computer word
contains several sections. For convenience,
these various sections are assigned a given
letter, called a ‘‘designator.’’ One instruction
format in table 8-2 illustrates the use of
word designators in a 24-bit word.

Table 8-2.—Instruction Format

Designator
f i k b y
101101 101 100 001 111001101
Desig- Specification Interpretation
nator

f = Operation Code Type of operation
designator to be performed.

j = Branch condi- (1) jump or skip
tion designator operation. (2)

index (B) regis-
ter specification.
(8) repeat.

k = Operand inter- Read, store or
pretation replace
designator instruction.

b = Address modi- Register to be
fication desig- used for address
nator (index modification.
designator)

y = Operand Operand or ad-
designator dress of operand.

Sequences

Sequences or cycles describe the procedure
or steps by which a computer executes each
instruction. A representative computer (and
the one used as a representative computer
later in this chapter) will perform its opera-
tions using four sequences A, B, C, and D.
Each sequence is initiated, controlled, and
terminated by the control unit.

1. The A sequence is generally the read-
next instruction sequence. This sequence ob-
tains the forthcoming instruction word (from
memory or some other designated source) and
controls preliminary operand modification if
necessary. The repeat A subsequence which
controls preliminary operand modification for

‘the repeat instruction is also used. Aninterrupt

A subsequence provides entrance into an inter-
rupt subroutine in the event of an internal or
external interrupt (discussed inalaterchapter).

2. The B sequence performs operand modifi-
cation and obtains the appropriate operand
from storage.

3. The C sequence controls primarily the
arithmetic operations as prescribed by the
current instruction word.

115

DATA SYSTEMS TECHNICIAN 3 & 2

4, The D sequence controls the storage
of the appropriate operand in the location
specified by the instruction word.

5. The read as modified by k subsequence
controls the operation of obtaining the operand
as specified by the instruction and the k
designator.

6. The store as modified by k subsequence
controls the storage of the operand as specified
by the instruction and the k designator.

7. In general, it can be stated that the con-
trol section directs computer operations neces-
sary toexecute any given instruction or series
of instructions.

REAL-TIME CLOCK

The real-time clock (RTC) is the means
by which the actual elapsed time is measured
in seconds or fractions thereof. The RTC is
thus used for timing in/out operations, keeping
record of the time required for any arithmetic
operation, or the time required to complete a
given program.

PROGRAMMING FUNDAMENTALS

In order to gain a full understanding of
programming fundamentals, it is necessary to
use an actual computer for which simple pro-
grams can be derived. To this end, the Digital
Data Computer CP-642A/USQ-20(V) (presently
being used as a component part of the Naval
Tactical Data System) is used as a vehicle in
this presentation. The actual discussion of pro-
gramming procedures for this computer ispre-
ceded by a brief general description of the
computer.

The computer functions are divided among
four sections: control, arithmetic, input/output,
and storage. These sections (fig. 8-1) are
integrated in such a way that their functions
are dependent on operations of the others. The
division into sections is for the purpose of
explanation and description of parts having
allied functions only and not to describe any
physical separation.

CONTROL SECTION

The control section contains registers, modi-
fier, and designator interpretation circuity and
timing sequence circuits. The timing sequences

are used to control computer functions and to
execute instructions in accordance with the
stored program. Basically, the control section
consists of two parts—the operational registers
(and modifiers) and the sequence control circuits.

Operational Registers

The operational registers are used for
storage of the instruction word (with its modi-
fiers, designators, and operand) throughout the
execution cycle. The computer uses a fixed
word length of 30 bits. The modifier circuits
provide the control section with the capability
of modifying data under certain conditions.

(Some registers contain only 15 bit positions
since it is never necessary -to store longer
words in these registers. They store either
the upper 15-bits of a register, say ay, or the
lower 15-bits, @1,.)

1. The U register is the principal control
section register. It holds the instruction word
during the execution of the instruction; and in
certain cases, the lower 15 bits are used as
the operand. The instruction word designators
(f, j, k, b, and y) stored in the U register are
applied to translator circuits that control cer-
tain computer functions.

2. There are seven B registers (15 bits)
used as indexing-incrementing registers. They
are used to modify Uy, (the lower 15 bits of
U register) but may serve other functions. An
example of this is By which is used as storage
for the repeat count for a repeat instruction.
Each B register can provide a B=0 test to
determine if a given action has been counted
down to zero. The use of the B registers is
\determined by the instruction word. The par-
ticular B register used is determined by the b
or j designators. '

3. The R register (15 bits) is used as a
communications register between the control
and arithmetic sections and for communications
within the control section.

4. The R* register '(15 bits) is used pri-
marily as an indexing register.

5. The P register (15 bits) is the program
address register. It holds the address of the -
instruction being executed.

6. The K register functions as a shift
counter for all arithmetic operations that involve
shifts.

7. The Ug, + R* adder provides the means
for modifying Uy, as specified by the instruction
word.

116

LTT

- — - — = -

INPUT-QUTPUT E\'P&r'OUTPUT ' * STORAGE SEE”BN —' l - - c NT-R_ -) LT -
CONTROL xl SECTION o - ONTROL SECTION
AND TIMING ! I
SIGNALS '
% GATED PRORTTY & { S-TRANSLATOR) .
— > <G |
AMPLIFIER CONTROL | 1 ADDRESS | | R
| MAIN 1 U-ADDER u
INPUT FROM I ——n_ TRANSLATOR I L L
EXTERNAL ! Y m .
ATE
EQUIPMENT |- AN?PUFER o 32,768 l’ | —l
AND OTHER 30 BIT AUXILIARY) 3 A
COMPUTERS 1 WORDS MEMORY L !
| L |16 30 BIT T R¥* SET +I
GATED TR WORDS SET I
AMPLIFIER
1) Z-REGISTER L)
COUNTER —
' ! +0,+1 +0, +1 v I_B CONTROL‘
(1< R c (. ’ o (. RETURN| | ===~~~]
<-INEDRIVER 0 (Z-REGISTERS Z £ Iume L‘ '
COUNTER:
3) ER| ¢ v P-ADDER
OUTPUT TO | r—i N — ||, | o
EXTERNAL (ZTILINE DRIVER - Zy L | +0.+142 / B
EQUIPMENT P GATES H \ : |
- 7 B2 ‘
< l Lo
<] [
<_|LINE DRIVER |G ATES |od ! -
N I” ! BUFFER COMPARATOR . il B3
{ L l]I. 1
REMEUIE (LINE DRIVER c, ' — ~ ZC) l
COMPUTERS ARITHMETIC ~— 1 Jg
— _SECTION : 8 @
| [K 5
F-——— === === K
FROM R (SEE INSERT) :
1]
| D X I L Bg
| \ {
I
u
! : . v ‘ P7 REPEAT
NOTES: L____. ADD F COUNT !
INDICATES ' z !
! u
REGISTER _l T ! CONTRO
TRANSLATORS, NTROL | | f===—--
AMPLIFIERS, DRIVERS ¥ l RANSLATOR o[B CONTROLI B, \
]
INDICATES A < Q ! ‘ I
MODIFIER |
. NETWORKS i TO ALL CIRCUITS
124.90

Figure 8-1.-—-Digital Data Computer, CP-642A/USQ-20(V) block diagram.

DONININVEDHOUd—8 x81deyd

DATA SYSTEMS TECHNICIAN 3 & 2

ARITHMETIC SECTION

The arithmetic section is composed of regis-
ters and special circuits that perform the arith-
metic operations of the computer. These arith-
metic operations include addition, subtraction,
multiplication, division, shifting, special ap-
plications, and/or combinations of these
operations. These operations are performed by
using the adder and special data manipulations
between registers.

The A, D, Q, and X registers (30 bits
each) are the primary registers in the arithmetic
section. There is also a special purpose F
register used as a secondary shift register.
- The A and Q registers are addressable (they
can be loaded from the console), and the others
are not. The normal word length is 30 bits but
there are provisions for a 60-bit product
(multiplication) and a 60-bit dividend. (division).

The Add instruction (designated by function
code f =20) is accomplished by placing the
augend in the A register and the addend in the
D register (see table 8-3). Decimal numbers
are used in the example for ease of explanation,
although binary numbers are used in the com-
puter. The adder combines these and producesa
sum which is entered in the X register and then
transmitted to the A register.

The Subtraction instruction (f = 21) also
uses the A, D, and X registers. However, for
subtraction, the minuend is placed inthe A regis-
ter and the complement of the subtrahend is
placed in D. The adder now produces the dif-
ference which is transmitted to X and thento A.

The Multiplication operation (f = 22) is per-
formed by placing the multiplicand in the D
register and the multiplier in Q. Then a subse-
quence, called the multiply step is initiated.
This subsequence controls the shifts and addi-
tions necessary to produce the product. The
product will be stored in Q if it is single-length
(30 bits) and in AQ if it is double-length (60 bits)
with A holding the most significant bits.

The Division process (f = 23) is performed
by placing the divisor in the D register and the
dividend in AQ and then initiating the divide
sequence. The dividend is always considered to
be 60 bits and A holds the most significant digits
if the dividend is double-length. The divide
sequence controls the subtractions and shifts
necessary to produce the quotient (which is
stored in Q), and the remainder, if any, is stored
in A.

Any of these arithmetic operations can be
performed using numbers of positive and/or
negative values. Suitable steps are taken so that
the final result has the appropriate algebraic
sign.

Table 8-3.—Basic Arithmetic Operations.

Operation code

50 PRODUCT
Q(single length)

f=20 10 AUGEND A Register
+ 5 ADDEND D Register

15 SUM X Register then to A
f=21 10 MINUEND A Register

- 5 SUBTRAHEND D Register (contains complement of subtrahend)

5 DIFFERENCE X Register then to A
f=22 10 MULTIPLICAND D Register
x 5 MULTIPLIER Q Register

AQ Register (double length)

2 QUOTIENT Q Register
f=23 DIVISOR 5/10 DIVIDEND AQ Register
D Register
REMAINDER (if any) A Register

118

Chapter 8—PROGRAMMING

The Shift instructions (f = 01, 02, 03, 05, 06,
07) are performed by referencing a particular
register and specifying the direction and amount
of shift. The shifts are performed by the shift
setup, AQ shift step control, and A and/or Q
shift step subsequences. During right shifts, the
lower order bits are lostand the sign of the num-
ber is extended by entering a 1bitin the highest
order bit position during each shift (sign exten-
sion). For left shifts, the lower order bits are
replaced by the higher order bits as the shift
progresses (circular).

The adder (30 bits) is a subtractive device
with end-around borrow capabilities which uses
the principle of one’s complement binary
arithmetic.

INPUT/OUTPUT SECTION

The input/output section contains gated am-
plifier circuits to supply inputs from external
equipment and other computers. The amplifier
inputs are fed to the Z register and then into
the storage section. External equipment used
with the computer may include auxiliary memory
units such as magnetic tape or magnetic drum
units, teletypewriter units, high-speed printer
units, paper-tape units, and other related equip-
ment,

The input/output section supplies output to
the external equipment and other computers
through the line driver circuits. Output is
supplied through the Cq register to the external
equipment line drivers, and throughthe Cq regis-
ter for intercomputer line drivers. The priority
and access control serves a coordinating func -
tion, regulating input signals (using the S
register) according to memory availability; and
output signals (from the Z register) accord-
ing to control section and external equipment
requirements.

Priority

Since there are 14 input/output channels,
there is the possibility that more than one
channel would require computer attention at
any one time. The priority networks determine
which channel is to be considered first, if more
than one channel has data on the lines. Channel
13 has the highest priority and channel 0 has
the lowest priority (channels 0 and 1 are used
for intercomputer transfers).

Control Sequences

Input/Output operations are partially con-
trolled by several timing sequences.

1. The Scan sequence interrogatesall input/
output requests and processes the data fromthe
highest-order priority channel on the basis of
channel number and type of request.

2. Thel/ O1 sequence updates the real-time
clock control address and updates the contents
of the buffer control address.

3. Thel/ Og sequence updates the upper half
of the real-time clock control address (if
necessary) and gains access to memory for data
transfers. This sequence also generates the
appropriate acknowledge signal for data transfer.

STORAGE SECTION

The storage section consists of the main
magnetic core memory; wired auxiliary mem-
ory, and associated address; transfer; and
control circuits.

The main memory, constructed of modular
arrays of ferrite cores, has a capacity of 32,768
words of 30 bits each with provisions for
handling each as two, 15-bit words. A word is
referenced by loading the S register with the
proper address, and the associated translator
selects the proper cores.

Current pulses are then applied to the
cores and the data at the selected address is
read out to the Z register. This isa destructive
readout, but the data is writtenback into memory
as a part of the memory cycle. The time re-
quired for this read/write cycle is eight micro- .
seconds, during which time the memory lockout
circuits are active. The lockout prevents other
memory references from occurring at the same
time.

Each memory core is a bistable element
capable of storing a ‘“1’’ or a ‘“‘0’’ depending
upon the direction of magnetization. The time
required to drive a core from one state to the
other is approximately 1.2 microseconds. Each
core surrounds the intersection of four wires
by which its state can be changed and sampled.

All data exchange with memory is accomp-
lished through the Z register.

The auxiliary memory is a 16-word perma-

‘nent (wired) memory. It is made up of plugs and

jumper wires attached to the five memory
chassis, and provides permanent storage for
important instructions such as loading routines.

119

DATA SYSTEMS TECHNICIAN 3 & 2

FLOW DIAGRAMS

Any problem that can be solved by mathe-
matical procedures can be solved by the com-
puter. If it is determined that the problem can
be solved best by the computer, itis then neces-
sary to formulate the problem in the language
of the computer. A program of instructions and
the data needed for the solution of the problem
must be devised.

A flow diagram or flow chart indicates the
flow, or steps, in the computation that leads to
the solution of a particular problem. A basic
flow diagram usually lists the series of simple
arithmetic steps that are to be performed by
the computer. It is imperative that the coder
familiarize himself with the overall operations
and the peculiarities of each particular computer
so that he can construct the flow chart and sub-
sequent instructions with regard to the capabil-
ities of that computer.

Usually, more than one flow diagram is
formed for the more complicated problems. The
first flow outline may be equations in mathe-
matical language written in the sequence in
which they will be computed, together withbrief
explanations of the steps involved.

The second flow chart usually formulates
the flow of computations between registers as
the problem will be computed in the computer.
This chart usually contains the instructions
necessary for the data input, the instructions
that operate on the input data to obtain the
solutions, and the necessary instructions for
the output of the results. Many problems are
such that the second type of flow diagram will
consist of many charts and/or diagrams, eacha
more detailed presentation of the preceding
charts.

FLOW CHART SYMBOLS

To make it easier to formulate and under-
stand flow diagrams, certain symbols have been
accepted and are used throughout this discussion.
The following list of symbols (fig. 8-2) gives
the coder or programmer an example of the
basic symbols used in constructing flow charts.

Lines of Flow

A solid line with an arrow touching the next
element of the flow diagram usually is used to
indicate the path to be followed by the computer;
or, more precisely, the path to be followed by

120

OPERATION SYMBOL

DECISION SYMBOL

» LINES OF FLOW

START,STOP,PROGRAM HALT SYMBOL

REMOTE CONNECTORS
(DISCONTINUITY SYMBOL)

JUNCTION SYMBOL
(USED IF THERE IS MORE
THAN ONE INPUT TO A
SYMBOL)

124.91
Figure 8-2.—Flow chart symbols.

the coder (person who is formulating the com-
puter instructions from the flow diagrams).

Operation Symbol

The rectangular box usually contains a state-
ment about a computer or mathematical opera-
tion. The content of the box may be a simple
statement or a mathematical expression.

Decision Symbol

An ovalisusedtoindicate a two-way decision.
This symbol sometimes contains the operation
code to indicate the type of decision tobe made.
For example, the operationcode 04 written with-
in the symbol designates the use of the Compare
instruction to make an evaluation in the com-
puter.

Connectors and Remote Connectors

To eliminate as much as possible the crossing
of flow lines on a diagram, remote connectors

Chapter 8 ~-PROGRAMMING

are used to indicate a destination not easily
reached in the diagram. Thus, the flow can be
broken at a convenient point by terminating it
in an arbitrary symbol which can be used to
initiate the flow in another region of the diagram.

SAMPLE FLOW CHARTS

A simple example of the use of flow charts
is shown infigure 8-3. The problemis to arrange
five numbers in descending order regardless of
their present arrangement. The numbersused in
this example 30, 42, 14, 81, and 12, are

START)«

arbitrarily selected and arbitrarily arranged.
The table shows the results after making an
exchange in the order of two numbers if and
when an exchange is requested.

Another example of the use of flow charts
is showninfigure 8-4. The problem is as follows:
Determine the classification of a locality (town,
burg, or city) based on the population of that
locality. If the populationis greater thanor equal
to 1,000 but less than or equal to 5,000 classify
the locale as a town. If the population is less
than 1,000, class as a burg. If the population is
greater than 5,000, class asacity and determine

EXCHANGE
AGB
EXCHANGE
B &C
EXCHANGE
C&D
v
EXCHANGE | YES >
g D <E A B G E
30|42(14 |81 |12
NO
EX-A&B (42 30|14 |81 |12

EX-C&D |42 30|81 |14 |12

EX-B&C | 42| 813014 |12

EX-A&B |81 |42]|30]|14 |12

124.92

Figure 8-3. —Flow chart showing procedure for arranging numbers in descending order.

121

DATA SYSTEMS TECHNICIAN 3 & 2

(STOP)

YES
NO /
START)= EOV
READ
CARD

PRINT

TAG AS Na
CITY N

owper A D>—()
BURG TOWN BY IK DELAY
LINE
T\

124.93

Figure 8-4.—Flow chart showing procedure for classifying cities according to population.

the relationship of the locality as compared to
a town of 1,000 population. It is understood that
the machine must be instructed to start, and to
stop at the end of job (EQJ).

MACHINE CODING

The CP-642A/USQ-20 (V) computerisa self-
modifying, single-address machine. Although
this means that one reference or address is
provided for the execution of aninstruction, this
reference can be modified automatically during
a programmed sSequence.

The references are modified by using the
B-registers, 1 through 7, that contain any

previously stored constants. In order to modify
the address, the content of a selected B-register
is added to the operand address designator.

A programmed address is coded using octal
notation with each octal digit denoting three
binary digits (a representative word is shown
later). The instructions are read sequentially
from magnetic core storage except after jump
or skip instructions. Every instruction executed
by the computer is transmitted from memory
to the Z-register (see figure 8-1) and to the
U-register. While the instruction is in the
U-register, its components are translated to
determine the exact method of executing the
instruction.

122

Chapter 8—PRQGRAMMING

SYMBOL CONVENTIONS

The following symbols are used in computer
discussions:

¥ : any register or memory location
(@) : contentof @
(@)j : 1initial content of «

(@) : final content of @
ap : the nthpitof aa
(@n : the nthbit of the content of @
ay : the upper 15 bits of a
a1, : the lower 15 bits of «
Y : the operand designator Uy,
Y : ¥+ Bp (memory address of operand)
(Y) . contents of memory address Y

the operand regardless of source
L(Y) (Q) bit-by-bit multiplication; logical
multiplication of Yy and (Q),

SEQUENTIAL BREAKDOWN OF
INSTRUCTIONS

Table 8-4 is a list of the instructions which
can be performed by the computer. The two-
digit numbers in the code column represent
the function code and are written in binary
coded octal form intheinstruction (shownlater).

Each of the instructions indicated by an
asterisk in table 8-4isusedinalater discussion
of simple programs and is analyzed briefly
following the table. This analysis of instructions
is intended for reference only.

The actions performed by each of the four
sequences A, B, C, and D (not to be confused
with the A, B, C, and D registers) are stated
in a general sense earlier in this chapter.

The A sequence normally involves the same
data transfer inthe execution of each instruction.

29, 28, 217, 26, 25, 24; 23, 22, 21;

20, 19, 18;

Normally, the A sequence operations consist of
the following (fig. 8-1):

A Sequence
P adder ——— S
S—P
Read instruction ———» Uy (from Zu)
Modify Ur,according to b index designator

The data flow given for each instruction is
not complete, but is concerned with the flow to
and from the major registers (B, R, Uu, etc.).

INTERNAL PROGRAMMING CONCEPTS

Once the program is written and coded in an
acceptable form, it is entered into the storage
section of the computer. From this point, the
computer, upon proper initiation, executes the
instructions of the program. The instructions of
the program are stored in the memory (storage)
section of the computer in a sequential manner,
such that the computer will first execute the
instruction located at the lowest address of the
program and proceed to the highest address.
From its address location, the instruction is
moved to the control section, where the com-
puter analyzes the instruction to determine the
method of execution. (The instruction is re-
written in memory in its original form and is
therefore not altered in memory due to this
process.) Normally the next instruction to be
executed is located at the address that is, in
value, one greater than the address of the pre-
vious instruction.

All operations in the CP-642A/USQ-20(V)
computer are controlled by a 30-bit instruction
word. The 30 bits of the word are divided into
the sections shown below. Different bits of the
word perform different functions and have been
assigned symbols or designators for ease of
reference. The normal instruction word bit
positions are illustrated as follows:

k b y

17, 16, 15; 14,....00

A special instruction word used for input/output (I/O) operations is as follows:

~

f j

29, 28, 27, 26, 25, 24; 23, 22, 21, 20;

k b y

19, 18; 17, 16, 15; 14,.... 00

123

DATA SYSTEMS TECHNICIAN 3 & 2

TABLE 8-4.—REPERTOIRE OF INSTRUCTIONS.

CODE _ FUNCTION CODE FUNCTION
00 (Fault Interrupt) 42 | SUBTRACT LOGICAL PRODUCT
o1 RIGHT SHIFT Q 43 COMPARE MASKED
02 RIGHT SHIFT A 44 REPLACE LOGICAL PRODUCT
*03 RIGHT SHIFT AQ 45 REPLACE A+ LOGICAL PRODUCT
*04 COMPARE A, Q, AQ 46 REPLACE A- LOGICAL PRODUCT
05 LEFT SHIFT Q 47 | STORE LOGICAL PRODUCT
06 LEFT SHIFT A
07 LEFT SHIFT AQ
50 | SELECTIVE SET
*10 | ENTER Q 51 | SELECTIVE COMPLEMENT
*11 ENTER A 52 | SELECTIVE CLEAR
*12 ENTER Bj 53 | SELECTIVE SUBSTITUTE
13 EXTERNAL FUNCTION ON ¢} 54 REPLACE SELECTIVE SET
*14 | STORE Q 55 REPLACE SELECTIVE COMPLEMENT
*15 STORE A 56 REPLACE SELECTIVE CLEAR
16 STORE Bj 57 REPLACE SELECTIVE SUBSTITUTE
17 STORE
60 | JUMP (Arithmetic)
* 20 ADD A *61 JUMP (Manual)
21 SUBTRACT A 62 | JUMP ON Cj ACTIVE INPUT BUFFER
22. | MULTIPLY 63 JUMP ON Cj ACTIVE OUTPUT BUFFER
* 23 DIVIDE 64 RETURN JUMP (Arithmetic)
24 REPLACE A+Y * 65 RETURN JUMP (Manual)
25 REPLACE A-Y 66 TERMINATE C} INPUT BUFFER
26 ADD Q 67 TERMINATE c’j\ OUTPUT BUFFER
27 | SUBTRACT Q
70 REPEAT
30 ENTER Y+Q 7 B SKIP ON BJ |
31 ENTER Y-Q *72 | B.JUMP ON Bl A
32 | STORE A+Q 73 | INPUT BUFFER ON C!
33 STORE A-Q (without Monitor mode) ,
34 REPLACE Y+Q 74 | OUTPUT BUFFER ON CJ

35 REPLACE Y-Q
*36 REPLACE Y+1
37 REPLACE Y-1

40 ENTER LOGICAL PRODUCT
41 ADD LOGICAL PRODUCT

75

76

ki

(without Monitor mjgde)
INPUT BUFFER C

(with Monitor mode)
OUTPUT BUFFER ON Cf
(with Monitor mode)
(Fault Interrupt)

* Denotes instructions to be used later.

124

Chapter 8—PROGRAMMING

TABLE 8-4. —REPERTOIRE OF INSTRUCTIONS — CONTINUED.

03

RIGHT SHIFT AQ [SHIFT (AQ) RIGHT BY Y]
This instruction shifts (A) and (Q) as one 60-bit register, The shift is to the right Y bit positions,
with the lower bits of (A) shifting into the higher bit positions of (Q). The higher-order bits of (A)
are replaced with the original sign bit as the word is shifted. Only the lower-order six bits of Y
are recognized for this instruction. The higher-order bits are ignored.

B SEQUENCE C SEQUENCE

Clear D k ¥ 0, 4; Clear R, D—R

k # 0, 4; Shift Count —=D Initiate Shift Sequence

k = 0, 4; U Adder—D

04

COMPARE: SENSE j: [(A) = (A)]

This instruction compares the signed value of Y with the signed value of (A) and/or (Q), but does
not alter either (A) or (Q). Branch condition designator j is interpreted in a special way for this
instruction, as follows:

j=0: Do not skip the next instruction.

j= 1 Skip the next instruction.

j= 2 Skip the next instruction if Y is less than or equal to (Q). (Y < Q)

j =3 Skip the next instruction if Y is greater than (Q). (Y > Q).

j= 4 Skip the next instruction if (Q) is greater than or equal to Y and Y is greater than (A).

(Q 2Yand Y > A)

j = 5: Skip the next instruction if Y is greater than (Q) or if Y is less than or equal to (A).
(Y >Qor Y < A)

j = 6: Skip the next instruction if Y is less than or equal to (A). (Y < A)
j= T Skip the next instruction if Y is greater than (A). (Y > A)
B SEQUENCE C SEQUENCE
Operand—-D Sense j (for A)

Clear X, A—X
Clear A, Q—-A
Sense j (for Q)

Clear A, X—A

125

DATA SYSTEMS TECHNICIAN 3 & 2

TABLE 8-4. —REPERTOIRE OF INSTRUCTIONS— CONTINUED.

10 ENTERQ [(y—q]
Clear the Q register, then transmit Y to Q.
B SEQUENCE C SEQUENCE
Operand —=D Clear X, D—X
Clear Q, X—=Q
Sense j
11 ENTER A [y—aA]
Clear A, then transmit Y to A,
B SEQUENCE C SEQUENCE
Operand—D Clear X, D—X
Clear A, X—=A
Sense §
12 ENTERB! [Yy—By]
Clear the contents of B register j. Then transmit 15 bits of Y to B register j. Branch condition
designator j is used to specify the selected B register for this instruction and is not available for
its normal function.,
B SEQUENCE C SEQUENCE
Operand—D k ¢ 0, 4; Clear R, D—R
Clear Bj, R—-Bj
14 STORE Q [Q@—¥]
Store (Q) at storage address Y as directed by operand interpretation designator k., If k - 0, com-
plement (Q). If k = 4, store in A,
B SEQUENCE C SEQUENCE D SEQUENCE
Clear X, Qq—X Store as modified by k
Sense j
15 STORE A [(a)— Y]

Store (A) at storage address Y as directed by operand interpretation designator k. If k = 4, com-
plement (A), If k = 0, store in Q.

B SEQUENCE C SEQUENCE D SEQUENCE
Clear X, A—=X Store as modified by k
Sense j

126

Chapter 8—PROGRAMMING

TABLE 8-4, ——REPERTOIRE OF INSTRUCTIONS— CONTINUED.

20 ADD A [(A)+Y —A]

Add Y to the previous content of the A register. D receives the exact number to be aaded to A.

B SEQUENCE C SEQUENCE
Operand —- D Clear X, Adder — X

Sense j from Adder

Clear A, X —A

23 DIVIDE [((AQ/Y—Q]

Divide (AG) by Y, leaving the quotient in Q register and the remainder in the A register, The re-
mainder bears the same sign as the quotient. k =7 should not be used in this instruction. J =3
skip the next instruction if Q is negative,

B SEQUENCE

If A is negative:
Set Complement 1
flip-flop and initiate
Complement AQ
sequence

Operand—D

C SEQUENCE
If D is negative:

Set Complement 2 flip-flop
Clear X, D— X
Clear D, X—=D

If D is positive:
Clear X, D —X
Clear D, X' —D

Clear K, Set K15

Initiate Divide

31 ENTER Y - Q

Clear A. Then transmit (Q) to (A).
Y - (Q # +0.

B SEQUENCE

Clear A, Q—=A
Operand'—=D

[Y - (Q—=4]

Then subtract Y from (A). Finally, complement (A) if

C SEQUENCE
Clear X, Adder—=X
Clear D, X'—=D
ifA¢D
Clear X, D—=X
Clear A, X—=A

Sense §

127

DATA SYSTEMS TECHNICIAN 3 & 2

TABLE 8-4. —REPERTOIRE OF INSTRUCTIONS— CONTINUED.

36 REPLACE Y +1 [Y+1—Y & A]

Clear A. Then set (A) = +1. Then add Y to (A). Then store (A); at storage address Y.

B SEQUENCE C SEQUENCE D SEQUENCE
Clear A, +1—A Clear X, Adder—=X Store as modified by k
Operand—D Clear A, X—A
Sense j
61 JUMP (Manual) [JUMP TO ADDRESS Y IF j SATISFIED]

This instruction clears program address register P and enters a new program address in P for
certain conditions for manual JUMP selections. Branch condition designator j is interpreted in a
special way for this instruction and determines the condition under which a jump in program ad-
dress occurs. If the jump condition is not satisfied, the next sequential instruction in the current
sequence is executed in a normal manner. If the jump condition is satisfied, Y becomes the ad-
dress of the next instruction and the beginning of a new program sequence, as listed below.

Program execute may be stopped by certain STOP selections upon execution of this instruction.
Branch condition designator j specifies which selections are effective.

j= 0: Execute jump (unconditional).
j=1: Execute jump if JUMP 1 is selected.®
j= 2: Execute jump if JUMP 2 is selected.
j= 3: Execute jump if JUMP 3 is selected.
j= 4 Execute jump, Stop computation.
j = 5: Execute jump. Stop computation if STOP 5 is selected.
j = 6: Execute jump. Stop computation if STOP 6 is selected.
j= T Execute jump. Stop computation if STOP 7 is selected.
B SEQUENCE C SEQUENCE
Operand —=D k #0,4

Clear R, D—=R
Clear P, R—=P j=1,2 3and

Clear p (0 —=p) JUMP selected

128

Chapter 8—PROGRAMMING

TABLE 8-4. — REPERTOIRE OF INSTRUCTIONS— CONTINUED.

Clear P, R—p

Clear p (0—p)

Stop at beginning

of next B sequence.

Clear P, R—=P

Clear p, 0 —P i
Stop at beginning
of next B sequence

if option j set.

= 5,6, 7and

STOP selected

65

RETURN JUMP (Manual)

[JUMP TO Y + 1 & (P) + p—=Y; IF j SATISFIED]

This instruction executes a return jump sequence for certain conditions of manual JUMP or STOP
options. Branch condition designator j is interpreted in a special way for this instruction, and de-
termines the conditions under which the return jump sequence is executed. If the return jump
condition is not satisfied, the next sequential instruction in the current sequence is executed in a
normal manner. If the return jump condition is satisfied, as listed below, the following sequence
is performed: Store (P) (the number in the program address counter which denotes the instructions
being executed) + p (the amount by which (P) is increased after each instruction is executed) in
the lower half of memory address Y (the operand which is the first address in the subroutine.)

Then jump to Y + 1.

j=0
j=1
j=2
j=3
j = 4
j=5 Execute return jump.
j=6 Execute return jump.
j=7
B SEQUENCE
Operand-——D

Execute return jump (unconditional),

Execute return jump if JUMP 1 is selected.
Execute return jump if JUMP 2 is selected.
Execute return jump if JUMP 3 is selected.

Execute return jump, then stop computation,

Stop computation if STOP 5.is selected

Stop computation if STOP 6 is selected

Execute return jump. Stop computation if STOP 7 is selected.

C SEQUENCE D SEQUENCE
k=04 If § satisfied:

Clear R, D—=R
Clear R* & Uy,

R—=Up,

Clear S, U Adder—S
(P) + p—=Zp—=ML
Clear P, S—=P

+1—=p

129

DATA SYSTEMS TECHNICIAN 3 & 2

TABLE 8-4. —REPERTOIRE OF INSTRUCTIONS— CONTINUED.

Note

If a return jump immediately follows recognition of an interrupt by the control section
(that is, if the return jump is the instruction stored at the Interrupt Entrance register),
it is described as follows: Store P + 0, 1, or 2 in the lower half of memory address Y.
Then jump to Y +1. The p designator controls the modification of (P) and is set up by
the instruction preceding the return jump caused by the interrupt. Therefore, the re-
turn jump causes the storage of the address of the next instruction that would have been
executed if the interrupt had not occurred. The general description of the return jump
is the jump to Y +1, with the understanding that in non-interrupt cases, p is set to "one",
which causes the storage of P + 1in Y,

72

B JUMP ON B! [(®); = 0, EXECUTE NI:
(B)j # 0, (B)j - 1—=Bj, JUMP TO x]

If the content of B register j is nonzero, execute a jump to program address Y. Reduce the content
of B register j by one. If the content of B register j is zero, proceed to next instruction in a nor-
mal manner. Branch condition designator j is used to designate the selected B register in this in-
struction and is not available for its normal function, If the jump condition is satisfied, the lower-
order 15 bits of Y become the address of the next instruction and the beginning of a new program

sequence. The higher-order 15 bits of Y are not used in this instruction.

B SEQUENCE C SEQUENCE
Operand—D k¢¥o4

Clear R, D—=R
Clear R*, Bj—vR*
-1—-Uy,
Bj ¥ 0
Clear P, R—=P
Clear p (0—=p)
Clear R, U Adder —R
Clear Bj, R = By

130

Chapter 8—PROGRAMMING

An instruction word is composed of the
following components:

f — Function Code designator (29 — 24)

J — Branch Condition designator (23 — 21)

k — Operand Interpretation designator

(20 — 18)
b — Address Modification designator
(17 — 15)

y — Operand Address designator (14 — 00)

The instruction word is placed in the U
register and its outputs are applied to translator
circuits which interpret the bits. Further simpli-
fication of the word is attained by using the
octal numbering system because of the ease of
conversion. The binary notation of an instruction
could be as follows:

f j k b y
001 100 010 011 101 000 010 0OO1 111 110

Octal notation of the same instructions would
be: 14 2 3 5 02176. The designators can be
stated as: f = 14, j = 2, k=3,b=5,andy =
02176. The translation of these designators
determines the exact method of executing the
instruction.

The designators used later in developing
simple programs are defined in table 8-5.

Table 8-5.—Interpretation of Word
Modifiers (Designators).

j=2 Skip the next instruction if (Q)
is positive.

j=3 Skip the next instruction if (Q)
is negative.

j=5b Skip the next instruction if (A)
is nonzero.

j= 6 Skip the next instruction if (A)
is positive.

k=1 Store in M7, leaving My
undisturbed.

k=1 Read: Y/u = 0’s; Y1, = (Y),
(Operand in Mp,).

k=3 Store in M (Store instruction).

k=3 Y = (Y). (Operand in M)
(Read instruction).

k=1 Y = (A). (Operand in A register)
(Read instruction).

b=1 Add (Bl) to y.

PROGRAM CONSTRUCTION

Two examples illustrating the method of
constructing simple programs are consideredin
the following discussion. Frequent reference to
tables and illustrations presented inthis section
and in earlier portions of this chapter will be
necessary to facilitate a full understanding.

MANUAL BLOCK TRANSFER

The first example of programming is con-
sidered by assuming the following problems:

Problem: TRANSFER THE WORDS IN

ADDRESSES 00020-00025 in MEMORY

TO ADDRESSES 00030-00035.

We first analyze the problem, noting that
data from one section of memory is to be
transferred to another section of memory. The
use of an index register (B-register) will be
helpful in counting the number of transfers and
in incrementing the various addresses involved.
A knowledge of the actions involved for a 61
function code with a j = 4 designator (see table
8-4 and item 61) is helpful to the programmer
since he knows thatafter transfer of the required
data the j = 4 designator will cause the action
to stop after a return jump to the initial address.

The next step is to develop a flow chart (fig.
8-5). The first step after starting is to enter
a number in the index register (Bl in this case)
which is one less than the number of transfers
desired. (This is necessary since the countfrom
00000 to 00001 causes one transfer.)

This action is followed by entering the data
in address X (the actual address numbers are
not significant at this point) into the Q register
and then storing this data (from Q) into address
Y. This completes the transfer of one data word.

The number in Bl is checked to determine
if all transfers have been completed (Bl = 07?).
A ‘‘no’’ answer indicates that all transfershave
not been completed. This initiates the step to
reduce the number in Bl by 1 (Bl - 1) and the
next address is read into the Q register.

The steps just explained are repeated until
a ‘‘yes’ answer is produced from the inter-
rogation (B1 = 0?), whereupon a jump and stop
command is executed.

It is now possible to write the program as
shown on following page.

131

DATA SYSTEMS TECHNICIAN 3 & 2

PROGRAM
(BLOCK TRANSFER SUBROUTINE)

Relative

Address Instruction Function

12100 N Enter Bl with number of
words to be transferred

less one.

ml

m2 10031 y1 (y1 equals lowest address
of block to be transferred.)
Enters word from highest
address tobe transferred.
m3 14031 y2 (y2 equals lowest address
of new storage location.)
Stores word at highest
address of new location.

mé 72100 m2

If B1 = 0, read NI; if
Bl # 0, B1-1 and jump
to m2. (This operation
stops transfer when all
words have been trans-
ferred.)

mb 61400 m1l

Jump to beginning of
routine and STOP 4.

The relative address column does not show
actual addresses in memory but merely rep-
resents the order in which the instructions are
to be executed. The relative address method of
programming is discussed presently.

The first instruction in the program (12100 N)
is shown below in binary and octal numbers.

Designator

f j k b y

Binary Notation

001 010 { 001 | 000 { 000 | 000000000000101
Octal Notation
1 2 1 0 0 N

The instructions are represented in binary
numbers within the computer but are written
in octal form in this discussion. The numerical

ENT BI
WITH NO.—I

ENT Q

a

STR Q

NO

BI=0

YES

124.94
Figure 8-5.—Block transfer routine.

value (in binary) of each designator in the
12100 N instructionis shown. The ‘‘f’’ designator
always contains 6 bits; the j, k, andb designators
each contain 3 bits; and the y designator (the
operand or address of the operand) contains
15 bits. The interpretation of the designators
in the instruction is found in table 8-5 or in the
detailed description of the instructions in table
8-4. '

The instruction (12100 N) supplies the com-
puter with a function code, 12, ENTER BJ
instruction (see table 8-4 and item 12) where
BJ is interpreted as the B register (fig. 8-1)
specified by the j designator (001) in the in-
struction. The letter N -represents the number
of transfers requested, less one. Because this
subroutine can be used for the transfer of any
number of addresses at any number of points
in the program, the value of N (15 bits) is as-
signed for each use. _

The second instruction (10031 yl) at relative
address m2 has a 10 function code (see table
8-4 and item 10) which would normally cause
the data located in address yl in memory to be

132

Chapter 8—PROGRAMMING

read from memory into the Q register. The data
at address yl1 (00020 in this case) however,
(as illustrated in figure 8-6), is increased by
the amount of the number N in the B register
(5) in accordance with the b-designator of 1 in
the instruction (see table 8-5) before it is
transferred to the Q@ register. Likewise, the
instruction at relative address m3 (14031y2)
would normally cause the Q register content to
be stored in memory address y2 (00030). The
b-designator of 1 in this instruction, however,
causes y2 to be incremented by the content
of the B register (5) in this case. Thus, the
data from the lowest memory address (00020)
is transferred to the lowest memory address in
the highest of the addresses to which the block
of data is to be transferred (00030).

The instruction at address m4 (72100 m2)
check (Bl = 0) yields a ‘‘no’’ result and the
number in the Bl index register is reduced by
1 to become (N = 4).

This completes the transfer of one cycle or
loop. The actions can be briefly stated as
follows:

1st Cycle—TRANSFER WORD FROM vyl

(00020) + N(5) TO y2 (00030) + N(5) AND
Bl1-1 (N = 4).
The 72100 m2 instruction (see detailed
operations for a 72 function code, table 8-4)
causes a jump to relative address m2 after
the execution of each cycle until the B register
content is 0. The actions in the 2nd, 3rd, 4th,
5th, and 6th cycles are explained below:
2nd Cycle—TRANSFER WORD FROM vyl
(00020) + N (4) TO y2 (00030) + N(4) AND
Bl-1 (N = 3)

3rd Cycle—TRANSFER WORD FROM yl
(00020) + N(3) TO y2 (00030) +N(3) AND
Bl-1 (N =2)

4th Cycle—TRANSFER WORD FROM vyl
(00020) + N(2) TO y2 (00030) + N(2) AND
Bl-1 (N =1)

5th Cycle—TRANSFER WORD FROM vyl
(00020) + N(1) TO y2 (00030) + N(1) AND
B1-1 (N =0)

6th Cycle—TRANSFER WORD FROM vyl
(00020) + N(0) TO y2 (00030) + N(0) AND
JUMP (B1 = 0) AND STOP 4.

RELATIVE ADDRESSING

In a coding routine it is often preferable to
assign relative address locations to quantities
referred to in the program. For example, it may
be convenient to postpone the assignment of

absolute addresses to instruction data, con-
stants, or temporary storage until coding of the
entire problem has been completed. Similarly,
it may not be desirable to assign locations to
subroutines until coding is completed and it is
known what the storage requirements are for
each of the sections of the program.

It is possible to postpone the assignment of
absolute addresses by coding with relative
addresses as was done in the program for the
block transfer routine just described. In this
case, the addresses are relative tothe address m.

The alphabetic character m can denote any
address allowable inthe computer. For example,
it can be assigned the address of 01000, where
010 denotes m and 00 the relative address. The
numerals following an alphabetic character in
a relative addressing scheme are usuallyinter-
preted as being additive; e.g., if m denotes
01000, then m12 denotes 01012, as follows:

m = 01000
+ 12
ml2 = 01012

Nearly all alphabetic characters are usually
allowable in relative addressing schemes. Afew
exceptions are the reservations of the letter A,
denoting the Accumulator, and the letter Q,
denoting the Q register. Each new alphabetic
character used in a program may indicate a new
region in the storage of the computer. By using
relative addresses it becomes comparatively
easy to assign segments of a problem tovarious
regions, with the routine assignedtoeachregion
performing a separate calculation or function.

QUOTIENT ROUNDOFF SUBROUTINE

The flow chart for a quotient roundoff sub-
routine resulting from the division of two posi-
tive numbers is shown in figure 8-7. A sub-
routine, as described earlier in this chapter,
can be used as many times as necessary in a
given program to produce the solution to a
specific type of arithmetic operation.

To make use of a subroutine, the main routine
must be interrupted and a return jump provided
to the correct entry point of the subroutine. The
subroutine, in return, must provide an exitback
to the main routine. If in a subroutine the
address of the first instruction to be executed
is, for example, at 30001; the y (address) portion
of the subroutine exit jump at address 30000 is
set to the address of the instruction following
the exit in the main routine.

133

DATA SYSTEMS TECHNICIAN 3 & 2

(msmucnom mz)
10031y,

READ DATA IN MEMORY
ADDRESS 00020 (y,)
INTO Q-REGISTER AS
MODIFIED BY THE CONTENTS
OF THE B-REGISTER

’ Y "
00020

B- REGISTER
(5) 00025

Yi+8

MEMORY ADDRESS

HOLDS DATA

Ye+B

MEMORY ADDRESS
00035

FROM MEMORY
ADDRE)SJS 00025

Q-REGISTER

l

(INSTRUCTION ma)
1403l y2
STORE DATA IN Q-REGISTER
INTO MEMORY ADDRESS
00030 (y2) AS MODIFJED
Y2) BY THE B-REGIS CONTENT,

00030 t ’ i /

124.95

Figure 8-6.—Memory data transfer using B-register (1st cycle).

For example, assume that address 502 in
the main routine initiates a return jump to a
subroutine at address 30001. The instruction at
address 502 must be coded so that it will cause
the number of the next instruction in the main
routine (503 in this case) to be placed in the
address portion of the instruction at 30000 in
the subroutine. The instruction at address
30000 is coded so that it becomes a jump
instruction to address 503.

At the completion of the subroutine, oratany
point in the subroutine which signals an exit is
needed in order to re-enter the main routine,
the: computer will be instructed to select the
instruction at address 30000 of the subroutine
as the 'next instruction. This, in turn, causes a
jump to address 503 of the main routine. In
this way the subroutine may be entered from
any point in the main program by programming
a return jump.

As stated earlier, the problem is to round
off the quotient resulting from the division of
two positive numbers. The divisor, the dividend,

the quotient, and the remainderare all variables,
but are known for a given operation.

By dividing the remainder R (obtained from
a given division) into the divisor D, and looking
at this quotient to see if it is less than or equal
to two, we can round off to the next highest
integer. If the new quotient is greater than two,
then leave the quotient of the original division
as it is. (Note that the process of examining

D . . . N
R is the inverse of making an examination of

’the. fraction % (as is more common), where R
is the remainder and D the divisor. The larger
the quotient obtained as a result of the—g-pro—

cedure, the less significant is the remainder
in the roundoff of the main quotient.)

The first step in writing a subroutine to
make the roundoff is to lay out the flow diagram.
It may be necessary to make several flow
diagrams before proceeding with the next
step. Figure 8-7 shows the basic operations

134

Chapter 8 —PROGRAMMING

necessary to accomplish quotient roundoff. This
chart can be further amplified as shown in
figure 8-8. It is now possible to go directly
into coding and programming. In some cases,
it is desirable to have a more detailed flow
chart as shown in figure 8-9.

The following list of instructions derived

MAIN PROGRAM ROUTINE

INSTRUCTIONS
ADDRESS OCTAL NOTATION

NOTES

from table 8-4 is the program to execute the 00501 23 330 c(an address Divide, skip if

steps in the roundoff subroutine as they are in memory) overflow

set up in the detailed flow chart in figure 8-9.

The instruction which initiates the divide op- 00502 65 000 z(relative Return jump

eration (23 330 ¢ shown below), the instruction address) to round-

which provides the exit to the subroutine off routine

(65 000 z), and the instruction 65 000 -) for the

‘divide overflow routine, represent the section 00503 65 000 - Return jump

of the main routine or program which is con- to over-

cerned with the execution of the roundoff sub- flow

routine. Relative addressing is used. routine
SUBROUTINE

RELATIVE ADDRESS INSTRUC TIONS NOTES

z+0 61 000 00503

z+1 20 500 00000

61 function code means JUMP (MANUAL). The
word ‘‘manual’’ used with the JUMP instruction
is to be interpreted as an unconditional jump.
The j, k, and b designators are not needed in
this instruction. The last five digits of this
instruction (as well as all instructions) carry
the y designator. As was stated earlier, the
address portion of the instruction at address
00000 (first address) of the subroutine must
contain the address to which the computer op-
erations are to be returned after the completion
of the subroutine, or after it is determined that
certain conditions exist which necessitate the
return to the main routine. Thus, address 503 is
indicated in this instruction as the address to
which the operations are to be resumed in the
main routine.

20 function code means ADD A (see table 8-4
and item 20 of detailed instructions). This instruc -
tion adds Y (00000) to the previous content of
the A register. (The A register holds the re-
mainder (block 1) derived froma divide operation
(fig. 8-9). The j=5 designator causes a skip of
the next instruction if (A) is nonzero (A # 0). It
follows that if (A) is equal to zero, execute the
next instruction. Stated another way, if A = 0,
there is no remainder and the roundoff sub-
routine is not necessary. Thus execute the next
instruction (which is an exit instruction back to
the main routine). If A # 0, skip the next instruc-
tion (the exit instruction) and continue with the
roundoff subroutine.

135

DATA SYSTEMS TECHNICIAN 3 & 2

SUBROUTINE Cont'd

RELATIVE ADDRESS INSTRUC TIONS

zZ+ 2 61 010 z+0
z+3 14 030 e

z+ 4 15 030 v
z+5 11 000 00000

z+6 10 030 c

z+ 7 23 030 v

z + 10 04 300 00003

NOTES

61 function code, JUMP (MANUAL). This in-
struction is interpreted as jump to address
specified by operand Y. The operand, in this
case, is shown as z + 0 (the first address of the
subroutine). The k designator (1) table 8-5
causes the address portion of the instruction
to be read from memory. When this instruction
is executed, the next instruction to be executed
will be at address z + 0 followed by the instruc-
tion at address 503 of the main routine.

STORE Q instruction (see block 2). This instruc-
tion stores (Q) the quotient at storage address Y
as directed by the operand interpretation desig-
nator k (table 8-5). (See tables 8-4 and 8-5 and
item 14 of detailed instructions.) The operand
refers to an address e in storage into which (Q)
is stored.

STORE A instruction. Store (A), the remainder
(block 2), at address specified in the operand
(v in this case).

ENTER A instruction. (See table 8-4 and item 11
detailed instructions.) The ENTER A (see block
3) instruction represents a CLEAR A instruction
since the process of entering A is accomplished
by clearing the A register and entering the
operand, Y. If the operand is 00000 (as is true
in this case) the A register will not contain a
number, a condition which may be described as
cleared.

ENTER Q (block 4). This instruction enters the
operand , Y (represented in this instruction as
the divisor ¢) into the Q register.

DIVIDE AQ/Y (block 5). This instruction causes
the content of the A and Q registers (combined as
one 60-bit register for divide operation) to be
divided by Y, the operand. This step executes
Divide AQ/Aj as indicated in the flow chart
(fig. 8-9) where Aj is the operand, Y.

COMPARE, SENSE j. instruction. The j designa-
tor, 3, is interpreted by the control unit as
follows: skip the next instruction if Y is greater
than or equal to (Q), the quotient (block 6). It
follows then that if Y is less than (Q) the next
instruction must be executed.

136

Chapter 8—PROGRAMMING

SUBROUTINE Cont'd

RELATIVE ADDRESS INSTRUCTIONS
z + 11 61 010 z+0
z+ 12 04 200 00002
z + 13 61 000 z + 20
z + 14 20 570 00000
z+ 15 61 000 z + 20
z + 16 03 000 00036

NOTES

Same as instruction at relative address z + 2 of
this subroutine.

COMPARE SENSE j instruction (block 7). The j
designator, 2, is interpreted by the control unit
as follows: Skip the next instruction if Y is less
than or equal to (Q). Stated in the terms of the
flow chart, is Q > 2, (Y). A “no’’ answer indi-
cates that Q (the quotient) is less than 2 and that
roundoff is necessary.

JUMP (MANUAL) instruction. This instruction
executes the ‘‘add 1’’ procedure after it hasbeen
determined in the previous instructionthata quo-
tient roundoff is necessary. The jump to the
operand indicated in this instruction (z + 20)
causes a 1 to be added to the initial quotient
which was stored at address e in memory during
the execution of the instruction at address z + 3.

ADD A instruction (block 8). This step is used to
determine if there was a REMAINDER obtained
from the divide step AQ/Aj in the flowchart. The
A register is cleared, the remainder from the
AQ/Aj divide is transferred to A, and a check is
made to determine if (A) is 0. If A =0, it is
known that the dividend of the AQ/Aj divide is
the same as the divisor and that no remainder
exists from this division. The value of Q is
greater than 2 but less than 3. In the case where
A = 0, the remainder is the same value. Thus,
AQ/Aj =1 and it is necessary to increase the
original quotient by 1.

The j designator (5) is interpreted asfollows:
Skip the next instruction if (A)is nonzero, (A) # 0.
If (A) is 0, the next instruction is executed.

JUMP (MANUAL) instruction. This instruction
is the same as the instruction z + 13 in this
subroutine. The action is to add 1 to the quotient
as was commanded by the previous instruction
at z + 14.

RIGHT SHIFT instruction (block 9). This in-
struction shifts (A) and (Q)as one 60-bit register.
The shift is to the right Y bitpositions (36 in this
case) with the lower bits of (A) shifting into the
higher bit positions of (Q). The higher order bits of
(A) are replaced with the original sign bit as the
word is shifted. Only the lower order sixbits of Y
are recognized for this instruction. The right shift
prepares the AQ registers for a subtract opera-
tion to be accomplished in the next instruction.

1317

DATA SYSTEMS TECHNICIAN 3 & 2

SUBROUTINE Cont'D

RELATIVE ADDRESS INSTRUC TIONS
z + 17 31 630 v
z + 20 36 030 e
z + 21 61 010 z+ 0

The next step in the process is to convert these
relative addresses to actual memory locations
as shown below:

MAIN PROGRAM

Address Instruction
01501 23 330 00100
01502 65 000 05000
01503 65 000 -----

NOTES

ENTER Y - Q instruction (block 10). Note from
instruction z + 4 that Y at address v in memory
stores the original remainder. Also recall that
the previous instruction right-shifted the re-
mainder from the second division (AQ/A;) into
the Q register. Thus a check is made in the
execution of this instruction to determine if the
second divisor (Ai, the original remainder) is
greater than (Q), which is the second remainder.
If the divisor is greater than the remainder, it
is not necessary to round off the original quo-
tient. A larger remainder than quotient will
produce a negative result, ‘‘yes’’. A ‘‘Yes”’
answer (a positive answer) indicates that the
divisor will go into the remainder and it is thus
necessary to increase the original quotient by 1.
This action is satisfied in the next instruction.
The j designator (6) is interpreted as follows:
Skip the next instruction if (A) is positive. The
k designator (3) is interpreted as follows: Read
the operand Y from memory address v.

REPILACE Y + 1 instruction (block 11). This
instruction clears the A register, after which it
sets the A register contents to +1. The operand
e, the original quotient, (see instruction at ad-
dress z + 3) is then entered (added) to (A). The
k designator (3) causes the final content of A to
be placed in memory address e.

JUMP (MANUAL) instruction. This instruction
signals the end of the subroutine, and the next
instruction is taken at address z. The operand
of this instruction (as explained) contains the
address of the next instruction in the main
routine thereby causing the exit from the sub-
routine.

SUBROUTINE
05000 00 000 00000
05001 20 500 00000
05002 61 010 05000
05003 14 030 05050
05004 15 030 05051
05005 11 000 00000
05006 10 030 01100
05007 23 030 05051
05010 04 300 00003
05011 61 010 05000

138

Chapter 8—PROGRAMMING

SUBROUTINE Cont'D

05012 04 200 00002
05013 61 000 05020
05014 20 570 00000
05015 61 000 05020
05016 03 000 00036
05017 31 630 05051
05020 36 030 05050
05021 61 101 05000

COMPILERS

In order to write a program for a digital
computer, the programmer must be able to
communicate with the machine. This communi-
cation must be through numbers--the only lan-
guage the machine can understand. Since the
programmer has probably seldom used num-
bers as a means of communication, a serious
handicap exists between man and the machine.

Compilers are devices which accept the
language of the program and translate it into

(ENTER)

A
REMAINDER
A
NECESSARY "\ nO
TO INCREASE
QUOTIENT

ADD I TO
QUOTIENT

124.96
Figure 8-7.—Quotient roundoff subroutine
(basic diagram).

(_ ENTER)

3
:)NO
REMAINDER

YES
3

D < NO)

= 2

R =

YES

4

ADD1 TO
QUOTIENT

124,97
TFigure 8-8.—Quotient roundoff subroutine
(amplified diagram).

numbers comprehensible to the machine.
NELIAC is one such compiler. This compiler
is used with NTDS and is discussed in a later
training course.

The name NELIAC is derived from the much
longer terms ‘‘Navy Electronic Laboratory
International Algol Compiler.’’ The algol (fixed)
language concept was conceived inrecentyears.
Its primary purpose is to standardize the coding
of scientific problems on computers and thereby
eliminate all existing languages and dialects
that are common to only a few computers. In
its ultimate state, it is to be a language
(oriented to the solutions of problems by nu-
merical algorithms) that will be acceptable to
any and all scientific computers.

Thus, the compiler is, in itself, a program
of statement translators. For example, finding
the square root, of AxBxC, is generally a
lengthy process in the computer program re-
quiring several machine coded programmed
instructions. If the compiler program contains
a ‘““‘SQUARE ROOT’’ routine the ‘‘ROOT’’ state-
ment, when requested, will take previously de-
fined operands and extract the square root.
This then requires only a single compiler
statement.

139

DATA SYSTEMS TECHNICIAN 3 & 2

Another feature of the compiler is its use
of symbolic or relative addresses for assign-
ing specific memory addresses. Future refer-
ences to these symbolic addresses will cause
the data in each selected memory address to be
used as an operand. Thus, if symbolic addresses
A, B, and C represent values of 3535, 2525,

and ‘1515, respectively, these values will be
stored at specific address in memory. Now
assume that an AxB/C statement is read in by
the compiler program. The compiler will gen-
erate the machine code to locate the operands,
perform the designated operation, and display
the final result.

140

Chapter 8—PROGRAMMING

REMAINDER YO

STORE QUOTIENT

2
STORE REMAINDER
3 CLEAR A
v
4 DIVISOR —»Q
)
5 | pivipe {AQL

3
;)
7
8
9 A—»Q
G -

ADD 1 TO
" | INITIAL QUOTIENT

124,98
Figure 8-9.—Quotient roundoff subroutine (detailed diagram).

141

CHAPTER 9

ANALOG-DIGITAL AND
DIGITAL-ANALOG CONVERSIONS

There are three general types of computers,
as pointed out in Chapter 2 of thiscourse. These
are: (1) digital, (2) analog, and (3) hybrid. The
selection of a particular type of computer to
perform a certain type of operationisdependent
upon several factors.

One factor involved in this selection is the
method and source of input information. For
example, received from a radar set,anairspeed
probe, or a shaft position are readily accepted
and worked upon by an analog computer, since
this type of data is analog innature. Conversely,
the type of data obtained fromaballistic table, a
census tabulation, oralogistics manual are most
readily accepted and worked upon by a digital
computer, since this type of data is digital in
nature.

A second factor which determines the se-
lection of a specific type of computer is the
methods used for computations. Analog com-
puters cannot function as rapidly as digital
computers, consequently, it is generally more
desirable to use a digital computer where large
amounts of data are to be processed, provided
all other conditions can be satisfied.

Digital computers are generally more ver-
satile than analog computers. Analogcomputers
are designed to solve a specific problem. In
practice then, it would be necessary to have as
many types of analog computers as there are
analogous problems to be solved. Thislimitation
of analog computers gives rise to the use of
analog-digital converters.

ANALOG-TO-DIGITAL CONVERSION

_An analog-to-digital converter is defined as
a device that receives an analog input and
~ supplies a digital output. A converter of this
type is capable of accepting instantaneous values
of a constantly changing variable and expressing
these values in incremental form. The converter
may or may not perform some computation in

addition to
conversion.

The process of analog to digital conversions
is 'not uncommon. Our minds make hundreds
of analog-digital conversions each day. For
example, if you ask a young child what time it
is, he will probably look at a clock and tell you
that the long hand is near the six and the short
hand is near the four. The child is performing
the function of data transmission, not data con-
version. He is accepting the instantaneous value
of the constantly moving hands of the clock, but he
is transmitting the information in analog, not
digital, form. The data which the child trans-
mitted is converted into numerical values, in
this case, four thirty. You, the inquirer, are
therefore performing the analog-to-digital con-
version, the child is not.

Care must be taken to avoid confusing truly
digital read-outs with others that merely appear
to be digital. The needle of a voltmeter or the
pointer on an automobile speedometer provides
analog data by indicating the instantaneous value
of volts or miles per hourina constantly chang-
ing manner. It is only by reading these meters
and assigning numerical values that a truly
digital read-out is obtained. Just as in the ex-
ample of the clock, the human observeris serv-
ing as the analog-to-digital converter. Similarly,.
the type of data that is obtained from a microm-
eter scale or from the mercury column of a
thermometer is analog innature, until converted
by the reader. The accuracy of eachof these de-
vices is, in large measure, a function of the
ability of the reader to convert the information
accurately from analog to digital form.

On the other hand, mechanical counters such
as those commonly used to count the number of
people entering a building provide a true digital
read-out. No great amount of skill is required
for reading such a device because its accuracy
does not depend on the reader, but upon its
design. If each click of the counter corresponds

its primary function of data

142

P Chapter 9—-ANALOG-DIGITAL AND DIGITAL-ANALOG CONVERSIONS

e g

to a count of one, no amount of skill on the part of
the reader will increase its inherent precision.

MECHANICAL TECHNIQUES FOR ANALOG TO
DIGITAL CONVERSION

Probably the simplest method of converting
analog information, such as shaft rotation, into
digital form is the obvious method of connecting
the shaft through a gear drive to a decade coun-
ter. This process is sometimes called shaft
rotation digitation, since each rotation of the
shaft is explained in digital form. One common
application of the gear drive andcounter method
of conversion is used by the mileage counter
(odometer) of an automobile (descrlbed in Math
vol III NP 10073).

In addition to providing a digital read-out
from analog data, the odometer also performs
some simple analog computing. The basic in-
formation is the rotation of a shaft. A gear train
multiplies this by the correct constant to produce
miles per revolution. The data are still in
analog form. After multiplication, the data are
summed by the counter and displayed in digital
form to represent the total miles traveled. The
original input is analog, the computing is per-
formed by means of analog techniques, but the
read-out is digital.

This technique is also used in various other
applications. Many airborne and ship-based
analog computers used in bombing, navigation,
or fire control applications, use this form of
read-out both for output indications and for an

indication of input information that has been

cranked in manually. Although this technique is
simple and widely used, it is of rather limited
value. It can be used for read-out or read-in
purposes only. Since the digital output must be
visually observed on the counter wheels, itcan-
not be used to feed another computer except
through a human operator. Infact, this technique
is not suitable for automatic operation.

Shaft-Position Digitation By Geared Counter

Shaft position digitation is defined as the
process of converting and expressing the in-
stantaneous position of a shaft in digital form.
The simplest method of shaft-positiondigitation
is similar to the technique that has been de-
scribed in connection with shaft-rotation digi-
tation. In the shaft rotation method, where the
total revolutions or a function of total revolu-
tions is.to be read-out, a decade-type counteris

_used in order to obtain relatively high readings.

For position indication, only a relatively small
number of positions are required. Itis therefore
possible to use only one counter wheel which
contains as many digits as may be desired, each
digit representing a definite rotary position of
the shaft.

If the number of positions is very large, a
decade type counter would be helpful. The use of
seven counter wheels could theoretically produce
extremely fine readings, with a resolution as
fine as one second of arc. Two of the wheels,
for example the two right-hand wheels on an
odometer type counter (not shown), could be
used to produce the readings from 00 to 60
seconds; the next two to the leftcould read from
00 to 60 minutes; and the last three from 000 to
360 degrees.

Unfortunately, the similarities between this
technique and the preceding one also reveal the
limitations involved, since this method also
provides only a read-out or read-in device.

Shaft-Position Digitation by Mechanical
Switching

A device that is more useful than the previous
devices in at least one respect can be devised
by replacing the counter with a mechanical
switching arrangement. Either cam-operated
sensitive switches or a multi-position rotary
switch can be used. With this method, the output
is electrical, although the device is basically
mechanical. If each switch or tapfeeds separate
lines, the various output signals will correspond
to each separate shaft position. The signals could
be used either as an input to some type of com-
puting device, or to feed numbered output lamps.

A disadvantage of this device is the physical
limitation associated with the number of posi-
tions that can be read out. Each additional posi-
tion requires the addition of another sensitive
switch, or the use of alarger rotary switch, plus
another lamp. Although such a device might be
practical for applications such as calling out
sixteen main points of a compass, any greater
number of points would require the use of either
an additional coding device or anentirely differ-
ent technique.

Shaft-Position Digitation by Coding Disks
Until now, none of the devices discussed

provide any type of numerical code, although
most devices designed to receive digital inputs

143

DATA SYSTEMS TECHNICIAN 3 & 2

from a converter require the use of some special
code. The most frequently used types of codes
for these applications generally involve some
form of binary coding.

If lamp read-out is desired, the binary sys-
tem will reduce the number of lamps required.
For example, the binary-coded decimal (BCD)
system of counting reduces the number of lamps
required for reading out the numbers between 0
and 9 from ten lamps to four lamps (since 1
lamp is required in each of 4 columns, to be
capable of representing any decimal number
from O to 9 in the binary system).

When you recall that this ratio increases by
* powers of 2, the tremendous advantage of the
binary system becomes readily apparent.
Twenty-two lamps can, in this manner, repre-
sent over a million-and-a-half numbers. The
lamps can be replaced by tubes, transistors,
relays, diode networks, etc., to yield over 1.5
million bits of information in the form of elec-
trical signals.

The coded disk (fig. 9-1) is a device used
for adapting a binary code for shaft position
digitation. If it is assumed that the shaded areas
represent conductors, the light areas represent
insulators, and the small rectangles represent
brushes, the operation of the device can be de-
scribed as follows.

The disk is attached to the associated shaft
so that as the disk rotates ina counterclockwise

BRUSHES

124.99
Figure 9-1.-—The binary coded disk.

direction under the brushes, an ON (‘1’’) signal is
generated each time a brush contacts a dark
area, and an OFF (“‘0”’) signal is generated each
time a brush contacts a light (unshaded) area.
The circles which produce values of 20, 21, 22,
and 23 are as shown at the ‘‘0’’ position
(segment) of the wheel. Thus, the outermost
circle produces the least significant digit (L.SD)
in the code, followed by increasing orders to
the most significant digit (MSD) produced by the
innermost circle.

The binary number represented by each
segment of the disk is read by interpreting the
shaded and light areas in the segment, contain-
ing the brushes, reading from the innermost to
the outermost circle. Read an ‘‘0’’ for each
light area and a ““1’’ for each dark area. The
areas in segment 1 are read 0001, representing
the number 1 in the decimal system. The areas
in segment 12 are read 1100, (BCD) representing
the number 12 in the decimal system. The
brushes are shown in a position which reads
00109, or 210.

Because only four zones are used (20, 21, 22
and 23), the resolution of the diskis 1 part in 16,
(counting zero as 1 part). If a circle which con-
tains 32 alternating ON and OFF areas (each of
which is approximately half the size of the
present outer circle) were added, a resolution of
1 part in 32 could be obtained. The resolution
can thus be increased by afactor of two for each
additional circle that is added.

A circuit can be completed through the disk
by connecting each conducting segment toacon-
ductor on the rear of the disk, which would serve
as a slipring.

Another form of coding disk (not shown)uses
the photoelectric principle of reading outdigital
information. The disk consists of opaque and
transparent segments. A light source is placed
on one side of the disk, and an arrangement of
photocells is placed on the other side. An aper-
ture through which the light must pass in order
to reach the disk replaces the brushes as dis-
cussed in the previous example of coding disk.

Ambiguity With Natural Binary Code

The major difficulty with the coded disk de-
scribed above is illustrated by considering the
disk to be in a position where the output number
is changing from 0011 to 0100 (fig. 9-2).

Because the brushes used for read-out from
the disk cannotbe perfectly aligned, itis probable
that all bits will not change simultaneously. If

144

Chapter 9—ANALOG-DIGITAL AND DIGITAL-ANALOG CONVERSION

OUTPUT FROM
BRUSHES
(SHOWS MISALIGNMENT
OF BRUSHES)

124.100
Figure 9-2. —Coded disk showing erroneous
output due to misalignment of brushes.

the shaft stops at a position where the 22 brush
is in the conductive (shaded) area and the 21 and
20 brushes are not completely in the insulated
(unshaded) areas, the output will be 0111. This
represents an appreciable error. If, onthe other
hand, the 22 brush is not in the shaded area and
the 21 and 20 brushes are in the unshaded areas,
the output will read 0000. This again represents
a large error.

The possibility of large erroris mostsevere
when more than one bit changes value simulta-
neously. Table 9-1, in which the sequentially
changing bits are underlined, reveals how fre-
quently this condition arises. Note that from
0000 to 0011 (from zero to three) only one bit
changes in sequence. Starting with the 0000 in
the natural binary code or binary coded decimal,
alternate numbers require a change in more than
one bit. Thus, the possibility or error is great
and this code is not satisfactory for use in shaft
position digitation.

The most popular code used to circumvent
this problem is the ‘‘Gray’’ code (fig. 9-3)
sometimes called the ‘‘unit distance’’ code. The
Gray Code representation of numbersfrom zero
to fifteen is shown. Note that only one bit changes
value from one position to the next higher or
lower position. In this way, the magnitude of the
error introduced by imperfect alignment of the
read-out brushes or by reading out data from a

Table 9-1.—Natural Binary Code Showing
Sequentially Changing Bits Underlined.

Decimal Natural Binary Code
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000

brush (er brushes) which spans a shaded andun-
shaded section cannot exceed 1. Thus, a 4 may
be read for a 5 or a 7 may be read for an 8.
Larger errors cannot be made.

Most computers are not designed to perform
computations using Gray Code. When this code is
used in the analog to digital conversionprocess,

1000 0000

00l

1010 00i0

1110

olo

1100 0100

124.101
Figure 9-3.—Coded disk (Gray code).

145

DATA SYSTEMS TECHNICIAN 3 & 2

it is necessary to convert the data from Gray
code to binary coded decimal — a form more
suitable for computer use. Decoding matrices of
the type discussed in chapter 5 of this text may
be used for this purpose.

ELECTRICAL TECHNIQUES

The important differences ih the electrical
and mechanical techniques for analog-to-digital
conversion are now noted. They both convert or
‘‘encode’’ analog inputs into digital outputs. Both
types usually make use of a particular zero value
setting as a reference point.

The mechanical encoder (explained earlier)
generally uses some technique for the ON and
OFF switching of a number of electrical con-
tacts on a coded drum (not discussed) or disk,
thereby generating coded digital outputs. The
digital read-out is sometimes accomplished by
causing the mechanical switch to advance a
counter.

The analog input to an analog-digital (AD)
converter which uses the electrical technique for
encoding must first be converted to a voltage.
This conversion is achieved by using some type
of transducer (a device which converts energy
from one form to another, as from mechanical
energy toelectrical energy). Some common types
of transducers are microphones, loudspeakers,
phonograph pickup heads, and synchro systems
which use a transmitter as the input device and
a control transformer as the output device. The
type of transducer usedfor a specific application
depends upon the type of analog information tobe
converted.

In many computerapplications itis necessary
to transform an analog input voltage into aform
more suitable for decoding. A common method
of doing this is to express the magnitude of the
analog input with respect to time. Once a period
to time versus voltage is available to provide a
measure of the magnitude of the analog signal,
it then becomes a relatively simple process to
convert this voltage-with-respect-to-time data
into a digital representation. A giventime inter-
val can be summed and fed into the computer as a
digital input, or displayed on a counter.

Two commonly used methods of performing
analog-to-digital conversionby electrical means
are explained below. They differ mainly in the
method used to determine the magnitude of the
analog input. The first method (called the com-
parison method) used a locally generated saw-
tooth (ramp) voltage as a reference voltage with

which the analog voltage is compared. The
second method determines the magnitude of the
analog input by means of a coding tube.

Comparison Method

The block diagram of figure 9-4 is used to
illustrate the comparison method of determining
the magnitude of the analog input.

Generally the arm of the potentiometer is
mechanically linked to the device which produces
the analog signal, i.e., the float in a tank, the
temperature gauge, the pressure gauge, or the
servomechanism. Used in this way, the po-
tentiometer and the regulated source voltage
serve as a transducer to convertthe mechanical
input into an electrical output.

Because each pos1t1on of the potentiometer
arm produces a different value of voltage between
its arm and ground, each position is unique in
its content.

Thus, each position is consideredasa speci-
fic address called the ‘‘analog address.’’ It
should be noted that in theory a total possible
number of addresses greater than any pre-
assigned number can be obtained from the arm
of the potentiometer. Thus, no attemptis made to
assign specific address numbers to the various
positions of the potentiometer arm when it is
used in this manner.

A specific address number can be assigned
to each position of the potentiometer arm if the
movement of the arm across the ‘‘pot’’ is made
in a specified number of steps rather than by
continuous movement. This, of course, is ac-
complished only by sacrificing accuracy. If
specific steps are used the accuracy of the input
data increases as the number of evenly spaced
taps or steps across the ‘‘pot’”’ increases.

Two inputs are applied to the comparator in
figure 9-4. These are: (1) the analoginputfrom
the potentiometer, and (2) a linear sawtooth
voltage from the function generator. The function
generator output is initiated each time a start
signal is applied. The start signal also enables
the gate circuit.

As long as the analog and function generator
inputs to the comparator differ in magnitude, the
clock pulse generator willbe permitted to trans-
mit pulses at a constant repetition rate through
the gate into the digital counting circuits in the
counter. When the two inputs to the comparator
become equal (as a result of the linearly rising
sawtooth) the comparator will generate a stop
signal which disables the gate circuitand ends the

146

Chapter 9—ANALOG-DIGITAL AND DIGITAL-ANALOG CONVERSION

MECHANICALLY LINKED TO
SOURCE OF ANALOG INPUT
Ll

REGULATED
SOURCE

COMPARATOR

SAWTOOTH
l (RAMP)
ZERO VOLTAGE
REFERENCE -——
LEVEL —p
TIME—» | FUNCTION
GENERATOR

!

START #
SIGNAL

> DIGITAL
OUTPUT

COUNTER

CLOCK PULSE
GENERATOR

124.102

Figure 9-4. —Determining the magnitude of an analog input using the comparison method.

comparison time interval. The disabled gate
circuit blocks the flow of pulses from the clock
pulse generator to the counter.

The number of pulses accumulated in the
counter during the comparison time interval is
proportional to the amplitude of the analog input
voltage. The counter indication is the desired
digital representation.

Sawtooth generators of the ‘‘Bootstrap’’ type
produce output voltages with sufficient linearity
to be used as the basic circuit of the function
generator. However, linearity is not the only
consideration. The slope of the sawtooth voltage
must also be controlled since the counter sums
the fixed frequency pulses throughout the time
interval required for the sawtooth voltage to
equal the voltage of the analog sample. Hence,
even if the sawtooth were perfectly linear, any
variation in its slope would cause the total num-
ber of pulses accumulated in a given period to
vary accordingly.

The clock pulse generator is a stable pulse
oscillator, It may be a form of stabilized
multivibrator. The counter is usually an ar-
rangement of flip-flops of the type discussed
in chapter 4.

Coding Tube Method

The coding tube method uses a specially
designed cathode-ray tube (fig. 9-5). The special
features of the tube are in the form of a grid,
which contains rows of coded slots, and a special
sensing element.

The coding tube method of performing analog-
to-digital conversion consists of the following
operations. The voltage that is to be converted
is connected (after amplification) to the vertical
deflection plates. A linear sawtooth sweep volt-
age is connected to the horizontal deflection
plates. The connections to the vertical and
horizontal deflection plates are not shown. The
stream of electrons, which is emitted, focused,
and accelerated by the electron gun, is positioned
vertically on the grid so that it strikesa partic-
ular line of slots thatcorrespond to the amplitude
of the voltage to be converted.

The linear sawtooth voltage onthe horizontal
deflection plates causes the beam to be scanned
across the line of slots. This action causes a
coded image to be developed on the sensing
element, which serves as the digital read-out
device.

147

DATA SYSTEMS TECHNICIAN 3 & 2

SENSING
ELEMENT

CODED GRID

HORIZONTAL
DEFLECTION

20.320
Figure 9-5.—The cathode-ray coding tube.

High speed is the main advantage of the coding
tube method of conversion. The disadvantages
are that its accuracy is limited by the linearity
of the scanning beam, and by the beam diameter
or spot size. The greater the spot size the less
reliable is the result.

DIGITAL-TO-ANALOG CONVERSION

