An IT Legacy Paper for November '17

- History of the ERA formation and ensuing Corporate names – excludes the defense systems path to LMCO
- 1100/2200 Evolution
- Technology history of the systems
- The evolution of the computer circuit technologies.
- Slide Credit to R. Angvall via Ron Q. Smith

Stuff Happens

B.C. 30,000-17,000 Paintings of animals made in caves by Stone Age artists

3000-2050 Ur of the Chaldeans; occupied before 3000

2650-2500 Pyramids of Gizeh, near Cairo, erected

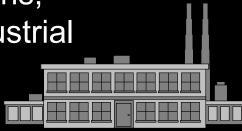
1900-1700 Stonehenge, Salisbury Plain, England; Stone Age circle of stones

1800 Babylonian King Hammurabi's code of laws set in stone 1450 Mycenaeans wrote in Linear Script B on clay tablets

1200 Fall of Troy

705-681 Sennacherib built up Nineveh

500-400 Athen's Golden Age


100 First of Dead Sea Scrolls - Biblical manuscripts written

A.D. 650-670 Burial of Saxon ship and treasure at Sutton Hoo

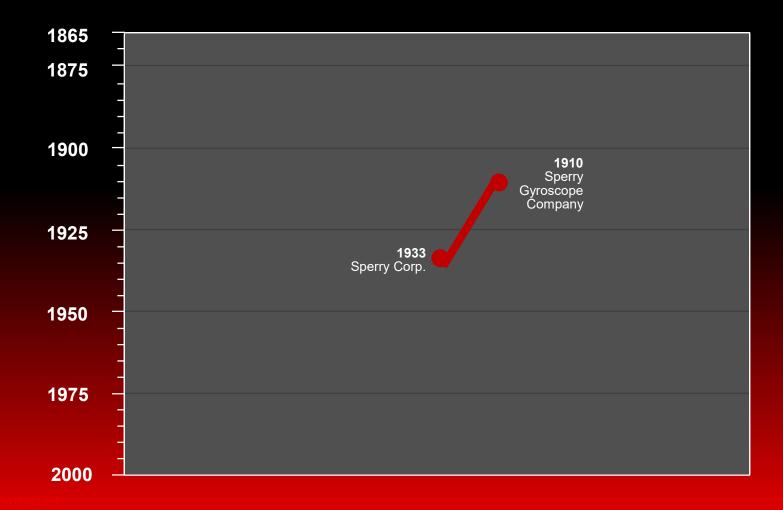
Some Time Later...

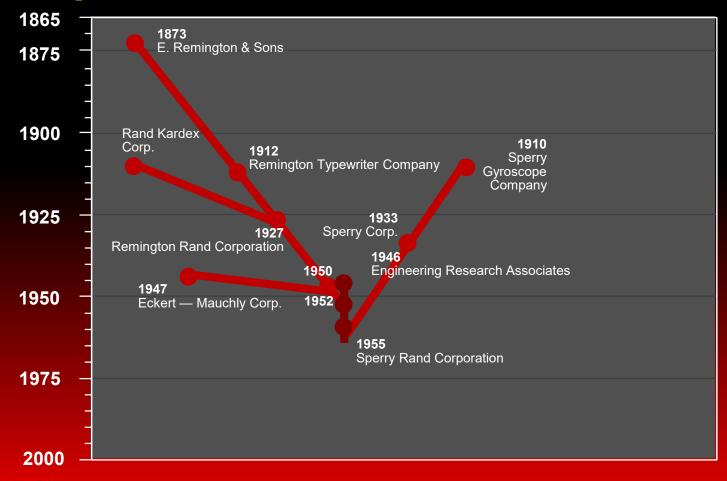
- A few centuries, wars, famines, kings, queens, caesars, czars and presidents later the industrial revolution began to change our lives
- Bicycles, automobiles, trains and airplanes began to change our lives even more
- A device or system that is capable of carrying out a sequence of operations in a distinctly and explicitly defined manner was created to change our lives in ways never imagined

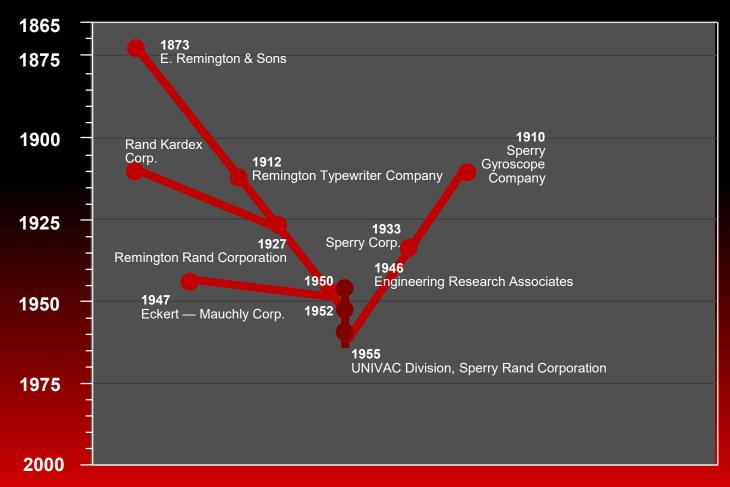
History

- Tree branches to the corporate family tree
 - -E. Remington and Sons, founded in 1873
 - -Sperry Gyroscope Company, founded in 1910
 - –American Arithmometer Company, founded in 1886

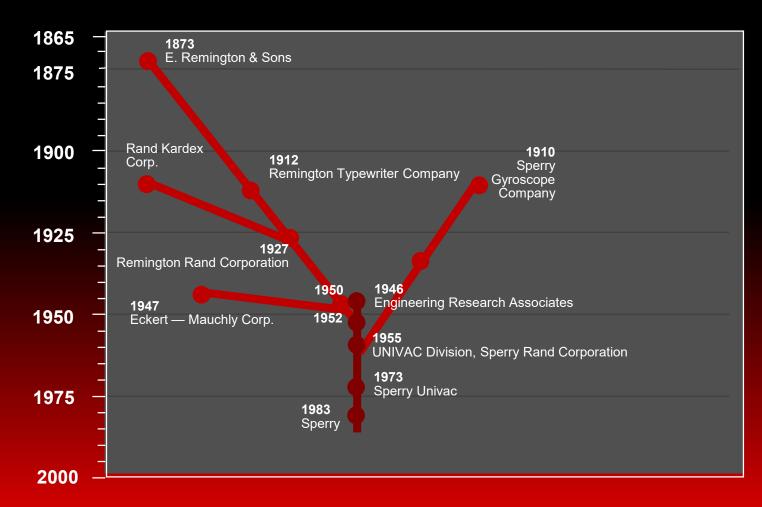
The E. Remington Branch

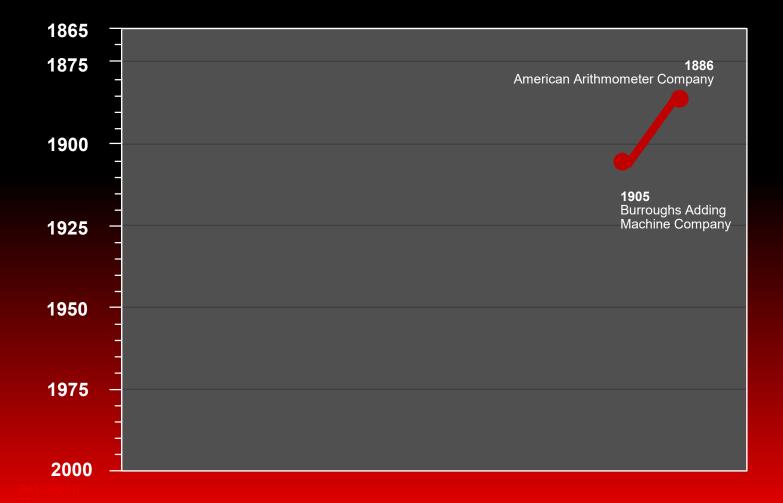

The Entrance of Eckert-Mauchly Corporation

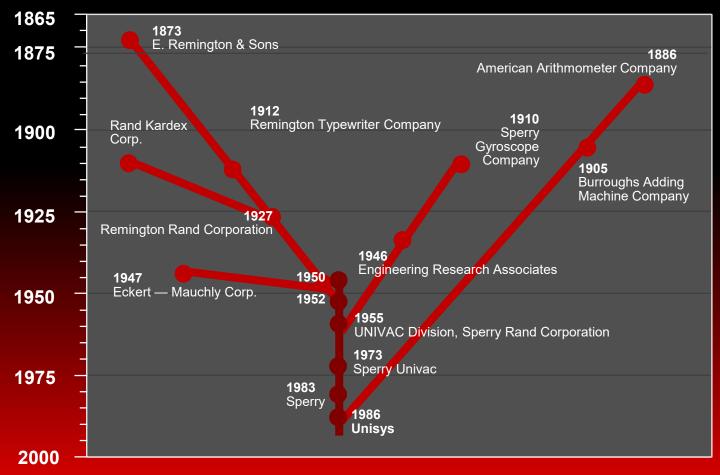

The Entrance of ERA


The Sperry Gyroscope Branch

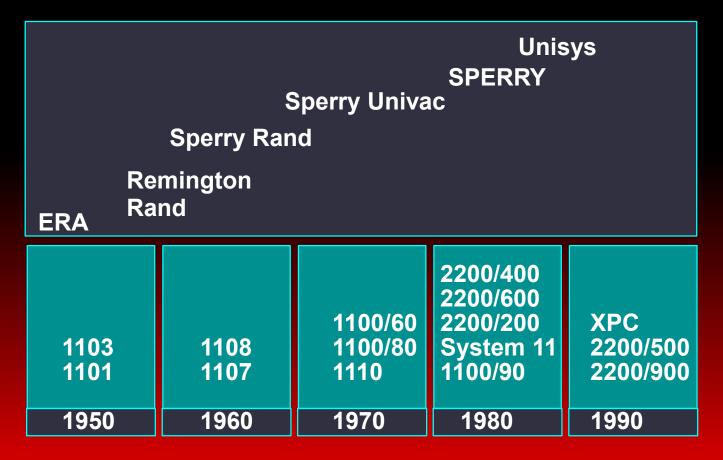
The Formation of Sperry Rand Corporation


The Formation of Univac


The Name Change to Sperry Univac

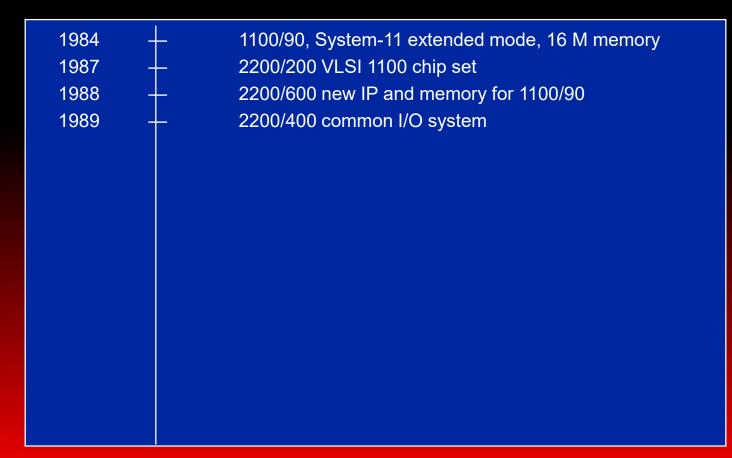

The Name Change to Sperry Corp.

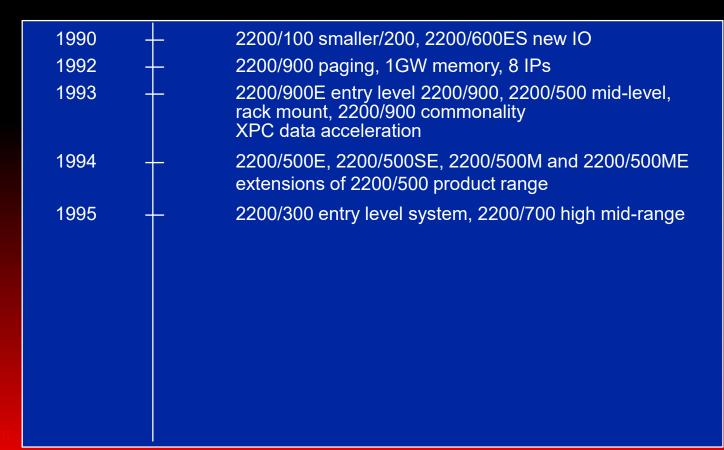
The American Arithmometer Branch



The Formation of Unisys

RA12392-HT


1100/2200 Evolution


1100 System Timeline


1947		ERA starts work on Task 13
1950	+	Atlas I delivered to Navy
1951	+	1101 24 bits, 16K, drum memory
1953	+	1103 36 bits, 8K, core memory
1957	+	1105 faster, 12K, core memory
1961		1107 65K thin film registers, two banks
1965		1108 131K core memory, guard mode
1968		1108A 262K memory, multiprocessing
1969		1106 slowed down 1108A
1972	+	1110 262K plated wire, 1M extended storage, 6 processors
1975	+	1100/20, 1100/40 semiconductor memory
1977		1100/80 4M memory, cache
1979		1100/60 extended instruction set
1981		1100/70 1 cabinet 1100/60

1100 System Timeline C-Series Architecture

1100 System Timeline M-Series Architecture

1940s ERA Atlas I

• U.S. Navy Task 13 started August, -1947 delivered in 1950

- CPU
 - -24-bit word
 - -5 microsecond integer add + memory access

1940s ERA Atlas I, (cont'd)

• Memory

-16K word magnetic drum

-32 - 17,000 microsecond access time

• Technology

-2,695 vacuum tubes (18 types)

-2,385 diodes

- Commercial version of Atlas I
- First "1100"
- Task 13 = 1101 binary
- 24 bit word
- Vacuum tube amplifiers

- Crystal diode logic
- Magnetic drum memory
- Input paper tape
- Output paper tape and typewriter

- 36 bit word
- First commercial use of "1100"
- 3,900 tubes, 5,000 diodes
- 16K word drum memory
- 1K word electrostatic storage tube first five units

- 1K core memory next four units
- 4K core memory (1103A)
 -420 tubes, 2,2000 diodes
 -12 microsecond cycle time

- Transistor/diode logic
- 80 nanosecond logic gate
- Wire wrap backpanel
- 65K word core memory -4 microsecond cycle
- Magnetic film memory 128 words

 Original General Register Set (GRS)
 0.6 microsecond cycle

- High-end system
- Multiprocessor organization
- Improved transistor/diode logic circuit
- 15 nanocsecond logic gate
- Four to five times 1107 performance

- One bit integrated circuit chip –Replaced magnetic film memory –0.125 microsecond cycle time
- 64K word core memory cabinet -0.75 microsecond cycle time
- 256K word maximum on system

- Mid-level system
- Slower version processor of 1108
- Cost reduced 1.5 microsecond core memory

- 1108 follow-on
- Integrated circuit logic
- 10 nanosecond gate switching delay
- 12 or 14 integrated circuit board layers
- Two level memory

- Cost reduced core memory
- Plated wire memory
 –300 nanosecond read cycle
- Separate I/O cabinet

1970s 1100/40

- Upgraded 1110 system
- Metal Oxide Semiconductor (MOS) memory replaces core and plated wire memory

1970s 1100/80

- 1110 follow-on
- Emitter Coupled Logic (ECL)
 –3 nanosecond logic gate
- Precision multilayer printed circuit cards
- Multilayer backpanels

1970s 1100/80

- Cache memory organization
- All semiconductor memory -4K: 16K bit chips
- Two million words per cabinet

1970s 1100/60 and 1100/70

- 1106 follow-on
- Multimicroproccessor CPU
- Microprogrammed logic
- 12 or 14 integrated circuit board layers

1970s 1110/60 and 1100/70

- Single cabinet –CPU, memory, I/O
- Greatly expanded 1100 user base
- Several generations of memory chips

1980s 1100/90

- 1100/80 follow-on
- 3.5 times performance of 1100/80
- LSI logic
- 390 picosecond gate switching delay
- 300 gates per chip
- 6000 chips per processor

1980s 1100/90

- 19 or 22 integrated circuit board layers
- 52 integrated circuit boards per processor and cache
- 64K memory chips
- 96 I/O channels

1980s 1100/90

- Instruction processor, memory and I/O built in accordance with the C-Series architecture
- Introduced "Extended Mode" processing
- Foundation for the "New Programming Environment"

- Low-end systems
- CMOS VLSI chip set

 Six chip, 1100 CPU
 30,000 gates per chip
- One card processor
- 256K memory chip
- Bus and I/O modules carried over from System 11

- 1100/90 follow-on
- 2+ times performance of 1100/90
- VLSI logic
- 200 picosecond gate switching delay
- 2000 gates per chip

- 24 integrated circuit board layers
- 18 integrated circuit boards per processor and cache
- 1 megabit memory chips (4-16MW/cabinet)
- 96 I/O channels

- 1100/60-70 follow-on
- 2 to 3 times performance of 1100/60
- VLSI CMOS logic
- 5 nanosecond gate switching delay
- 125,000 gates per chip
- 2381 chips per processor

- 12 integrated circuit board layers
- 1 integrated circuit board per processor and cache
- 1 megabit memory chips -(16MW max - 4MW/board)
- New CMOS VLSI I/O section

- New compact, low end system
- Extension of 2200/200
- Integrated peripherals

1990s 2200/600ES

- Extension of 2200/600
- Single cabinet CPU and memory
- CMOS VLSI I/O modules
- Less space, less power consumption

- 2200/600 follow-on
- 2 times performance of 2200/600
- VLSI logic
- Multi chip RAM/gate array logic
- 100 picosecond gate switching delay
- 9000 gates per chip

- 197 chips per processor
- 50 integrated circuit board layers
- 1 integrated circuit board per processor and cache
- 1 megabit memory chips -(64MW-128MW/cabinet)
- 384 I/O channels

- Increased processing capacity with up to 8 instruction processors
- New second level cache (SLC)
- Dramatic increase in memory size up to 512MW
- New System Control Facility
- Extended Processing Architecture providing enabling technologies for extension and growth

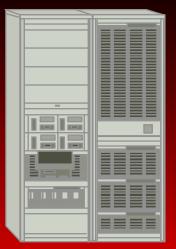
- Instruction processor, memory and I/O built in accordance with the M-Series component of the Extended Processing Architecture
- Extends capabilities of "Extended Mode" processing
- Provision of expanded physical memory and virtually unlimited logical memory provides new paradigm for progamming

1990s 2200/900E

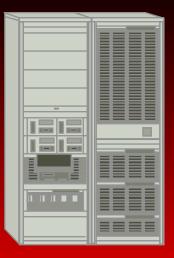
- Speed reduced 2200/900
- Limited models
- Field upgradable to 2200/900

- Low-end and mid-level system
- 2 1/2 to 3 times performance of 2200/400
- VLSI logic
- 500 picosecond gate switching delay
- 300,000 gates per chip, ca.100,000 used
- 18 chips per processor

- 22 board layers
- 1 integrated circuit board per processor and cache
- 1 megabit memory chips -(32-128MW/cabinet)
- 128 I/O channels (4 cabinets)


1990s 2200/500

2200/900 commonality

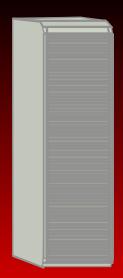

- -IP/SC design translated to CMOS
- -SCSI and BMC channels
- -System control
- -Software

• The second XPA based system

- -Successor to C Series
- –Based on M-Series

- Many model ranges:
 - -Entry
 - -2200/500SE
 - -2200/500E
 - -2200/500ME
 - -Midrange
 - -2200/500 1x 4x
 - -2200/500M
 - -Upper Midrange
 - -2200/500 5x 8x
- UC36 Unisys common packaging
- 19" rack mountable components

1990s Extended Processing Complex


- An intelligent memory-based CEC component that connects to one or more hosts
- Accelerates I/O transfers
- Provides multi-host file-locking and communication
- Improves resource management

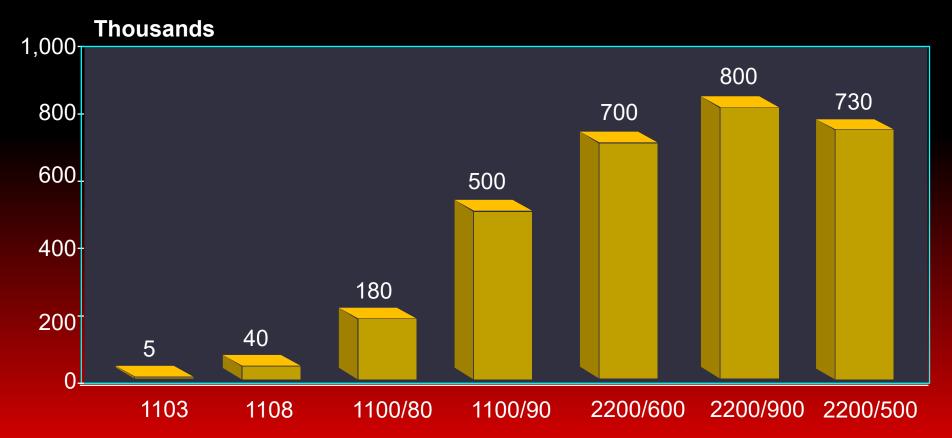
1990s Extended Processing Complex

Many new components Host based Data Mover (DM) XPC based Host Interface Adapter (HIA) Light pipes connecting DMs to HIAs . . .

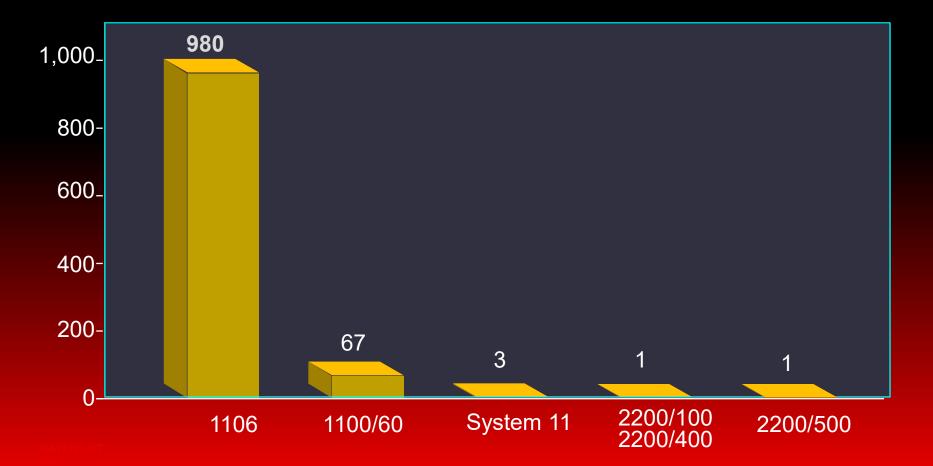
• Multiple models, with optional memory sizes

Advances in 2200 Series Processor Technology

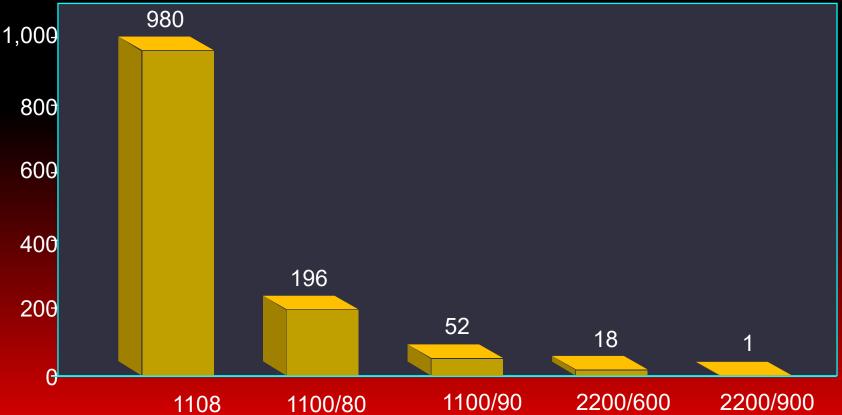
	1100/90	2200/600	2200/900	2200/500
Year of Intoduction	1984	1989	1992	1993
Gates/Chip	300	2,000	9,000	300,000 ca. 100K used
Gate Switching Delay	390 nsec	200 psec	100 psec	500 psec
Gates per Processor	600,000	630,000	824,000	731,000
Chips per Processor	6,000	850	196	18
Boards per Processor	52	18	1	1



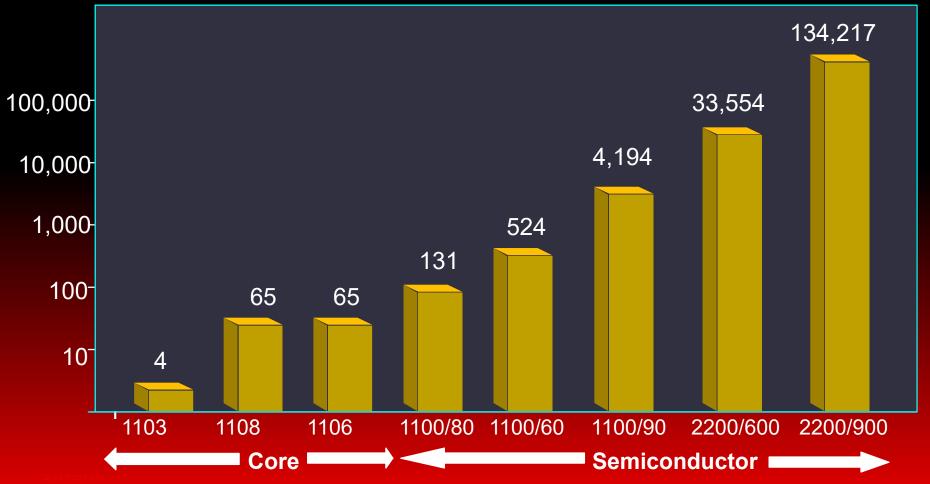
Technology Trends


Technology trends have developed from generation to generation

- -Increase in logic density per chip
- -Decrease in basic gate switching delay
- -Decrease in chips per processor
- -Increase in layers per IC board
- –Decrease in IC boards per processor
- -Increase in processors
- -Increase in I/O connectivity


Processor Logic Gates

Processor Printed Circuit Cards Low - Medium Performance Systems



Processor Printed Circuit Cards High Performance Systems

Memory Capacity per Cabinet

Thousands of Words

