NAVSEA 0967-LP-598-9040

CMS-2
LANGUAGE

REFERENCE BOOKLET

SEPTEMBER 1988

The U.S. Government possesses the unlimited rights through-
out the world for Government purposes, to publish, translate,
reproduce, deliver, perform, and dispose of the technical data,
computer software or computer firmware contained herein and
o authorize others to do so.

NAVSEA 0967-LP-598-9040
CMS-2 LANGUAGE

This booklet is a quick reference for programmers and operators using the
machine-transferable CMS-2 compiler (Revision 02) for the AN/UYK-7(V),
AN/UYK-43(V), AN/UYK-20(V), AN/AYK-14, AN/AYK-14EIOP, AN/AYK-14SCP,
AN/UYK-44(V), and MIL-STD-1750A

CMS-2 is a component of the MTASS system which generates object code for all
of the above mentioned object computers.

Version Computer Operating System
01 Unisys 1100 Unisys 1100 Time-sharing EXEC OS
Compatible 1100 (Level 36 or later)
03 IBM 370 Compatible IBM Operating System
0OS/VS2 (MVS) R3.7
10 IBM 370 Compatible ~ VM/370-CMS VM/SP Release 3
1 DEC VAX Compatible VAX/VMS Operating System

(Version 4.2 or later)

Reference Documents
User Handbook for CMS-2 Compiler, NAVSEA 0967-LP-598-8020

Program Performance Specification for CMS-2 Compiler
NAVSEA 0967-LP-598-9020

AN/AYK-14 Programmers Reference Manual
AN/AYK-14 Programmers Reference Card
AN/UYK-7 Programmers Reference Card
AN/UYK-43 Abbreviated Reference Manual
AN/UYK-44 Technical Description
AN/UYK-20 Technical Description
AN/UYK-7 Technical Description
AN/UYK-43 Technical Description

To obtain further information and to order additional copies of this booklet,
please contact:

NAVAL SEA SYSTEMS COMMAND
PMS—412

Washington, DC 20362-5101
Telephone: (202)692-8204

CHARACTER SETS

CHARACTER SETS (continued)

FIELD
CHARACTER ASCII DATA |EBCDIC |DISPLAY BCD
OCT. HEX. | OCT. HEX. OCT. | ocT
NUL 000 00 = 00 e e
SOH 001 01 = 01 2 =
STX 002 02 - 02 = -
ETX 003 03 s 03 & =
EOT 004 04 = 37 = =
ENQ 005 05 = 2D = -
ACK 006 06 = 2E = -
BEL 007 07 = 2F = =
BS 010 08 = 16 = =
HT 011 09 = 05 = =
LF 012 0A = 25 & =
VT 013 0B - 0B - =
FF 014 oc = oc = =
CR 015 0D - oD - &
SO 016 OE = 0E = =
S| 017 OF = OF - =
DLE 020 10 - 10 = =
DC1 021 11 = 11 = =
DC2 022 12 - 12 - =
DC3 023 13 = - = =
DC4 024 14 - 3C = =
NAK 025 15 = 3D = =
SYN 026 16 = 32 = .
ETB 027 17 = 26 ~ -
CAN 030 18 — 18 = =
EM 031 19 = 19 = =
SuB 032 1A - 3F = -
ESC 033 1B - 27 = =
FS 034 1C - 22 - -
GS 035 1D - e - -
RS 036 1E = -
us 037 1F - - - -
SP (Space) 040 20 05 55 20
! (Exclamation) 041 21 55 5A = 77
" (Quotes) 042 2 - 7F - 76
(Number) 043 7B - 13
$ (Dollar sign) 044 24 47 5B 53 53
% (Percent) 045 52 6C 63 74
& (Ampersand) 046 26 - 50 = 32
" (Apostrophe) 047 27 72 70 - 57
((Left 050 28 51 4D 51 35
Parenthesis)
) (Right 051 29 5D 52
Parenthesis)
* (Asterisk) 052 2A 50 5C 47 54
+ (Plus) 053 2B 42 4F 45 60
, (Comma) 054 2C 56 6B 56 73

FIELD

CHARACTER ASCII DATA |EBCDIC [DISPLAY| BCD
OCT. HEX. | OCT. HEX. OCT. | OCT

- (Minus) 055 2D 41 60 46 52
. (Period) 056 2E 75 4B 57 33
/ (Slant) 057 2k 74 61 50 61
0 060 30 60 FO 33 00

1 061 31 61 F1 34 01

2 062 32 62 2 35 02

3 063 33 63 F3 36 03

4 064 34 64 F4 37 04

5 065 35 65 F5 40 05

6 066 36 66 F6 41 06

T 067 37 67 F7 42 07

8 070 38 70 F8 43 10

9 071 39 4l F9 44 1

: (Colon) 072 3A 53 7A 00 15
. (Semicolon) 073 3B 73 5E 7 56
< (Less than) 074 3C 43 4C 72 36
= (Equals) 075 3D et 7E 54 8
> (Greater 076 3E 45 6E 73 16

than)
? (Question 077 3F 54 6F - 17
Mark)

@ (AY) 100 40 00 7C = 14
A 101 41 06 c1 01 21

B 102 42 07 c2 02 2

(o] 103 43 10 c3 03 23

D 104 44 1 C4 04 24

E 105 45 12 C5 05 25

F 106 46 13 Cé 06 26

G 107 47 14 - C7 07 27

H 110 48 15 c8 10 30

| 11 49 16 Cc9 1 31

J 112 4A 17 D1 12 41

K 1138 4B 20 D2 13 42

k 114 4C 21 D3 14 43

M 115 4D 22 D4 15 a4

N 116 4E 23 D5 16 45

(o] 117 4F 24 D6 17 46

P 120 50 25 D7 20 47

Q 121 51 26 D8 21 50

R 122 52 27 D9 2 51

S 123 53 30 E2 23 62

T 124 54 31 E3 24 63
U 125 55 32 E4 25 64
' 126 56 33 = 26 65
w 127 57 34 E6 27 66
X 130 58 35 E7 30 67
Y 131 59 36 E8 31 70

Z 132 5A 37 E9 32 7

CHARACTER SETS (continued)

FIELD

CHARACTER ASCII DATA |EBCDIC |DISPLAY] BCD

OCT. HEX. | OCT. HEX. | OCT. | OCT

[(Left 133 5B 01 AD 61 12
Bracket)

\ (Reverse 134 5C 57 EO = 37

Slant)

] (Right 135 5D 02 BD 62 4
Bracket)

~ (Circumflex) 136 5 — 5F = 40

_ (Underline) 137 5F - 6D - 72

‘ (Grave 140 60 - 79 - -
Accent)

a 141 61 = 81 ~ =

b 142 62 - 82 - -

c 143 63 = 83 = =

d 144 64 = 84 - -

e 145 65 = 85 = =

f 146 66 7 86 * =

g 147 67 - 87 2 -

h 150 68 = 88 = =

i 151 69 = 89 == =

j 152 6A = 91 = -

k 153 68 - 92 - -

| 154 6C = 93 = -

m 155 6D = 94 = -

n 156 6E - 95 - -

o 157 6F S 96 = =

P 160 70 = 97 = -

q 161 7 == 98 = -

r 162 72 = 99 = -

s 163 73 - A2 - -

t 164 74 = A3 < -

u 165 75 & A4 - -

v 166 76 = A5 - -

w 167 TT - A6 - -

X 170 78 = A7 - -

y 171 Vi) = A8 = -

Z 172 7A = A9 = -

{ (Left Brace) 173 7B - 8B = &

| (Vertical 174 7C = 6A = =

Line)

} (Right Brace) 175 70 - 9B - -

~ (Tilde) 176 7E - A1 - -

DEL 177 Tii - 07 - -

NOTATION OF STATEMENTS AND OPERATIONS

Each description of a statement or an operation in this reference booklet uses a
uniform system of notation to define the structure of the statement. This notation
is not a part of CMS-2, but is a standardized notation that may be used to
describe the syntax (construction) of the CMS-2 language. It provides a brief but
precise means of explaining the general patterns that the language permits. It
does not describe the meaning of the statement or operations; it merely
describes structure; that is, it indicates the order in which the operands must
appear, the punctuation required, and the options allowed.

The following rules explain this standard notation:

1)

2)

3)

4)

5)

A word written in lowercase letters represents the type of entry to be
made by the programmer. This word may be hyphenated.

name denotes an entry of a name.

denotes an entry of a data unit
name.

data-unit-name

A word written in uppercase letters or special characters denotes an
actual occurrence of that word or character in the language.

name EQUALS tag-expression allows a symbolic name
denoted by name to be
associated with the value
defined by a tag expression.

A vertical stack of units under an underlined term donotes a choice. At
least one of the units in the stack must occur in the statement.

connector indicates that either OR, XOR
OR or AND must appear in the
XOR statement in place of
AND connector.

Square brackets [] denote options. A single unit enclosed in brackets
is optional; it may or may not appear. A list of units enclosed in
brackets denotes a choice of one or none from that list. Generally, no
more than one unit from the list may appear.

indicates that a name may
appear in the statement format.
However, this unit is not
required.

[name]

The use of @ ®ee denotes that the type of entry indicated by the word
preceding ®ee may appear one or more times in succession, where
each entry is delimited by the word following e. This does not imply
that all entries should be identical. It does imply, however, that all
entries should be the same type of entry indicated by the word
preceding the three dots. Where there are two or more entries, they
are separated by commas (,).

indicates that one or more data
unit names may occur in
succession as entries,
separated by commas. Thus,
the following would be a legal
entry: ALPHA, BETA, GAMMA.

edata-unit-namee e e

6) A word written in lowercase letters and underlined represents a
descriptive term.

computer

UYK7 Indicates that this parameter
UYK43 identifies the target computer.
UYK43EMR

UYK20 The trailing M or (MATH)
UYK20M attached to the target computer
UYK20A[(MATH)] name indicates the computer
UYK44[(UG1)) has the MATHPAC optional
UYK44M([(UG1)] hardware.

AYK14

AYK14E The trailing (UG1) indicates the
AYK14EIO UYK44 target computer
AYK14SCP contains the User Growth One
MS1750A instructions.

MS1750NP

When a descriptive term has been defined once with a list of
alternatives, the alternatives are not listed in subsequent appearances
of the underlined descriptive term. For example, the first time the term
type is used, the possible alternatives for type are given. In
subsequent references just the descriptive term type is used.

7) Editorial Comment - For statements that are physically too long to be
completed on one line, the lines following the first are indented to
signify continuation. The dollar sign ($) character signifies the end of a
CMS-2 statement and is not part of the standard notation.

CMS-2 STATEMENTS

The statements within each of the sections for CMS-2 are given in alphabetical
order by using the statement symbol.

STATEMENT FORMAT

CMS-2 source cards consist of a card identification field in columns 1 through 10
(columns 71 through 80 for OPTION COL1) and a statement field in columns 11
through 80 (columns 1 through 70 for OPTION COL1) as shown in the following:

ccC cc ccC cC
1 10 =i 80

CARD

IDENTIFICATION STATEMENTS$STATEMENTS...

If COL1 is present in the OPTIONS statement, then the CMS-2 source cards
consist of a card identification field in columns 71 through 80 and a statement
field in columns 1 through 10 as shown in the following:

cc cC ccC cc
1 79 71 80

CARD

STATEMENT$STATEMENT$... IDENTIFICATION

The identification field may be used for program identification and sequence
numbers and has no effect on program compilation.

The statement field has a free format. Each CMS-2 statement is terminated by a
dollar sign ($). There may be more than one statement on a card or a statement
may require more than one card. A statement will continue in columns 11-80
(columns 1-70 for OPTION COL1) of each card until a dollar sign is encountered.
If a symbol or string of characters is to span two cards, the first part must end in
ocolumn 80 (column 70 for OPTION COL1) of the first card and the second part
must start in column 11 (column 1 for OPTION COL1) of the second card.

Names, compiler keywords, and constants must be separated from each other
by a blank character or a delimiter. When a delimiter is used as a separator,
blank characters are not necessary but may be used if desired. A blank
character may not be used within a name, compiler keyword, constant, or
between the name and the period character in a statement label.

An embedded comment may be used anywhere a blank is allowed. An
embedded comment consists of 2 consecutive single primes (') followed by
comment text and terminated by 2 consecutive single primes ('). The comment
text may not contain a dollar sign. The embedded comment is replaced by a
single blank character during statement processing.

BASIC DEFINITIONS

itional. ressi
(conditional-expression)
expression lational r expression

Boolean-function-call
Boolean-data-unit

Boolean-constant
COMP conditional-expression
conditional-expression connector conditional-expression
AND
OR
data-unit type
VALID
INVALID
data-unit type
ODDP
EVENP

racter-
H(character-string)

nit
name
name (name)
name (enumeric-expressioneee)
name (enumeric-expressioneee, name)

expression
numeric-expression
Boolean-expression
status-expression
character-expression
bit-string-expression

status-expression
status-constant
status-data-unit
status-function-call
status-expression

status constant
‘character-string’

character—-expression
character-constant
character-data-unit
character-function-call
(character-expression)
character-expression CAT character-expression

bit-string-expression
expression connector expression
OR

XOR
AND

COMP expression

numeric-constant

O(octal-integer [.[octal-integer]] [E [add-op] octal-integer])
£k

O(.octal-integer [E [add-op] octal-integer])

decimal-constant
X(hexadecimal-number [.[hexadecimal-number]])
X(.hexadecimal-number)

decimal-constant
D(decimal-constant)
decimal-constant D

numeric-expression
(numeric-expression) [scaling specifier]
numeric-function-call [scaling specifier]
intrinsic-function—call [scaling specifier]

numeric-data-unit [scaling specifier]

numeric-tag
add-op numeric-expression

numeric-expression operator
+

where:

*

/

numeric-tag
name
add-op numeric-constant

numeric-expression

PROGRAM STRUCTURE STATEMENTS

COMMENT comment-text $

character-string
((EJECT
((SKIPn
((LINE*
CSWITCH name $
END-CSWITCH name $
END-CSWITCHS $
4 CSWITCH-ON enameeee $
CSWITCH-OFF enameeee $
name SYSTEM $
END-SYSTEM name $

AL

HEADER DECLARATIVE STATEMENTS
ACSEPARATION $

CMODE [constant-mode] $
[6)
D

CMODE conversion-mode $
SINGLE
DOUBLE
FLOAT
QUAD
FLOAT, QUAD
QUAD, FLOAT

CSWITCH-DEL $

DEBUG edebug-parametereee §
SNAP
DISPLAY
TRACE
PTRACE
RANGE
name EQUALS tag-expression $
EXECUTIVE $
[name] HEAD $
END-HEAD [name] $
] LOAD-VRBL variable list type P numeric-constant-expression $

name
(enameeee)

MODE FIELD [type] $
MODE VRBL [type] [P preset-tag] $

NITEMS (name) EQUALS tag-expression $

OPTIONS computer [.eoptioneee] § [name] pooling-type I r_e%\@ 1 [tag))] [tag] $

Lonee s :
UYK43 OBJECT DATAPOOL
[(eobject-specificatione @ ®)] BASE
UYK43EMR LEVEL (level-specification) LOCDDPOOLR
UYK20 MONITOR LOCDDPOOLW
UYK20M STRUCTURED TEMPSPOOL
UYK20A[(MATH)] NONRT CONSTPOOL
UYK44((UG1)] MSCALE FARIWSPOOL
UYK44M([(UG1)] CLASS (security[,security])
AYK14 LINE (lines-per-page) 4 SINGLE $
AYK14E OPTIMIZE (optimize-level) SPILL $
AYK14EIO INDEPENDENT
AYK14SCP HEX name substitution-type [character-string] $
MS1750A coL1 MEANS
MS1750NP FARMODE 2 EXCHANGE
SYS-INDEX eregister-number nameeee $
- e SYSTEM DATA DECLARATIVE STATEMENTS
where: object-specification
CMP [(name)] CMs-2§
CR [data-unit-name] DATA data-entry $
CRG character-constant
chC tag [,scaling] [tag[,scaling]]
::A tag [scaling] CORAD (name)
oNV CORAD (name) [tag[,scaling]]
SCR - ;
here: |
SCRG where: Stagln
SCRL
LEVEL (level-specification) DIRECT $
SADUMP FIELD name [type] [starting-word starting-bit] [P epreset-itemeee] $
where: type
where: level-specification F [(floating-point-attribute)]
0 B
1 A number-of-bits sign number-of-fractional-bits
© S
w u
F | number-of-bits sign
S
" : U
where: security
U H number-of-characters
c Sestatus-constantee e
? where: floating-point-attribute
uw 1 &
cw s
SwW D
™

where: preset-item

numeric-tag

character-constant

CORAD (data-unit)

] - ; FCORAD (data-unit)
PASSAGE-SPEC DDaIHﬁEECQTg type [namelist] $ repsat-oitst [yenerician)

repeat-count (character-constant)

o ' i s repeat-count (CORAD (data-unit))
repeat-count (FCORAD (data-unit))

where: optimize-level
octal-integer (valid octal values are 0, 1, 3,5, 7, 11, 13, 15, 17)

10 i

[external
(EXTREF)
(EXTDEF)
(TRANSREF)

where:

where:

where:

where:

[external
(EXTREF)
(EXTDEF)
(TRANSREF)

where:

external
(EXTREF)
(EXTDEF)
(TRANSREF)

where:

FILE nonstandard-file-name file-specification (continued)
nonstandard-hardware-name (continued)
[estatus-constante e @] [WITHLBL] $

file-type numeric-constant-expression (continued)
file-structure numeric-constant-expression

file-type
H
B

file-structure
R

v 2
s

nonstandard-hardware-name
MT1
MT2
MT3
MT4
MT5
MT6
MT7
MT8
MT9
MT10
MT11
MT12
MT13
MT14
MT15
MT16
PPTR
PPTP
name

FILE standard-file-name file-specification (continued)
standard-hardware-name [estatus—constanteee] $

standard-hardware-name
PRINT
PUNCH
READ 4
OCM

FORMAT name eformat-itemeee $

format-item

[repeat-count] format-descriptor
format-positioner

[repeat—count] character-constant
repeat-count (format-list)
[format-item]/[format-item]

12

where:

where:

where

where:

where:

external
(EXTREF)
(TRANSREF)
(FARREF)

where:

[external]
(EXTREF)
(EXTDEF)
(TRANSREF)

where:

external
(EXTREF)
(EXTDEF)
(FARREF)
(TRANSREF)

external
(EXTREF)
(EXTDEF)
(FARREF)
(TRANSREF)

where:

external
(EXTREF)
(EXTDEF)
(TRANSREF)

repeat-count
tag

format-descriptor

numeric-editing-code tag [.tag]
character-editing-code tag

numeric-editing-code

|
(0]
F
E
character-editing-code
A
€
format-positioner
tag
T tag

FUNCTION function-name (continued)
(eformal-input-parametere @ ®)[type] $

formal-input-parameter
name

CORAD (name)
FCORAD (name)

INPUTLIST inputlist-name einputlist-itemeee $
input-receptacle
name
*data-unit

input-receptacle

data-unit

CORAD(name)

ITEM-AREA enameeee §

LIKE-TABLE name [number-of-items] (continued)
[major-index-name] $

number-of-items
numeric-constant-expression
LTAG
status-type
OUTPUTLIST outputlist-name eoutputlist-itemeee $
expression
name
data-unit
*data-unit

13

field-name OVERLAY efield-overlay-siblinge e e
field-name
numeric-constant-expression

egverlay-siblingeee $
data-unit-name
numeric-constant-expression

data-unit-name OVERLAY

[external] PARAMETER parameter-name [type] (continued)
(EXTREF) [P preset-tag], numeric-constant-expression $
(EXTDEF)

(TRANSREF)

(FARREF)

[external] PROCEDURE procedure-name (continued)
(EXTREF) [INPUT eformal-input-parametere e @] (continued)
(FARREF) [OUTPUT enameeee] [EXIT enameeeoe] $
(TRANSREF)

[external] P-SWITCH pindex-switch-name [INPUT (continued)
(EXTREF) eformal-input-parametere e @] [OUTPUT enameeee] $
(EXTDEF)

(TRANSREF)
(FARREF)
pindex-list
[P] procedure-name $
pindex-list [P] pindex-switch-name $
end-| itch-decl; i
END-SWITCH pindex-switch-name $
END-P-SW pindex-switch-name $
external P-SWITCH pitem-switch-name (continued)
(EXTREF) (variable-name) (continued)
(EXTDEF) [INPUT eformal-input-parametere @ ®] (continued)
(TRANSREF) [OUTPUT enameeee] $
(FARREF)
pitem-list
switch-value, procedure-name $
pitem-list switch-value, procedure-name $
end-pswitch-declaration
data-unit-name RANGE upper-range . . . [lower-range] $

where: upper-range
numeric-constant-expression

where: lower-range
numeric-constant-expression

external STRINGFORM stringform-name estringform-itemeee $
(EXTREF)

(EXTDEF)

(TRANSREF)

where: stringform-item
[repeat-count] stringform-descriptor
stringform-positioner
[repeat-count] character-constant
[repeat-count] (estringform-itemeee)

where: stringform-descriptor
D tag.tag[.tag]

| tag
B tag
O tag
X tag
C tag
E tag
where: stringform-positioner
Z tag
T [direction] tag
where: irecti
+
[external] SUB-TABLE sub-table-name (continued)
(EXTREF) starting-item-number number-of-items (continued)
(EXTDEF) [major-index-name] $
(TRANSREF)

(FARREF)

where: starting-item-number
numeric-constant-expression
status—constant
sys-dd-name SYS-DD $
END-SYS-DD sys-dd-name $
[external TABLE name A packing (continued)

(EXTREF) words-per-item
(EXTDEF) NONE
(TRANSREF) MEDIUM
(FARREF) DENSE
(type)
indirect-indicator] edimensioneee $
INDIRECT
FINDIRECT

external TABLE name [form] packing (continued)
(EXTREF) \Y

(EXTDEF) H

(TRANSREF)

(FARREF) indirect-indicator] number-of-items (continued)
INDIRECT
FINDIRECT

[major-index-name] $

END-TABLE name $
[(EXTDEF)] TYPE name type $
[(EXTDEF)] TYPE name packing $

END-TYPE name $
external VRBL variable-list [type] [P preset-tag] $
(EXTREF) name numeric-tag
(EXTDEF) (enamee e o) character-constant
(TRANSREF) CORAD (data-unit)
(FARREF) FCORAD (data-unit)
15

1]

SYSTEM PROCEDURE STATEMENTS
AUTO-DD $
END-AUTO-DD auto-dd-name $

EXEC-PROC exec-proc-name
[INPUT eformal-input-parametereee] $

END-PROC exec-proc-name $

EXEC-PROC exec-proc-name
[INPUT eformal-input-parametereee] $

auto-dd-name

[(EXTDEF)]

[(LOCRER)]

[(EXTDEF)) FUNCTION function-name ([eformal-input- (continued)
parametere e o)) [type] $
RETURN (expression) $

END-FUNCTION function-name $

FUNCTION function-name ([eformal-input- (continued)
parametere e o)) [type] $

LOC-DD [access] $
R
w

[(LOCREF)]

[loc-dd-name]

END-LOC-DD [loc-dd-name] $

PROCEDURE procedure-name (continued)
[INPUT eformal-input-parametere e ®] (continued)
[OUTPUT enameeee] [EXIT enameeee] $

[(EXTDEF)]

END-PROC procedure-name $

PROCEDURE procedure-name (continued)
[INPUT eformal-input-parametere @ ®] (continued)
[OUTPUT enameeee] [EXIT enameeee] $

(LOCREF)

SWITCH index-switch-name, index-switch-name $

double-switch-list
[S] statement-label [,statement-label] $
double-switch-list [S] statement-label [,statement-label] $

END-SWITCH
SWITCH

index-switch-name, index-switch-name $
item-switch-name (variable-name) $
item-switch-list

switch-value, statement-label $
item-switch-list switch-value, statement-label $

END-SWITCH
SWITCH switch-name estatement-labeleee $
SWITCH switch-name $

item-switch-name $

switch-list

[S] statement-label $

switch-list [S] statement-label $
END-SWITCH switch-name $

sys-proc-name SYS-PROC $

END-SYS-PROC sys-proc-name $

16

sys-proc-name SYS-PROC-REN $

END-SYS-PROC sys-proc-name $

PROCEDURE BODY STATEMENTS

[statement-labels] BEGIN [efor-valueees] §
name. constant-numeric-expression
statement-labels name. character-constant
status-constant

[statement-labels] CHECKID user-defined-file-name label-definition $
[statement-labels] CLOSE user-defined-file-name $

[statement-labels] DECODE data-unit einputee e format-name $

[statement-labels] DEFID user-defined-file-name label-definition $
STANDARD
(character-string)
[statement-labels] DISPLAY edisplay-itemeee $
data-unit [preset-magnitude]
REGS

ELSE simple-statement
begin-block
debug-phrase
direct-code-block
exec-phrase
exit-phrase
for-block
goto-phrase
input/output-phrase
null-phrase
procedure-call-phrase
procedure-switch—call-phrase
resume-phrase
return-phrase
set-phrase
shift-phrase
stop-phrase
swap-phrase
vary-block

where: inj tput-phra:
open-phrase
close-phrase
endfile-phrase
define-label-phrase
check-label-phrase
file-positioning-phrase
record-positioning-phrase
output-phrase
input-phrase
encode-phrase
decode-phrase

ELSIF conditional-expression THEN simple-statement $
ENCODE

[statement-labels] data-unit eoutpute e e format-name $

17

[statement-labels] END [statement-label]
[statement-labels] ENDFILE user-defined-file-name $

[statement-labels] EXEC numeric-constant-expression (continued)
[,numeric-expression] $

[statement-labels] EXIT [statement-label] $
FIND find-condition [varying—clause] $
where: find-condition

find-relational-expression
[binary—connector conditional-expression]

where: find-relational-expression

data-unit relational-operator expression
where: binary-connector

AND

OR
where: ing-cl.

varying-clause

VARYING index-clause
if-data-clause simple-statement
[else-clause] $

where: if-data—cl
IF DATA FOUND THEN
IF DATA NOTFOUND THEN

[statement-labels] FOR expression [,(type)] [ELSE simple-statement] $
value-block-list END [statement-label]

where: value-block-li
value-block
value-block-list value-block

where: value-block
[statement-labels] BEGIN evaluceee $

[estatementeee]

END [statement-label] $

where: value
numeric-constant-expression
character-constant
status—constant
[statement-labels] GOTO index-switch-name (continued)
. numeric-expression (continued)
[INVALID statement-label] [special-condition] $

[statement-labels] GOTO item-switch-name [INVALID (continued)
statement-label] [special-condition] $

[statement-labels] GOTO statement-label [special-condition] $

where: special-condition
KEY1
KEY2
KEY3
STOP
STOPS
STOP6
STOP7

[statement-labels] IF conditional-expression THEN simple-statement $
[statement-labels] INPUT input-file-name einput-listeee [format-name] $
where: input-file-name
name

READ
OoCM

where: input-list
input-item
(input-items)

where: input-item
data-unit
multiple-subscript-data-unit

where: input-i
input-item
input-items, input-item

LOC-INDEX enameeee $

[statement-labels] OPEN user-defined-file-name i/o—capability $

where: | ili
INPUT
OUTPUT
SCRATCH

[statement-labels] OUTPUT output-file-name [eoutput-liste®e] (continued)
format-name $

where: t-fi
name
PRINT
PUNCH
OCM

where: output-list
output-item
(output-items)

where: =l
output-item
output-items,output-item

where: output-item
data-unit
multiple-subscript-data-unit
numeric-constant
character-constant

where: multiple-subscript-data-unit

name ([subscript,] emultiple-field-liste e)
name (item-range [,emultiple-field-liste®e])

19

where: multiple-field-list
name
numeric-expression
emultiple-field-liste®e® | name
emultiple-field-liste®® , numeric-expression

where: item-range
(esubscript-liste @ ®)...(esubscript-liste e @)

[statement-labels] pindex-switch-name USING numeric- (continued)
expression [INVALID statement-label] (continued)
[INPUT eexpressioneee] (continued)
[OUTPUT ereceptacleese] $

[statement-labels] pitem-switch-name [INVALID statement- (continued)

label] [INPUT eexpressioneee] (continued)
[OUTPUT ereceptacleeee] $

[statement-labels] procedure-name [INPUT eexpressione e @] (continued)

[OUTPUT ereceptaclee e ®] (continued)
[EXIT estatement-labeleee] $

[statement-labels] RESUME [statement-label] $
[statement-labels] RETURN (expression) $
[statement-labels] RETURN [name] [special-condition] $

[statement-labels] SET ereceptacleeee TO expression (continued)
[remainder-phrase] [overflow-phrase] $

where: receptacle
data-unit [scaling-specifier]
CORAD (name)
FCORAD (name)
CHAR (starting—character[,count]) (data-unit)
BIT (starting-character [,count]) (data-unit)

where: remainder—-phrase
SAVING data-unit

where: overflow-phrase
OVERFLOW statement-label

[statement-labels] SET FIL (user-defined-file-name) TO numeric-expression $

[statement-labels] SET POS (user-defined-file-name) TO (continued)
numeric-expression $

[statement-labels] SHIFT data-unit shift-type [-] shift-count (continued)
[INTO receptacle] $

where: shift-type
CIRC
ALG
LOG

[statement-labels] SNAP data-unit [preset-magnitude] $

[statement-labels] STOP [stop-special-condition] $
$ KEY1
KEY2
KEY3
STOPS
STOP6
STOP7

[name] SUB-DD $
END-SUB-DD [name] $

[statement-labels] SWAP swap-operands
receptacle , receptacle
receptacle AND receptacle

[statement-labels] TRACE $

END-TRACE $

[statement-labels] VARY [data-unit] [FROM index-value] (continued)
[THRU loop-value] [WITHIN (continued)
name] [BY [-] numeric- (continued)
expression] [WHILE test-value] (continued)
[UNTIL conditional-expression] $

[simple-statements]

END [statement-label] $
where: index-val
numeric-expression
status-expression

where: loop-value
numeric-expression
status-expression

where: test-value
conditional-expression
data-unit

FUNCTION CALLS
User Function Call:
user-function-name ([®expressioneee]) $
Intrinsic Function Calls:
ABS (numeric-expression)
ANDF (expression, expression)
BIT (numeric-expression[,numeric-expression]) (data-unit)
CHAR (numeric-expression[,numeric-expression]) (data-unit)
CNT (expression)
numeric
Boolean
status

character
bit-string

COMPF (expression)
CONF (numeric-type,numeric-expression)
CORAD (address-operand)

data-unit
statement-label-name

21

FCORAD (address-operand)

FIL (name)

FIRST (status-type)

LAST (status-type)

LENGTH (file-name)

ORF (expression,expression)

POS (file-name)

PRED (status-expression)

REM (numeric-expression)

SCALF (numeric-constant-expression,numeric-expression)

SHIFTAL (numeric-expression,numeric-expression)
SHIFTAR (numeric-expression,numeric-expression)

SHIFTCL (numeric-expression,numeric-expression)
SHIFTCR (numeric-expression,numeric-expression)

SHIFTLL (numeric-expression,numeric-expression)
SHIFTLR (numeric-expression,numeric-expression)

SUCC (status-expression)
TDEF (numeric-type,expression)
XORF (expression,expression)

SUPPLIED PROCEDURE CALLS

supplied-procedure INPUT numeric-expression, (continued)
VECTOR numeric-expression [,numeric- (continued)
VECTORP expression] OUTPUT [data-unit], (continued)
VECTORH [data-unit] $

VECTORHP

ROTATE

ROTATEP

ROTATEH

ROTATEHP

Fixed Point Arithmetic Function Calls

BAMS (numeric-expression)
HLN (numeric-expression)
ICOS (numeric-expression)
IEXP (numeric-expression)

ISIN (numeric-expression)
ISQRT (numeric-expression)
LN (numeric-expression)

RAD (numeric-expression)
Floating Point Arithmetic Function Calls

SIN (numeric-expression)
COos (numeric-expression)
TAN (numeric-expression)

ASIN (numeric-expression)
ACOS (numeric-expression)
ATAN (numeric-expression)
EXP (numeric-expression)
ALOG (numeric-expression)
SQRT (numeric-expression)
ASIN2 (numeric-expression,numeric-expression)
ACOS2 (numeric-expression,numeric-expression)
ATAN2 (numeric-expression,numeric-expression)

DIRECT CODE STATEMENTS
Direct Code Statement Format

The format of direct code statements is consistent with CMS-2 source cards in
that columns 1 through 10 (columns 71-80 if COL1 OPTION is present) are
considered to be the card identification field, which is ignored by the compiler.

The direct code format consists of four fields separated by at least one blank as
follows:

[label] operation operand [.comment]

The label must always start in column 11 (column 1 if COL1 OPTION is present).
Labels having an x subscript below may externally define a symbol by suffixing it
with an asterisk (*). The operation may be a machine-instruction mnemonic or a
direct code directive. The operand field may contain subfields separated by
commas as specified for the operation code. The operand field may contain the
dollar sign ($) to signify the current value of the location counter. A period (.)
followed by a blank signifies the end of the statement and the remainder of the
line may contain a comment.

Basic Direct Code Definitions

aracter— tant
‘character-string’

irect-cod tant
single-word-integer—constant
double-word-integer—constant
character-constant
floating-point-numbers
scaled-decimal-numbers
scaled-octal-numbers
scaled-hexadecimal-numbers

le-word-integer- tant
decimal-integer D
hexadecimal-number D
octal-integer D

instruction-expression

name [+ single-word-integer-constant]
$ [+ single-word-integer-constant]

[+ single-word-integer—constant]
literal

literal
(direct-code-constant)

ingle-word-integer nt
decimal-integer
hexadecimal-number
octal-integer
Direct Code Directives
[labely] ABS name [+ single-word-integer-constant]
[labely] ABSD name [+ single-word-integer-constant]
BYTE number-of-characters, size-of-character-field
CHAR ct, e1, c2, €2,...cn, en

where: c¢n
octal-code (000 through 377)
where: en
expression
[label) DO single-word-integer-constant,direct-code-constant
EVEN

form-label FORM edirect-code-constantee e

[label] form-label einstruction-expressioneee
OoDD

ORIG name [+ single-word-integer—constant]

REORIG
[label,] RES instruction-expression
built-in-function-label BIFD n, b1 [P vi], b2 [P v2],...bi [P vi]
where: n

number-of-words

where: bi
number-of-bits-in-the-field

where: P
preset-value-keyword-indicator

where: vi
preset-value

[label,] PAGE mp, relocatable name + constant

e 16-bit ISA and 1750A ISA - R5, R3-R0, R15-R12
e 32-bit ISA - AO-A7

Output parameters passed in registers will be assigned as follows:

e 16-bit ISA and 1750A ISA - R5-R0 and R15-R12
e 32-bit ISA - AD-A7

The parameters are assigned to registers from left to right as they appear in the
procedure or function call. When all registers have been used, remaining
parameters are passed directly in memory.

REGISTER SAVING CONVENTIONS

The calling program is responsible for saving and restoring the contents of any
registers in the group R0-R5 or R12-R15 for 16-bit ISA and 1750A ISA targets
and AO-A7 or B6-B7 for 32-bit ISA targets that contain data that must be
preserved across a procedure or function call. The calling program is also
responsible for loading and storing the contents of these registers when used for
parameter passing before and after a procedure or function call.

The called program is responsible for saving and restoring the contents of
R6-R11 for 16-bit ISA and 1750A ISA targets and B1-B5 for 32-bit ISA targets
when used as compiler work registers or as local indices. Registers declared as
system indices will never be saved and restored.

LINKAGE AND PARAMETER PASSING

All procedures and functions are called using the following conventions: JLR
R4,NAME for 16-bit ISA, JS R4,NAME for 1750A ISA, and LBJ B6,NAME for 32-bit
ISA. NAME is the called procedure or function.

Parameters are passed in registers or memory according to the Parameter
Passage Declaration as follows:

e DIRECT - parameters passed in memory and all code
affecting the passing of values is to be generated in
the calling program.

e REGISTER - parameters will be passed in registers. Code to
load the parameters into registers will be
generated by the calling program. Code to store
actual parameter into the formal parameter will be
generated in the called program.

e REGISTER[,CALLING ONLY] - parameters will be passed in
registers. Code to load the
parameters into registers will be
generated by the calling program.
No code will be generated in the
called program.

Input parameters passed in registers will be assigned as follows:

24

ADDRESS COUNTER USAGE

Address counter usage can be controlled by using the pooling declarations or by
using ACSEPARATION. The CMS-2 compiler uses address counters in the
following ways:

e When pooling declarations are present, the following specifies the
compiler action:

ECLARATI CS-NAME AC-NAME AC-NUMBER
LOCDDPOOL LOCDD or user-specified LOC-DD name 2
TABLEPOOL TABLE or user-specified unnamed 3
DATAPOOL SYSDD or user-specified ~ SYS-DD name 1
BASE SYSP or user-specified SYS-PROC name 0
LOCDDPOOLR CONST or user-specified LOC-DD R name 5

LOCDDPOOLW AUTODD or user-specified LOC-DD W name 4

TEMPSPOOL TEMP or user-specified unnamed 6

CONSTPOOL CONST or user-specified LOC-DD R name 5
or unnamed

FARIWSPOOL FARIWS or user-specified unnamed 8

e When ACSEPARATION is specified, the following specifies the CMS-2
compiler action:

Instructions ACO

SYS-DD AC1

LOC-DD AC 2

Auto-DD and LOC-DD W AC 4
Constants and LOC-DD R AC5
Temps AC6
Inputlist/Outputlist AC7
Variable length table AC 8-31

e When no pooling declaration or ACSEPARATION directi\(e is present,
the following specifies the CMS-2 compiler default action:

ENTITY CS-NAME AC-NAME AC-NUMBER
SYS-DD SYSDD SYS-DD name 1
SYS-PROC SYSP SYS-PROC name 0
Auto data and AUTODD AUTO-DD name 4

temporary cells of
SYS-PROC-REN

LOC-DD R CONST LOC-DD R name 5

LOC-DD W AUTODD LOC-DD W name 4

=INCLUDE CONTROL CARD

The =INCLUDE Control Card shall cause input of all CMS-2 source card images
from the specified element file. The =INCLUDE Control Card and all source
card images from the included element file shall be included in the source listing
if a source listing is specified.

Note that the =INCLUDE Control Card is not a feature of the CMS-2 language,
but rather a part of the interface between compiler and operating system on the
host machines.

The =INCLUDE Control Card format is:
=INCLUDE <internal file name > . <element name >

where: “=" (equals sign character) must be in column 11 (column 1 for COLI
option) followed by INCLUDE. No space is allowed between the “ =
and INCLUDE.

<internal file name > is a 1 to 8 alphanumeric character internal file
name that is associated with an element directory name when CMS-2
is invoked. The first character must be a letter.

<element name> is a 1 to 8 alphanumeric character name of the
source element file in the specified element directory that contains the
source to be included. The first character must be a letter.

Compool information is retrieved from the Compool Element at the point of each
card. The Compool Element must have been the compool output of a previous
CMS-2 compool compilation for the same family of target computers (32-bit ISA,
16-bit ISA, or 1750 ISA) as the target computer for the current compilation. If it is
not, a fatal error message shall be given and the Compool Element shall be
ignored.

The =COMPOOL Control Card format is:

=COMPOOL <internal file name > . < element name >

where: “ =" (equals sign character) must be in column 11 (column 1 for COL1
option) followed by COMPOOL. No space is allowed between the “ ="

and COMPOOL.

<internal name > is a 1 to 8 alphanumeric character internal file name
that is associated with an element directory name when CMS-2 is
invoked. The first character must be a letter.

<element name> is a 1 to 8 alphanumeric character name of the
compool element in the specified element directory that contains the
compool element to be input. The first character must be a letter.

=TITLE CONTROL CARD

The TITLE Control Card shall cause a character string to be associated with a
system element (SYS-DD or SYS-PROC) in its compiler listings and object
element file. The =TITLE card can be situated in the major header following the
OPTIONS statement or within a minor header. The major header =TITLE card
shall designate the default character string and shall be used in the absence of
minor header =TITLE cards. If no major header =TITLE card is present, the
default shall be blank.

The Title Control Card format is:
=TITLE <character string>

where: “=" (equals sign character) must be in column 11 (column 1 for COL1
option) followed by TITLE. No space is allowed between the “ =" and
TITLE.

<character string> defines a character string of length 60 and is
delimited by the ” character (quotes). The ” character may be included
in the string by coding two ” characters in sequence; the pair will be
treated as a single " character. Strings longer than 60 will be truncated
and strings shorter than 60 will be blank filled on the right. The
allowable characters are the 96-character ASCII subset.

Note that the Title Control Card is not a feature of the CMS-2 language, but rather
a part of the interface to the CMS-2 compiler.

=COMPOOL CONTROL CARD

The =COMPOOL Control Card specifies what Compool Elements are input to
the compilation. A maximum of 127 = COMPOOL Control Cards are allowed.
The cards must appear immediately following the OPTIONS declarations and
prior to the declaration of any name other than the CMS-2 SYSTEM name.

=NOTES CONTROL CARD
=NOTES <character string>

where: “=" (equals sign character) must be in column 11 followed by NOTES.

No space is allowed between the “ =" and NOTES.

<character string> defines a character string of length and is
delimited by the ” character (quotes). The ” character may be included
in the string by coding two “ characters in sequence; the pair will be
treated as a single “ character. Strings longer than 60 will be truncated
and strings shorter than 60 will be blank filled on the right. The
allowable characters are the 96—character ASCII subset

27

CMS-2 RESERVED WORDS

Certain symbols that are language keywords in CMS-2 are reserved words and
may not be used as names to identify entities in a CMS-2 program. With the
exception of single letter reserved words (D, H, O or X), if any of these reserved
words are used in a CMS-2 source program, a fatal error message will be given.
Single letter reserved words will be allowed as names except for tables,
item-areas, and functions.

CMS-2 RESERVED WORDS

ABS DATAPOOL FILE MEANS READ USING
ALG DEBUG FIND MEDIUM REGS VALID
AND DECODE FOR MODE RESUME VARY
BASE DEFID FORMAT NITEMS RETURN VARYING
BEGIN DENSE FROM NONE SAVING VRBL
BIT DEP FUNCTION NOT SET WHILE
BY DIRECT GOTO (o} SHIFT WITH
CAT DISPLAY GT OCM SNAP WITHIN
CHAR ELSE GTEQ ODDP SPILL X
CHECKID ELSIF H OPEN STOP XOR
CIRC ENCODE HEAD OPTIONS SWAP

CLOSE END IF OR SWITCH

CMODE ENDFILE INDIRECT ~ OUTPUT SYSTEM

COMMENT EQ INPUT OVERFLOW TABLE

COMP EQUALS INTO OVERLAY THEN

CORAD EVENP INVALID PACK THRU

CORRECT EXCHANGE LIBS PRINT T0

CSWITCH EXEC LOG PTRACE TRACE

D EXIT LT PUNCH TYPE

DATA FIELD LTEQ RANGE UNTIL

The single-letter symbols A, B, F, I, P, S, U, and V are used as terminal symbols
of the language in certain contexts but are not reserved words of the language.
When these symbols are used in the context in which they are defined as
terminal symbols, the terminal symbol meaning is used. In all other contexts,
these symbols are considered to be names and can be used wherever names
are allowed.The contexts in which these symbols are terminal symbols are as
follows:

A, B, F, I, S, U - type descriptor
A, V - table declaration
P - preset indicator

Scope of Names:

There are four levels of scope in CMS-2: universal, global, local, and procedure
(subprogram). The universal scope is a scope that contains every CMS-2
program. Universal scope names represent predefined compiler functions and
procedures. These names can be used to reference the predefined specified
functions or procedures if not overridden by a user declaration. If a user
program contains a declaration for any of these names, the predefined meaning
is overridden from the point of the declaration to the end of the scope of the
declaration and the user defined attributes will be used from the point of the user
declaration to the end of the scope of the user declaration.

The predefined universal scope names are:

*ACOS, *ACOS2, *ALOG, ANDF, *ASIN, *ASIN2, *ATAN, *ATAN2, *BAMS,
CNT, COMPF, CONF, *COS, *EXP, *FIL, FIRST, *HLN, *ICOS, *IEXP, *ISIN,
*ISQRT, LAST, *LENGTH, *LN, ORF, *POS, PRED, *RAD, *ROTATE,
*ROTATEH, *ROTATEHP, *ROTATEP, REM, SCALF, SUCC, *SIN, *SQRT,
*TAN, TDEF, *VECTOR, *VECTORH, *VECTORHP, *VECTORP, and XORF

*Names marked with an asterisk are predefined only for certain target
computers.

RUN-TIME LIBRARY ROUTINES

16-BIT RUN-TIME ROUTINES

16-BIT NUMBER CONVERSION ROUTINES
LINKING CONVENTION

LK RS5,PACKET
JLR R4,ROUTINE
15 7 3 0
PACKET SCALE FACTOR IN out

PACKET is the packet address
SCALE FACTOR is one byte long
IN and OUT are register numbers

ROUTINE DESCRIPTION INPUT OUTPUT
CSS$F
Converts scaled single-length fixed- R(IN) R(OUT)
point number to floating-point number R(OUT) +1
CSD$F
Converts scaled double-length fixed- R(IN) R(OUT)
point number to floating-point format R(IN) +1 R(OUT) +1
CSQ$F R(IN)
Converts scaled quad-length fixed- R(IN)+1 R(OUT)
point number to floating-point format R(IN)+2 R(OUT) +1
R(IN)+3
CF$SS
Converts floating-point format to scaled | R(IN) R(OUT)
single-length fixed-point number R(IN) +1
CF$SD
Converts floating-point format to scaled | R(IN) R(OUT)
double-length fixed-point number R(IN)+1 R(OUT)+1
CF$sSQ R(OUT)
Converts floating-point format to scaled | R(IN) R(OUT)+1
quad-length fixed-point number R(IN+1) R(OUT) +2

R(OUT) +3

16-BIT RUN-TIME ROUTINES
16-BIT MATH RUN-TIME ROUTINES
LINKING CONVENTION

LK R5,PACKET
JLR R4,ROUTINE
15 7 3 {220
PACKET out OP1| OP2
OPERAND 1
OPERAND 2

PACKET is the packet address
OUT is one byte and indicates output register
OP1 and OP2 control bits are two bits long

Control bit meaning:

0 - Indirect address

1 - Direct address

2 - Register number
3 - Number (constant)

The packet indicates the location of input and output. Consecutive locations are
used if more than one word. These routines are for computers without
MATHPAC. The result is normalized.

ROUTINE DESCRIPTION

F$ADD
Adds a floating-point number to a floating-point number with the result a
floating-point number

F$SUB
Subtracts a floating-point number from a floating-point number with the
result a floating-point number

F$MUL
Multiplies a floating-point number with a floating-point number with the
result a floating-point number

F$DIV
Divides a floating-point number by a floating-point number with the
result a floating-point number

F$COM
Compares a floating point-number with a floating-point-number setting
the condition code

P$Il
Calculates X where X and Y are single-length fixed-point numbers
with the result a single-length fixed-number

P$RI
For computers without ALOG and EXP instructions. Calculates XY where
X is a floating-point number and Y is a single-length fixed-point number

16-BIT RUN-TIME ROUTINES

ROUTINE DESCRIPTION

P$RIM
For computers with ALOG and EXP instructions. Calculates XY where X
is a floating-point number and Y is a single-length fixed-point
number with the result a floating-point number

P$RR
For computers without ALOG and EXP instructions. Calculates XY
where X and Y are floating-point numbers with the result a
floating-point number

P$RRM
For computers with ALOG and EXP instructions. Calculates XY
where X and Y are floating-point numbers with the result a
floating-point number

16-BIT ROUTINES FOR FLOATING-POINT INTRINSICS
LINKING CONVENTION

LK R5,PACKET
JLR R4,ROUTINE

PACKET IN out

PACKET is the packet address

IN and OUT are register numbers

These routines are for computers other than AN/UYK-44 with MATHPAC and
AN/AYK-SCP

ROUTINE DESCRIPTION

F$SINM
Calculates the sine of a floating-point input in radians with the result
a floating-point number

F$COSM
Calculates the cosine of a floating-point input in radians with the result
a floating-point number

with the result a floating-point number

31

16-BIT RUN-TIME ROUTINES

ROUTINE DESCRIPTION

F$TANM
Calculates the tangent of a floating-point input in radians with the result
a floating-point number

F$ASINM
Calculates the arc sine of a floating-point input with the result a
floating—point number in radians

F$ACOSM
Calculates the arc cosine of a floating-point input with the result a
floating-point number in radians

FSATANM
Calculates the arc tangent of a floating-point input with the resuit a
floating-point number in radians

F$EXPM
Calculates EX where input and output are floating-point numbers

F$ALOGM
Calculates LN(X) where input and output are floating-point numbers

16-BIT RUN-TIME ROUTINES
16-BIT CHARACTER AND BIT LOAD AND STORE ROUTINES
LINKING CONVENTION

LK R5,PACKET
JLR R4,ROUTINE
15 12 5
PACKET REG N
ADDRESS
START CHARACTER
NUMBER OF CHARACTERS

REG is four bits long. N, S and A are two bits

REG - Register to load into or store from

N - Control bits for number of characters
S - Control bits for start character
A - Control bits for characters

Control bit meaning

A
0 - Indirect address
1 - Register address is in
2 - Direct address
SandN
0 - Address that contains value
1 - Register value is in
2 - Value
ROUTINE DESCRIPTION
LD$BIT
Loads bits from memory into a register
LD$BITD
Loads bits from memory into a double register
ST$BIT

Stores bits from a register into memory

ST$BITD
Stores bits from a double register into memory

LD$CHAR
Loads characters from memory into a register

LD$CHRD
Loads characters from memory into a double register

ST$CHAR
Stores characters from a register into memory

ST$CHRD
Stores characters from a double register into memory

16-BIT RUN-TIME ROUTINES
16-BIT MOVE, SWAP AND COMPARE CHARACTERS
LINKING CONVENTION

LK ‘ RS5,PACKET
JLR R4,ROUTINE
15 13 1 9 7 5 3
PACKET A B C D E F
OP1 BASE ADDRESS

OP1 START CHARACTER

OP1 NUMBER OF CHARACTERS

OP2 BASE ADDRESS

OP2 START CHARACTER

MS1750A RUN-TIME ROUTINES
MS1750A NUMBER CONVERSION ROUTINES
LINKING CONVENTION

LIM R4,PACKET + 1
sJs R4,ROUTINE
15 Iz I3 0
PACKET RETURN ADDRESS
SCALE [IN I ouTt

IN and OUT are register numbers

OP2 NUMBER OF CHARACTERS

A
0 - Use shortest operand length for number of characters in this operation
1- OP1is a constant
OP2 is longer
2 - OP2 is a constant
OP1 is longer
B,C.E&F G OP1 BASE
F OP1 START
0 - Memory address E OP1 NUMBER
1 - Register D OP2 BASE
2 - Value C OP2 START
B OP2 NUMBER
D&G

0 - Indirect address
1 - Register address is in
2 - Direct address

ROUTINE DESCRIPTION

CFL$SC
Converts a floating-point number to a single-length scaled fixed-point
number

CFL$SCD
Converts a floating-point number to a double-length scaled fixed-point
number

CSC$FL
Converts a single-length scaled fixed-point number to a floating-point
number

CSC$FLD
Converts a double-length scaled fixed-point number to a floating-point

number

ROUTINE DESCRIPTION

MOVS$CHR
Moves a character string from one memory location to another

COMS$CHR
to indicate results of compare

SWP$CHR
Swaps character strings in memory

Compares one character string with another setting the condition code

MS1750A EXPONENTIATION ROUTINES
LINKING CONVENTION

LM R4,PACKET +1
sJs R4,ROUTINE
15 [11 |7 |3
PACKET RETURN ADDRESS
NIBBLET | NIBBLE2 | NIBBLE3 | NIBBLE4

ROUTINE DESCRIPTION

POWSII
Computes XY where X and Y are single length.
X is in R(NIBBLE3) Y is in R(NIBBLE2)
Result is single length in R(NIBBLE4)

POWSRI
Computes xY where X is a floating-point number in R(NIBBLES) and
R(NIBBLE3+ 1) and Y is a single-length number in R(NIBBLE2). Result
is a floating-point number in R(NIBBLE4).

POWSRR .,
Computes X where X is a floating-point number in R(NIBBLE3) and
R(NIBBLE3+1) and Y a floating-point number in R(NIBBLE2) and
R(NIBBLE2+1). Result is a floating-point number in R(NIBBLE4) and
R(NIBBLE4 +1).

1750A INTRINSIC ROUTINES
LINKING CONVENTION

LIM R4,PACKET +1
SJS R4,ROUTINE
15 [7 [3 0
PACKET RETURN ADDRESS

[IN [ouT

Note: If IN/OUT is 15, then IN+1/OUT +1 is 0.

ROUTINE DESCRIPTION

F$SINA
Calculates the sine of an angle in radians. Floating-point input in R(IN)
and R(IN+1). Floating-point output in R(OUT) and R(OUT + 1).

F$COSA
Calculates the cosine of an angle in radians. Floating-point input in
R(IN) and R(IN +1). Floating-point output in R(OUT) and R(OUT + 1).

FSTANA
Calculates the tangent of an angle in radians. Floating-point input in
R(IN) and R(IN+1). Floating-point output in R(OUT) and R(OUT + 1).

F$ALOGA
Calculates LN(X). Floating-point input in R(IN) and R(IN+ 1).
Floating-point output in R(OUT) and R(OUT + 1).

F$EXPA
Calculates EXP(X). Floating-point input in R(IN) and R(IN+ 1).
Floating-point output in R(OUT) and R(OUT + 1).

F$ASINA
Calculates arc sine. Floating-point input in R(IN) and R(IN + 1).
Floating-point output in R(OUT) and R(OUT + 1).

F$ACOSA
Calculates arc cosine. Floating-point input in R(IN) and R(IN+ 1).
Floating-point output in R(OUT) and R(OUT + 1).

FSATANA
Calculates arc tangent. Floating-point input in R(IN) and R(IN +1).
Floating-point output in R(OUT) and R(OUT +1).

F$SQRTA
Calculates square root. Floating-point input in R(IN) and R(IN+ 1).
Floating-point output in R(OUT) and R(OUT + 1).

37

MS1750A LOAD AND STORE CHARACTER ROUTINES
LINKING CONVENTION

LIM R4,PACKET +1
SJS R4,ROUTINE

15 12] [s

PACKET RETURN ADDRESS

REG | In

ADDRESS

START

NUMBER

REG is four bits long. N, S and A are two bits.

REG - Register to load into or store from

N - Control bits for number of characters
S - Control bits for start character
A - Control bits for characters

Control bit meaning
A

0 - Indirect address
1 - Register address is in
2 - Direct address

Sand N

0 - Address that contains value
1 - Register value is in
2 - Value

ROUTINE DESCRIPTION

LOD$BIT
Loads bits from memory into a register

LOD$BITD
Loads bits from memory into a double register

STO$BIT
Stores bits from a register into memory

STO$BITD
Stores bits from a double register into memory

LOD$CHAR
Loads characters from memory into a register

LOD$CHRD
STO$CHAR
Stores characters from a register into memory

STO$CHRD

Loads characters from memory into a double register

Stores characters from a double register into memory

1750A CHARACTER MOVE, COMPARE AND SWAP ROUTINES
LINKING CONVENTION

LIM R4, VALUE +1
SJS R4,ROUTINE
15 13 11 9 7 5 3 1
PACKET A B C D E B G

OP1 BASE ADDRESS

OP1 START CHARACTER

OP1 NUMBER OF CHARACTERS
OP2 BASE ADDRESS

OP2 START CHARACTER

OP2 NUMBER OF CHARACTERS

A
0 - Use shortest operand length for number of characters in this operation
1- OP1is a constant
OP2 is longer
2- OP2is a constant
OP1 is longer
B.C.E&F G OP1BASE
F OP1 START
0 - Memory address E OP1 NUMBER
1 - Register D OP2 BASE
2 - Value C OP2 START
B OP2 NUMBER
D&G
0 - Indirect address
1 - Register address is in
2 - Direct address
ROUTINE DESCRIPTION
MOVSCHAR
Moves a character string from one memory location to another
COMS$CHAR
Compares one character string with another setting the condition code
to indicate results of compare
SWP$CHAR
Swaps character strings in memory

MS1750A COUNT BITS AND PARITY ROUTINES
LINKING CONVENTION

LM R4,PACKET +1
sJS R4,ROUTINE
15 [7 [3
PACKET RETURN ADDRESS
| IN [out

ROUTINE DESCRIPTION

CNT$
Counts the number of bits in R(IN) and puts the count in R(OUT)

ODD$P
Checks parity in R(IN). If odd result is 1 else 0. Result is placed in
R(OUT)

EVENSP
Checks parity in R(IN). If even result is 1 else 0. Result is placed in
R(OUT)

