NAVSEA 0967-LP-598-2250

CMS-2M
LANGUAGE

REFERENCE BOOKLET

REVISION B

SEPTEMBER 1982

NAVSEA 0967-LP-598-2250
CMS-2M LANGUAGE

This booklet is a quick reference for programmers and operators using the
machine-transferable CMS-2M compiler for the AN/UYK-20, AN/AYK-14, and
AN/UYK-44 at Revision level 12.

The CMS-2M compiler is hosted on the following computers and operating systems.

Version Computers Operating Systems
01 Univac 1100 Series EXEC 8 (Level 28 or later)
02 AN/UYK-20 Level 2
03 IBM 360 Series SYSTEM/360 0.S. R21.8

IBM 370 Series 0S/VS2 (SVS) R1.7

0S/VS2 (MVS) R3.7
KRONOS 2.1, NOS 1.0
(excluding NOS/BE 1.0)

04 CDC 6000 Series
CYBER 70 Series
CYBER 170 Series

06 DEC-10 KA10 Series
DEC-10 KI10 Series
DEC-10 KL10 Series

07 AN/UYK-7

TOPS-10 Operating System
(7.01)

SHARE/7 Operating System
(Level 4 or later)

GCOS Level F or higher
VM/370-CMS Version 3

VAX/VMS Operating System
(Version 2.4)

TRW/TSS Operating System

SCOPE 3.4
NOS/BE 1.0

09 Honeywell 6000 Series
10 IBM 370 Series
1 DEC VAX-11/780

12 CYBER 176 Series

13 CDC 6000 Series
CDC 70 Series
CDC 170 Series

14 DECSYSTEM-20 Series TOPS-20 Operating System

(Monitor 4)

Reference Documents

User’s Handbook for Support Software
NAVSEA 0967-LP-598-2040, VOL. IV CMS-2M

User’s Handbook for Support Software
NAVSEA 0967-LP-598-2030, VOL. Il Hardware

Computer Program Performance Specification for CMS-2M Compiler
NAVSEA 0967-LP-598-2210

AN/AYK-14 Programmers Reference Manual (Preliminary)
AN/AYK-14 Programmers Reference Card (Preliminary)

To obtain further information and to order additional copies of this booklet, please contact:

Denise Johnson

Naval Sea Systems Command
Code PMS-4082

Washington, D.C. 20362
(202) 692-8204

CHARACTER SETS

CHARACTER SETS (continued)

FIELD
CHARACTER ASCII DATA | EBCDIC | DISPLAY | BCD
0CT. | HEX. 0CT. HEX. 0CT. 0CT.
NUL 00 00 00
SOH 01 01 01
STX 02 02 02
ETX 03 03 03
EOT 04 04 37
ENQ 05 05 2D
ACK 06 06 2E
BEL 07 07 2F
BS 10 08 16
HT 1 09 05
LF 12 0A 25
VT 13 0B 0B
FF 14 0c 0c
CR 15 0D 0D
S0 16 0E 0E
Sl 17 OF OF
DLE 20 10 10
DC1 21 1 1
DC2 22 12 12
DC3 23 13 -
DC4 24 14 3C
NAK 25 15 3D
SYN 26 16 32
ETB 27 17 26
CAN 30 18 18
EM 31 19 19
SUB 32 1A 3F
ESC 33 1B 27
FS 34 1C 22
GS 35 1D -
RS 36 1E 35
Us a7 1F =
SP (Space) | 40 20 05 40 55 20
! (Exclamation)| 41 21 55 5A 77
" (Quotes) 42 22 Ik 76
(Number) 43 23 03 7B 13
$ (Dollar) 44 24 47 5B 53 53
% (Percent) 45 25 52 6C 74
& (Ampersand) | 46 26 50 3?2
' (Apostrophe) | 47 27 72 7D 64 57
((Left 50 28 51 4D 51 35
Parenthesis)

FIELD

CHARACTER ASCII DATA | EBCDIC | DISPLAY | BCD

0CT. | HEX. 0CT. HEX. 0CT. 0CT.

) (Right 51 29 40 50 52 55

Parenthesis)

* (Asterisk) 52 2A 50 5C 47 54

+ (Plus) 53 2B 42 4F 45 60

, (Comma) 54 20 56 6B 56 73

= (Minus) 55 2D 4 60 46 52

. (Period) 56 2E 75 4B 57 33

| (Slant) 57 2F 74 61 50 61

0 60 30 60 FO 33 0

1 61 31 61 F1 34 1

2 62 32 62 F2 35 2

3 63 33 63 F3 36 3

4 64 34 64 F4 37 4

5 65 35 65 F5 40 5

6 66 36 66 F6 4 6

7 67 37 67 F7 2 7

8 70 38 70 F8 43 10

9 7l 39 Al F9 44 1

. (Colon) 72 3A 53 7A 00 15

; (Semicolon) | 73 3B 73 5E 7 56

< (Less than) | 74 3C 43 4C 72 36

= (Equals) 75 3D 44 7E 54 75

> (Greater 76 3E 45 6E 73 16
than)

? (Question 7 3F 54 6F = 1w
Mark)

@ (AY) 100 40 00 7C - 14

A 101 4 06 C1 01 21

B 102 2 07 c2 02 22

C 103 43 10 C3 03 23

D 104 44 1 C4 04 24

E 105 45 12 5 05 25

F 106 46 13 6 06 26

G 107 47 14 c7 07 27

H 110 48 15 c8 10 30

| 111 49 16 c9 1 31

J 112 4A 17 D1 12 4

K 113 4B 20 D2 13 42

L 114 4C 21 D3 14 43

M 115 4D 22 D4 15 44

N 116 4E 23 D5 16 45

0 17 4F 24 D6 17 46

P 120 50 25 D7 20 47

CHARACTER SETS (continued)

CHARACTER SETS (continued)

FIELD
CHARACTER ASCIl DATA | EBCDIC | DISPLAY | BCD
OCT. | HEX. 0CT. HEX. 0CT. 0CT.

Q 121 51 26 D8 21 50
R 122 52 27 D9 22 51
S 123 53 30 E2 23 62
T 124 54 31 E3 24 63
] 125 55 32 E4 25 64
v 126 56 33 E5 26 65
W 127 57 34 E6 27 66
X 130 58 35 E7 30 67
Y 131 59 36 E8 31 70
z 132 5A 37 E9 32 I8

(Left 133 5B 01 AD 61 12

Bracket)

(Reverse 134 5C 57 EO = 37

Slant)

(Right 135 50 02 BD 62 34

Bracket)

(Circumflex) | 136 5E = - = 40

(Underline) | 137 5F = 6D = e

(Grave 140 60 e 79 = -

Accent)
a 141 61 = 81 = =
b 142 62 = 82 = =
(% 143 63 = 83 = =
d 144 64 = 84 = =
e 145 65 = 85 = =
f 146 66 = 86 = —
(i 147 67 = 87 = =
h 150 68 = 88 = =
i 151 69 = 89 = =
j 152 6A = 91 = =
k 153 6B = 92 = =
| 154 6C = 93 = =
m 155 6D = 94 = =
n 156 6E = 95 = =
0 157 6F = 96 = =
p 160 70 = 97 = =
q 161 Al = 98 = =
r 162 72 = 99 = =
s 163 73 = A2 = =
t 164 74 = A3 = =
u 165 75 = A4 = =
v 166 76 = A5 = —
w 167 77 = A6 = =

IELD

CHARACTER ASCII ’[—-JE%A EBCDIC | DISPLAY | BCD

OCT. | HEX. 0CT. HEX. 0CT. 0CT.

X 170 78 = A7 = =

y i 79 = A8 = =

z 172 7A = A9 = =

{ (Left Brace) | 173 7B = 8B = =

| (Vertical 7 e - - - -
Line)

} (Right 175 7D = 9B = =
Brace)

~ (Tilde) 176 7E = = = =

DEL 177 7F = 07 = =

NOTATION OF STATEMENTS AND OPERATIONS

Each description of a statement or an operation in this reference booklet uses a uniform
system of notation to define the structure of the statement. This notation is not a
part of CMS-2M, but is a standardized notation that may be used to describe the syntax
(construction) of the CMS-2M language. It provides a brief but precise means of
explaining the general patterns that the language permits. It does not describe the
meaning of the statement or operations; it merely describes structure; that is, it indicates
tfllle order in which the operands must appear, the punctuation required, and the options
allowed.

The following rules explain this standard notation:

1) A word written in lowercase letters represents the type of entry to be made
by the programmer. This word may be hyphenated.

name denotes an entry of a name.
data-unit-name denotes an entry of a data unit
name.

2) A word written in uppercase letters or special characters denotes an actual
occurrence of that word or character in the language.

name EQUALS tag-expression allows a symbolic name denoted
by name to be associated with
the value defined by a tag
expression.

3) Braces { } are used to denote a choice. The units from which a choice
may be made are stacked vertically within the braces. At least one of the
units within the braces must occur in the statement.

S indicates that either S, N, or A
2 must appear in the statement.

4) Square brackets [] are used to denote options. When one unit is enclosed
in brackets, the unit may or may not appear. When more than one unit
is enclosed in brackets, any one of the alternative units may or may not
be chosen to appear. In either case, it is possible that no unit may appear.
It is generally not possible that more than one unit will appear.

[name] indicates that a name may
appear in the statement format.
However, this unit is not required.

5) The use of @ e e e denotes that the type of entry indicated by the word
preceding @ e @ may appear one or more times in succession, where each
entry is delimited by the word preceding ®. This does not imply that all
entries should be identical. It does imply, however, that all entries should
be the same type of entry indicated by the word preceding the three dots.
Where there are two or more entries, they are separated by commas ().

indicates that one or more data
unit names may occur in
succession as entries, separated
by commas. Thus, the following
would be a |Bﬂaf entry: ALPHA,
BETA, GAMMA.

edata-unit-namee e o

6) A word written in lowercase letters and underlined represents a descriptive
term that may be applied to a parameter.

6

computer

UYK20 indicates that this parameter
AYK14 identifies the target computer

When a descriptive term has been defined once with a list of alternatives,
the alternatives are not listed in subsequent appearances of the underlined
descriptive term. For example, the first time the term type is used, the
possible alternatives for type are given. In subsequent réferences just the
descriptive term type is used.

7) Editorial Comment — For statements that are physically too long to be
completed on one line, the lines following the first are indented to signify
continuation. The dollar ($) character signifies the end of a CMS-2M
statement and is not part of the standard notation.

CMS-2M STATEMENTS

The statements within each of the sections for CMS-2M are given in alphabetical order
by using the statement symbol.

STATEMENT FORMAT

CMS-2M source cards consist of a card identification field in columns 1 through 10
and a statement field in columns 11 through 80 as shown in the following:

cC cC cC cC
1 10 1 80

CARD
IDENTIFICATION STATEMENTSSTATMENTS ...

The identification field may be used for program identification and sequence numbers
and has no effect on program compilation.

The statement field has a free format. Each CMS-2M statement is terminated by a
dollar ($). There may be more than one statement on a card or a statement may require
more than one card. A statement will continue in columns 11-80 of each card until
a dollar is encountered. If a symbol or string of characters is to span two cards, the
first part must end in column 80 of the first card and the second part must start in
column 11 of the second card.

Names, compiler keywords, and constants must be separated from each other by a
blank character or a delimiter. When a delimiter is used as a separator, blank characters
are not necessary but may be used if desired. A blank character may not be used
within a name, compiler keyword, constant, or between the name and the period character
in a statement label.

An embedded comment may be used within a statement. An embedded comment consists
of 2 consecutive apostrophes () followed by comment text and terminated by 2
consecutive apostrophes. The comment text may not contain a dollar. The embedded
comment is replaced by a single blank character during statement processing.

BASIC DEFINITIONS

(" Boolean-expression
oolean-expression)

numeric-expression | EQ numeric-expression
NOT

GT
LTEQ
GTEQ
LT
Boolean-function-call
Boolean-data-unit
Boolean-constant
COMP Boolean-expression
Boolean—expression(

LS
< character-constant >
H (character-sfring)

data-unit

name

name (name)

name (enumeric-expressione e e)

name (enumeric-expressione e e, name)

expression
Boolean-expression
literal-expression
numeric-expression

labels
name .
labels name

literal-expression
fteral -aaga—umf
literal-function-call
character-constant

numeric-constant

Uoctal-integer [-[octal-integer]])

0 (.octal-integer

.decimal-integer [E [+} decimal-integer]
X (hexadecimal number [.[hexadecimal number]])
X (.hexadecimal number)

numeric-expression
(numeric-expression)
numeric-function-call
numeric-data-unit
numeric-tag

+ | numeric-expression

numeric-expression [+ | numeric-expression

*

/

AND > Boolean-expression
OR J

decimal-integer E.[decimal—integer]] [E [+] decimal-integer]

numeric-tag

e
FET numeric-constant

PROGRAM STRUCTURE STATEMENTS
COMMENT comment-text $
Character-string
((EJECT

CSWITCH name $
END-CSWITCH name $
name SYSTEM §
END-SYSTEM name $
TERMINATE §
HEADER DECLARATIVE STATEMENTS
CMODE | conversion-mode $
SINGLE
DOUBLE
FLOAT
QUAD
CSWITCH ecswitch-iteme @ @ §
where: | cswitch-item
name
DELETE
name EQUALS tag-expression $

name HEAD $§
END-HEAD name $

name MEANS character-string $
OPTIONS |computer [eoptione © o] $
UYRZU
AYK14
AYK1410P
UYK44
where: (* option
SOUURCE
ASM [(INLINE)]
HEX
REF (level)
PSTRUCT C
ERROR W
MATHPAC (EAU) E
FLOAT
TAPE [(character-string)]
LINE (lines-per-page)
DCREG

~

GRMCHK
_ OBJECT (DEBUG) -
SYS-INDEX eregister-number namee e e $

SYSTEM DATA DECLARATIVE STATEMENTS

CMS-2 §
DIRECT §
FIELD name

(EXTREF)

Loy

| o

(EXTREF)

ko

sys-dd-name

type [starting-word starting-bit]

[P epreset-iteme o o] §

where: | type
=
B
A number-of-bits S\ number-of-fractional-bits
| number-of-bits S
H number-of-characters

where: preset-item

numeric-tag

character-constant

CORAD (data unit)

repeat-count (numeric-tag)
repeat-count (character-constant)
repeat-count (CORAD (data unit))

gUNCTION function-name (eformal-input-parametere e e) type

name
CORAD (name)

ITEM-AREA enamee e @ $

Where {formal—ingut—parameter}

LIKE-TABLE name [number-of-items] $

PROCEDURE procedure-name [INPUTeformal-input-

parametere e o]
[OUTPUT enamee e ¢] §
P-SWITCH p-switch-name [INPUTeformal-input-
arametere o o]
FOUTPUT ® namee @ o] §

procedure-list
procedure-name $
procedure-list procedure-name $
END-SWITCH p-switch-name $
SYS-DD §

END-SYS-DD sys-dd-name $

10

| e

| (]

|]

TABLE name A packin [INDIRECT]edimensione e e
Ws_—gper—item
NONE

MEDIUM
DENSE

(type)

TABLE name < x} packing [INDIRECT] number-of-items $

END-TABLE name $
VRBL variable-list
name
(enamee o o)
type
P preset-ta $
nume_nc-éag
character-constant
CORAD (data unit)

SYSTEM PROCEDURE STATEMENTS

[(EXTDEF)]

[(LOCREF)]

[loc-dd-name]

[(EXTDEF)]

(LOCREF)

Sys-proc-name

FUNCTION function-name (eformal-input-parametere e e) type $
END-FUNCTION function-name $
FUNCTION function-name (eformal-input-parametere @ @) type $
LOC-DD f[access| &
=
W
END-LOC-DD [loc-dd-name] $

PROCEDURE procedure-name [INPUTeformal-input-

arametere o o]
FOUTPUT enamee o o] $
END-PROC procedure-name $

PROCEDURE procedure-name [INPUTeformal-input-

arametere o o]
FOUTPUT enamee o o] $
SWITCH switch-name $
label-list
abel
label-list label $
END-SWITCH switch-name $
SYS-PROC $

END-SYS-PROC sys-proc-name $

PROCEDURE BODY STATEMENTS

[begin-labels]

[labels]

[for-labels]
[labels]
[labels]
[labels]
[labels]
[labels]
[labels]

[labels]
[labels]

[labels]

[vary-labels]

BEGIN [efor-valuee o o] $

where: for-value
constant-numeric-value
character-constant

END block-label $
begin-Tabel
for-label
vary-label

ELSE (" simple-statement
direct-code-block
vary-block
begin-block
comment-statement
cswitch-statement
set-statement
procedure-call-statement
p-index-statement
stop-statement
return-statement
resume-statement
goto-statement
_ for-block J

R

FOR expression ELSE simple-statement $

GOTO label $

GOTO switch-name numeric-expression [INVALID label] $
IF Boolean-expression THEN simple-statement §
LOC-INDEX enamee @ @ §

procedure-name [INPUT efexpressionje e e]
OUTPUT edata-unite e e] $

p-switch-name USING numeric-expression [INVALID label]
INPUT efexpressionje @ @
OUTPUT edata-unite e @] $
RESUME vary-label $
RETURN [(expression)] $
SET ereceptaclee @ @ TO expression §
where: | receptacle
Jafa-unit
CORAD (name)
CHAR (data-unit, starting-character, count)
BIT (data-unit, starting-bit, count)
STOP [&EY 1 } label $
EY 2
VARY [data unit [FROM numeric-expression]
THRU numeric-expression [BY [-] numeric-expression]]
[WHILE Boolean-expression] [UNTIL Boolean-expression] $

12

FUNCTION CALLS

function-name (sexpressione e o)

ABS (numeric-expression)

ANDF (numeric-expression, numeric-expression)
BIT (data-unit, starting-bit, count)

CHAR (data-unit, starting-character, count)
CNT (numeric-expression)

CONF (type, numeric-expression)

CORAD (data-unit)

ORF (numeric-expression, numeric-expression)
REM (numeric-expression)

SCALF (scale factor, numeric-expression)
SHIFTAL (numeric-expression, count)

SHIFTAR (numeric-expression, count)

SHIFTCL (numeric-expression, count)

SHIFTCR (numeric-expression, count)

SHIFTLL (numeric-expression, count)

SHIFTLR (numeric-expression, count)

TDEF (type, numeric-expression)

XORF (numeric-expression, numeric-expression)

The following calls are only available under the UYK20 or UYK44 and MATHPAC option.

MATHPAC PROCEDURE CALLS

mathqac—grocedure INPUT numeric-expression, numeric-
expression

VECTORP OUTPUT data-unit, data-unit §

VECTORH
VECTORHP
ROTATE
ROTATEP
ROTATEH
ROTATEHP

MATHPAC In-Line Function Calls

BAMS (numeric-expression)
HLN (numeric-expression)
1COS (numeric-expression
|EXP (numeric-expression
ISIN (numeric-expression)
ISQRT (numeric-expression)
LN (numeric-expression)

The following calls are available under the AYK14 or UYK44 and MATHPAC (EAU) option:

MATHPAC (EAU) In-Line Function Calls

SIN (numeric-expression)
COS (numeric-expression)
TAN (numeric-expression)
ASIN (numeric-expression)
ACOS (numeric-expression)
ATAN (numeric-expression)
EXP (numeric-expression)
ALOG (numeric-expression)
SQRT (numeric-expression)

DIRECT CODE STATEMENTS
Direct Code Statement Format

The format of direct code statements is consistent with high level in that columns 1
through 10 is the card identification field, which is ignored by the compiler.

The direct code format consists of four fields separated by at least one blank as follows:
Label operation operand .comment

The label must always start in column 11. Labels having an x subscript below may
externally define a symbol by suffixing it with an asterisk (*). The operation may be
a machine-instruction mnemonic or a direct code directive. The operand field may
contain subfields separated by commas as specified for the operation code. The operand
field may contain the dollar ($) to signify the current value of the location counter.
A period (.) followed by a blank signifies the end of the statement and the remainder
of the line may contain a comment.

Basic Direct Code Definitions

character-constant
"character-string’

direct-code-constant
Single-word-integer constant
double-word-integer-constant
character-constant

double-word-integer-constant
decimal-integer U(
hexadecimal-number D

¢ octal-integer D

instruction-expression

name [single-word-integer-constant]
$ [+ single-word-integer-constant]
[£] single-word-integer-constant

literal

literal >
{direct-code-constant)

single-word-integer-constant
ecimal-integer
hexadecimal-number

¢ octal-integer

Direct Code Directives

[labely] BSS instruction-expression
[label] DO instruction-expression, symbolic-line
EVEN

form-label FORM einstruction-expressione e e
[labely] form-label einstruction-expressione @ @
0DD
ORIG instruction-expression
REORIG
[labely] RES instruction-expression
The following directives are only available with the UYK44 option.
[labely] ABS relocatable name =+ constant

[labely] PAGE mp, relocatable name =+ constant

LINKAGE AND PARAMETER PASSING

All procedures and functions are called using the JLR R4, NAME instruction (RK format)
where NAME is the called procedure or function name. One and two word typed
parameters are passed in registers as described below. Other parameters are passed
directly in memory by copying the actual parameters to the formal parameters.

Input parameters are passed in registers RS, R3-R0, R15-R12 until all registers are
used. Output parameters are passed in registers R5-R0 and R15-R12 until all registers
are used. The parameters are assigned to registers from left to right as they appear
in the procedure or function call. Registers are assigned from the list starting at RS
and working backwards through R12. Two word parameters are assigned to the first
available even-odd register pair. One word parameters are assigned to the first available
register (including registers skipped to assign an even-odd register pair). When all
registers have been used, remaining parameters are passed directly in memory.

REGISTER SAVING CONVENTIONS

The calling program is responsible for saving and restoring the contents of any registers
in the group RO-R5 or R12-R15 that contain data that must be preserved across a
procedure or function call. The calling program is also responsible for loading and
storing the contents of RO-R5 and R12-R15 when used for parameter passing before
and after a procedure or function call.

The called program is responsible for saving and restoring the contents of R6-R11
when used as compiler work registers or as local indices or when direct code is used
in the called procedure or function and the DCREG option is not used. If the DCREG
option is used, registers in the group R6-R11 will be saved and restored only if used
as compiler work registers or as local indices. Registers declared as system indices
will never be saved and restored.

ADDRESS COUNTER USAGE

All data in a SYS-DD is generated under Address Counter 1. The name of the address
counter will be that on the SYS-DD statement.

15

All data in a procedure block, function block, and LOC-DD in a SYS-PROC is generated
under Address Counter 0. All temporary storage and constants generated by the compiler
before a LOC-DD W or LOC-DD R statement has been encountered will be under Address
Counter 0. The name of the address counter will be that on the SYS-PROC statement.

All data in a LOC-DD W is generated under Address Counter 3. All temporary storage
(read-write access) generated by the compiler after the first LOC-DD W statement
has been encountered will be generated under Address Counter 3. The name of the
address counter will be that on the first LOC-DD W statement.

All data in a LOC-DD R is generated under Address Counter 5. All constants (read-only)
generated by the compiler after the first LOC-DD R statement has been encountered
will be under Address Counter 5. The name of the address counter will be that on
the first LOC-DD R statement.

LOGICAL UNIT USAGE

FORTRAN logical units used by the CMS-2M compiler are:

Unit Usage
5 CMS-2M Source Input
6 Printer Listings Output
10 Compiler Interphase Scratch File
1 Compiler Interphase Scratch File
12 Relocatable Object Output (UYK-20 Only)
13 Compiler Interphase Scratch File (INLINE option only)
15 Relocatable Object Output (TAPE option only)
20,0thers INCLUDE Control Card Source Input
INDX1 Scratch Unit (Versions 3 and 10 only)
INDX2 Scratch Unit (Versions 3 and 10 only)

INCLUDE CONTROL CARD

The INCLUDE control card inserts additional CMS-2M source into the source input
during compilation of a CMS-2M program. It is only available on MTASS-hosted versions
oft‘a fS—2M and is not available on the UYK-20-hosted version. The INCLUDE control
card format is:

= INCLUDE [decimal-constant] (name)
where: The = character must be in column 11.

The decimal-constant is a one or two digit logical unit number
(default value is 20 if not present).

The name is a 1-8 character name of the member or element
of the specified file. There can be no space between the decimal
number and the left parenthesis.

CMS-2M RESERVED WORDS

Certain symbols that are language keywords in CMS-2M are reserved words and may
not be used as names to identify entities in a CMS-2M program. If any of these reserved
words are used in a CMS-2M source program, a fatal error message will be given.
Additional symbols that are reserved words in CMS-2Y (on the AN/UYK-7 computer)
but not in CMS-2M will be allowed as names in CMS-2M but a warning error message
will be given for compatibility purposes.

CMS-2M RESERVED WORDS

R END T TSORT SHIFTAR |
ABS EQ KEY1 SHIFTCL
**** ACOS EQUALS KEY2 SHIFTCR
**** ALOG e EXD * LIBS SHIFTLL
AND EXTDEF gzl SHIFTLR
ANDF EXTREF LOCREF ~ **** SIN
**** ASIN F LT **** SQRT
**** ATAN *** FADD LTEQ STOP
B 12 EDIV. MEANS SWITCH
** BAMS FIELD MEDIUM SYSTEM
BEGIN *** FMUL NONE TABLE
BIT FOR NOT o TAN
BY FROM 0 TDEF
CHAR *** FSUB OPTIONS THEN
CMODE FUNCTION OR THRU
CNT GOTO ORF T0
COMMENT GT OUTPUT]
COMP GTEQ P UNTIL
COMPF H REM USING
CONF HEAD RESUME v
CORAD ** HLN RETURN VARY
* CORRECT I ** ROTATE ** VECTOR
*** C0S ** 1C0S ** ROTATEH ** VECTORH
CSWITCH ** IEXP ** ROTATEHP ** VECTORHP
DELETE IF ** ROTATEP ** VECTORP
DENSE INDIRECT S VRBL
* DEP INPUT SCALF WHILE
DIRECT INVALID SET X
ELSE ** ISIN SHIFTAL XORF

* Reserved for compatibility with CMS-2Y.
** Reserved only if MATHPAC option present.
*** Reserved only if MATHPAC option is not present and FLOAT conversion
mode is present.
**** Reserved only if MATHPAC option with EAU is used with AYK14 option.

ADDITIONAL RESERVED WORDS FROM CMS-2Y ON AN/UYK-7

(Allowed as names in CMS-2M but warning error is given for compatibility)

ALG ENDFICE OCM REGS
BASE EVENP 0DDP SAVING
CAT EXCHANGE OPEN SHIFT
CHECKID EXEC OVERFLOW SNAP
CIRC EXIT OVERLAY SPILL
CLOSE FIL PACK SWAP
D FILE POS TRACE
DATA FIND PRINT VALID
DATAPOOL FORMAT PTRACE VARYING
DEBUG INTO PUNCH WITH
DECODE LENGTH RANGE WITHIN
DEFID L0G READ XOR
DISPLAY MODE

ENCODE NITEMS

as

RUN-TIME LIBRARY ROUTINES

floating-point

format

ROUTINE LINKING
DESCRIPTION INPUT OUTPUT CONVENTION
[CFLOAS RT = Scaling RZR3 = Floating- [JCR R4,CFLOAS
Converts factor of point
double-length input number
fixed-point R2,R3 = Fixed-point
number to number
floating-
point format
CFIX§ RT = Scaling RZR3 = Fixed- [JLR RA,CFIXS
Converts factor of point
floating- output number
point-number R2R3 = Floating-
to double- point
length fixed- number
point format
FLTCHS T = Address of _|Condition code [JLR R4 FLTCMS |
Compares two floating-point | set in SR1
floating-point number
numbers and R2R3 = Number
sets condition being
code compared :
ADD RT = Address of |R2R3 = Sum JIR R4FADD
Adds two Addend
floating-point |R2R3 = Floating-
numbers point
number
IFSUB RT = Address of R2R3 = JIRRAFSUB |
Subtracts two subtrahend | Difference
floating-point R2,R3 = Minuend
numbers
FMUL RT = Address of |R2,R3 = Product |JIR R4FMUC
Multiplies two multiplier
floating-point |R2,R3 = Multi-
numbers plicand
FDIV RT = Address of |R2,R3 = quotient [JLR RAFDIV |
Divides two Divisor
floating-point |R2,R3 = Dividend
numbers
The Tollowing routines may be used only with UYK-20 MATHPAC T option |
available:
MATAFLS = Scaling factor [R2R3 = Floating- | JLR R4MATHFLS|
Converts of input point
double-length [R2R3 = Fixed-point number
fixed-point number
number to

RUN-TIME LIBRARY ROUTINES (continued) 15]1a]13[12[11[10] o[8[76 5[4]3] 2] 1]0
Identity Image

ROUTINE LINKING Element 1 7
DESCRIPTION INPUT OUTPUT CONVENTION Address Counter Image
[WATHFXS R1 = Scaling factor [RZR3 = Fixed- [JLR R4MATHFXS Element 1
Converts of output point Relocatable Text Images Blocked 360
floating-point [R2R3 = Floating- number and optional symbolic debug images words/record
number to point ¢ Element 1 s
double-length number
fixed-point 1
format End Image

! Element 1

Note: These library routines are not reentrant. They do not use R12 and R14 for indexing. :
FADD, FSUB, FMUL, and FDIV are called only if the MATHPAC option is not present Identity Image
and the target machine is the UYK-20. Element 2

Address Counter Image
Element 2

Relocatable Images Blocked 360

and optional symbolic debug images > words/record

Element 2

End Image
Element 2 5

Identity Image N
Element N
Address Counter Image
Element N
Relocatable Images Blocked 360
and optional symbolic debug images \. words/record
Element N

End Image
Element N)
: ASCII Coded letters

o o

360 word End
y of file record

Figure 1. Sequential Object File Format (MTASS Hosts Only)

4l 21

15]14]13[12[11]10[9 [8 [7[6 |5 [4]3] 2] 1]o0
i 40

Word 0

Word 1 Character 1 Character 2
Word 2 Character 3 Character 4
Word 3 Character 5 Character 6
Word 4 Character 7 Character 8
Word 5 Character 1 Character 2
Word 6 Character 3 Character 4
Word 7 Character 5 Character 6
Word 8 Character 7 Character 8
Word 9 Month Month
Word 10 Day Day
Word 11 Year Year
Word 12 Hour Hour
Word 13 Minutes Minutes
Word 14 Seconds Seconds
Word 15 Character 1 Character 2
Word 16 Character 3 Character 4
Word 17 Character 5 Character 6
Word 18 Character 7 Character 8
Word 19 Character 1 Character 2
Word 20 Character 3 Character 4
Word 21 Character 5 Character 6
Word 22 Character 7 Character 8
Word 23 Version of Component

Word 24 Revision of Component

Word 25 Patch Level of Component

Word 26 ASCIl BLANKS

Word 39L ASCII BLANKS i

Figure 2. Identity Image Format

22

Element Name
8 ASCII Chars.
Left Justified

Blank Filled

System Name
8 ASCII Chars.
Left Justified

Blank Filled

Month,Day
Year 6 ASCII
Characters

Hour,Minutes
Seconds 6 ASCII
Characters

Component Name
8 ASCIl Chars.
Left Justified
Blank Filled

8 ASCII Chars.
of Target
Machine

2 ASCIl
Characters each

Description of ‘I Image:

i

Element Name
System Name
Word 9 - 11
Word 12 - 14

Word 15 - 18
Word 19 - 22
Word 23
Word 24
Word 25

Word 26 - 39

ASCII coded letter I.

Number of words in image

Name of element. A CMS-2M SYS-PROC or SYS-DD
statement creates the element name

Name of System. A CMS-2M SYSTEM statement creates
the system name

Date of Compilation in numeric characters (For example
4 July 1978 is 070478)

Time of Compilation in numeric characters (For example,
21:15 and 30 seconds is 211530)

MTASS component (CMS2M)

Target Machine (UYK20, AYK 14, AYK1410P, UYK-44)
Version of Component in ASCII (Host Machine)
Revision of Component in ASCII (Change Level)

Patch Level of Component in ASCII (Priority 1 STR fixes)
Two ASCII characters. Left character is the version
independent patch level (0-9,A-Z). Right character is
the version dependent patch level (blank, A-Z).

ASCII Blanks

23

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 8

Word 39

o
40

Address Counter Number -

7]6][5[4[3]2[1]0

15]14]13[12[11]10[9 | 8
"

- ASCIl coded letter A

- Number of words in image

40
Address Counter Number
Character 1 Character 2 AC Name 8
Character 3 Character 4 ASCII Char.
Character 5 Character 6 Left Justified
Character 7 Character 8 Blank Filled
AC Length
Modification Address

Offset Address

ASCII Blanks

ASCII Blanks

The number used to reference the address counter

and through which relocatable code is directed and
referenced.

AC Name

AC Length

Modification Address

- Address Counter Name (CMS-2M SYS-PROC,

CMS-2M SYS-DD, or CMS-2M LOC-DD R or W)
Number of words in AC

Not used by CMS-2M. When supplied, contains an

Offset Address -

address for modifying references to this AC.

Not used by CMS-2M. When supplied, contains an

address for storing references to this AC.

Figure 3. Address Counter Image Format

24

15]14[13[12]11[10] 9 [8 [7] 6 [5[4[3] 2] 1]0
Word 0 ‘R’ 40
Word 1 Increment AC Number
Word 2 Load Base
Word 3 Checksum
Word 4 MBS 1 | MBS2
Word 5 MBS 3
Word 6 | MSB4
MBS n
+lncre- Text Word 1
ment Text Word 2
Text Word 3
Text Word 4
Word 39 Text Word n
‘R’ - ASCII coded letter R
40 - Number of words in image
Increment - Index to first text word
Load Base - Relative location within Address Counter of first text
word
Checksum - Arithmetic sum of all words in image not including
checksum word
MBS; - 4-bit or 12-bit field containing modification data
(see figure 5) for an associated text word:
3 bits
-
5 bits 6 bits
e e
12-bit MBS l 1 | M I AC number —I

Figure 4. Relocatable Text Image Format

25

Mod Fied
16-bit
16-bit

ro o =z

1

12

Text -
Word

Action

No modification. Load text value given.
Modify text word by base load value.

Text contains externally defined relocatable symbol and value.
The given text value is relocated and the symbol is entered
in a table for succeeding references.

Text contains externally defined nonrelocatable symbol and
value. The text value is not relocated. The symbol is entered
in a table for succeeding references.

Text contains offset followed by an externally referenced
symbol.

End of MBS for this image.
Text contains a relative address to allocate forward references.

Text contains partial word preset and logical product mask
to insert in proper field.

Not used, reserved for future use.

Text contains two words, the first text word is logically shifted
left 12 bits. The second text word is modified by the load base
plus the address counter physical base address and the result
is logically shifted 10 bits to the right. The logical sum of
the shifted values produces a 16 bit load word.

Text contains two words followed by an externally referenced
symbol. One 16 bit load word is produced as in MBS-10.

Modify the two text words by the load base plus the address
counter physical base address to produce two load words.

Text contains two words followed by an externally referenced
symbol. Two load words are produced as in MBS-12.

AN/UYK-20(V) machine instructions or data to be allocated
to absolute memory locations. Text for external definitions
or references. Instructions and data consist of 16-bit words.
External text entries are described below:

A. External Definition Text Entry (M = 2 or 3)

15]14]13]12]11]10] 9[8[7[6[5]4]3]2] 1]0

Value
Character 1 Character 2 8 ASCII
Character 3 Character 4 Characters
Character 5 Character 6 Left Justified
Character 7 Character 8 Blank Filled

Figure 5. Modification Codes

26

B.

C.

External Reference Text Entry (M = 4)

15]14]13[12[11[10] 9 [8] 7[6[5[4]3] 2] 1]0

Offset Value

Character 1 Character 2

Character 3 Character 4

Character 5 Character 6

Character 7 Character 8

Partial Word Preset (M=7).

15]14]13[12[11[10] 9 [8 [7[6[5]4]3]2] 1] 0

Mask

Data

Address

Page Register Text Entry (M= 10)

15]14]13[12[11[10] o[8[7[6 [543 2] 1]o
0 MP

Relative Address

External Reference Page Register Text Entry (M=11)

15[14[13[12[11[10] o[8[7[6 [543 2] 1]o
0 MP

Offset Value

Character 1 Character 2

Character 3 Character 4

Character 5 Character 6

Character 7 Character 8

Figure 5. Modification Codes (continued)

27

8 ASCII
Characters
Left Justified
Blank Filled

where: MP-
Memory
Protection bits

Where: MP-
Memory
Protection bits
8 ASCII Char.
Left-Justified
Blank-Filled
Symbolic Name

i

G.

Physical Address Text Entry (M=12)

15]14]13[12[11]10[9[8[7[6[5[4[3] 2] 1|0
0

Relative Address

External Reference Physical Address Text Entry (M=13)

15[14]13[2] 11[10[9[8[7[6 |54 [3]2] 1|0
0

Offset Value

Character 1 Character 2

Character 3 Character 4

Character 5 Character 6

Character 7 Character 8

Figure 5. Modification Codes (continued)

28

8 ASCII Char.
Left-Justified

Symbolic Name

15]14]13[12[11[10] 9[8[7[6 [5[4 [s 2] 1]0
S

Word 1 40

Word 2 Checksum

Word 3 Symbolic Attribute Information

Word 40 i

Description of S-Image:

g =
40 -
Checksum -

Word 3-40 -

ASClI-coded letter S

Number of words in the image

The 16-bit two’s complement arithmetic sum of all the
words in the image not including the checksum word
CMS-2M symbol table entries for use in high-level
debugging

Reference NAVSEA 0967-LP-598-2210, Appendix E.

Figure 5a. Symbolic Debugging Image Format

29

15]14]13]12[11]10] o [8] 7[6[5[4]3] 2] 1]0
Word 0 ‘E 40
Word 1 [F[Z6ro Address Counter Number
Word 2 Relative Location
Word 3 Character 1 Character 2
Word 4 Character 3 Character 4 glinggr:lt g:;?e
Word 5 Character 5 Character 6 Left Justified
Word 6 Character 7 Character 8 Blank Filled
Word 7 Character 1 Character 2
Word 8 Character 3 Character 4 gy:;i;'l zﬁ:'re
Word 9 Character 5 Character 6 Left Justified
Word 10 Character 7 Character 8 Blank Filled
Word 11 Number of Source Card Images
Word 12 Number of Fatal Errors
Word 13 Number of Warning Errors
Word 14 Number of Cautionary Errors
Word 15 Total No. of Images Output in Element
Word 16 Month Month Month,Day
Word 17 Day Day Year 6 ASCI
Word 18 Year Year Characters
Word 19 Hour Hour Hour Minute
Word 20 Minutes Minutes Second 6 ASCII
Word 21 Seconds Seconds Characters
Word 22 No. of Source Statements Compiled
Word 23 No. of Comment Statements Compiled
Wrd 24- ZERO
39

Figure 6. End Image format

30

40

AC Number

Relative Location

Element Name
System Name
Word 11
Word 12
Word 13
Word 14
Word 16
Word 16-18
Word 19-21
Word 22
Word 23
Word 24-39

ASCII Coded Letter ‘E'
Number of words in image
Flag Indicator

1 - No entry point to element (CMS-2M SYS-DD's or
SYS-PROC with no procedure or function)

0 - Entry point to element is given (CMS-2M SYS-PROC’s
with a procedure or function)

Address Counter Number of entry point

Relative Location of element entry point (First procedure
or function in SYS-PROC)

Name of element

Name of SYSTEM

Number of Source Card Images in this element
Number of Fatal Errors in this element
Number of Warning Errors in this element
Number of Cautionary Errors in this element
Total Number of Images Output for this element
Date of last patch to this element

Time of last patch to this element

Number of Source Statements Compiled
Number of Comment Statements Compiled
ZERO

31

