TECHNICAL DOCUMENTATION

 for UNICODE Automatic Programming System for Univac Scientific 1103A and 1105
VOLUME ITable of Contents I-v
I. INTRODUCTION. 3
II. GENERAL

1. UNICODE Service Routines 7
2. Library Routines 49
3. UNICODE System Tape Package 123
4. UNICODE Sample Coding 153
5. UNICODE Card Input 163
6. Statistical Miscellany. 185
III. TRANSLATION AND CORRECTION
7. UNICODE Sentinel Blocks 203
8. Tape Merge 217
9. Translation Phase
a. Translation Subroutines 291
b. Translators 434
VOLUME II
Table of Contents II-v
III. TRANSLATION AND CORRECTION
10. Translation Phase
b. Translators (cont.) 569
IV. GENERATION PHASE
11. Generation Set-up and Drum Loader 949
12. Generation Subroutines. 959
13. Generators 1013
VOLUME III
Table of Contents III-v
IV. GENERATION PHASE
14. Generators (cont.) 1193
V. ALLOCATION PHASE
15. Segmentor 1461
16. Allocator 1551
17. Initialization Generator 1607
VI. PROCESSING PHASE 1671
VII. PROGRAM LISTING PHASE 1747

VOLUME III
 table of contents

IV. GENERATION PHASE
3. GENERATORS (cont.)
EQUATION Generation
EQUATION Generation No. 1
Write-Up 1193
Flow Charts 1203
Coding 1211
EQUATION Generation No. 2
Write-Up (Also for EQUATION Generation No. 3). 1230
Flow Charts 1234
Coding 1297
EQUATION Generation No. 3
Flow Charts 1352
Coding 1403
V. ALLOCATION PHASE

1. SEGMENTOR
a. Segmentation Setup 1461
b. Segmentation
Write-Up 1464
Flow Charts
Phase I 1467
Phase II 1477
Coding
Phase I 1481
Phase II 1502
2. ALLOCATOR
a. Allocation Setup
Write-Up 1551
Flow Charts 1552
Coding 1554
b. Allocation Phase
Write-Up 1561
Flow Charts 1566
Coding 1582
3. INITIALIZATION GENERATOR
Initialization Generation Setup 1607
Initialization
Notes 1612
Generation
Flow Charts 1619
Coding 1622
Section I
Flow Charts 1629
Coding 1639
Section II
Flow Charts 1655
Coding 1656
Control Section for Object Program
Write-Up 1659
Flow Charts 1662
Coding 1664
VI. PROCESSING PHASE
Notes 1671
Processor Setup Coding 1677
Flow Charts 1678
Coding 1705
VII. PROGRAM LISTING PHASE
Notes 1747
Program Listing Setup Coding 1759
Flow Charts 1761
Coding 1796

EQUATION GENERATION

Equation Generation No. l

The coding for an equation is generated in three stages numbered 1,2 and 3. Number 1 produces a sorted list of symbols, No. 2 eliminates some redundant calculations, and No. 3 produces the coding.

The idea of No. l is to add parentheses to the equation (which has been "strung out" one call word per computer word by the equation translator) and number call words by use of the parentheses in the expression. The numbered call words are then sorted and generator No. 2 takes over.

Thus there are three passes made by No. l: processing (adding parentheses), numbering symbols, and sorting. An explanation of each of these follows a description of the lists.

The six lists made up or used by this routine are as follows:

1) Translation List (WL)

This is the input to the routine and is produced by the equation translator. It contains one call word per computer word, the call words being in the v addresses, except that an open parenthesis is a l in the u address and a closed parenthesis is a 2 in the u address. See the equation translation description for a more detailed explanation.
2) Processed List (PR)

The WL list is examined one call word at a time and parentheses are added where needed to produce this list.
3) Numbered List (WL (same region as Translation List))

The Processed List entries are picked up one at a time, starting with the last symbol in the list, numbered, and then transferred to the Numbered List, with the exception of open and closed parentheses which are used to alter the Numbers of Symbols (NS) List and are not sent to the Numbered List. (See descriptions of numbering and Numbers of Symbols List.)
4) Sorted List (PR (same region as Processed List))

This is the list produced by sorting the Numbered List so that larger numbers are at the beginning of the list. It is the output of the routine.

5) Parentheses List (PL)

This is a two-word-per-item list which contains a code for the type of open parenthesis in the operation portion of the first word and the level bit in one of the remaining 30 bits. The second word contains the Processed List address of the parenthesis in the u address of the word. This list contains only items for open parentheses.

Op	u		V
0 X	$\left(\mathrm{P}^{\text {level bit }}\right.$)		
00			

$X=$ type of parenthesis

$$
\begin{aligned}
& X=0-\text { "not special" } \\
& X=1-\text { level } \\
& X=2-\text { term } \\
& X=3-\text { Library } \\
& X=4-\text { POW }
\end{aligned}
$$

$\mathrm{P}=$ address of parenthesis in PR list.
6) Numbers of Symbols List (NS)

This list is used when producing the Numbered List. In the Processed List every parenthesis will have a count in the v address to indicate how many parentheses are at this point. For example the following words might appear in the Processed List (not consecutively):

$0 p$	u	v	
00	000001	0000	0

| 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 04 Four closed parentheses

For every closed parenthesis encountered in the Processed List, numbers are added to the NS List. The number of numbers added is equal to the count in the v address of the closed-parenthesis word. Open parentheses are handled similarly except that numbers are deleted from the NS List. The numbers in the NS List are in the u addresses of the words. For example, at one time the NS List may look as follows:

	0p	u	v
NS	0	1	0
NS 1	0	2	0
NS 2	0	3	0
NS 3	0	4	0
NS 4	0	10	0
NS 5	0	11	0
NS 6	0	16	0
NS 7	0	24	0

The last number in the list (24 in this one) is always the number added to a symbol call word to make up the numbered symbol for the Numbered List. (The length of list NS varies, of course.) The last number in the list is always the largest still in the list but there may have been larger numbers previously. Parentheses are never put in the Numbered List; they are merely used to alter the NS List. Suppose we now encounter an open parenthesis with a count of 5. Five is subtracted from the last address (NS7) and the last address now becomes NS2 and the number to assign symbols is 3. Later we encounter a closed parenthesis with a count of 7. Numbers are added to the list starting with 25 since we have already used lo 24 . Since we must add 7 numbers the list becomes:

	$0 p$		u
	u		
NS	0	1	0
1	0	2	0
2	0	3	0
3	0	25	0
4	0	26	0
5	0	27	0
6	0	30	0
7	0	31	0
10	0	32	0
NSIl	0	33	0

and the next symbol (if not a parenthesis) will be numbered 33.
The explanation of the three passes follows:
Processing:
A level bit is kept up to date at all times. It starts at the rightmost bit position and is shifted left by one every time an open parenthesis or open absolute-value sign is encountered, and right by one for every closed paren-
thesis or absolute-value sign. One may write up to 29 open parentheses and/or absolute-value signs before he must close some. That is, he may write symbols on the 29th level but not on higher levels.

There are five types of open parentheses added to the Processed List. These are the level, term, library, POW, and anticipation (for want of a better name). A level and a term parenthesis are added to the Processed List every time an open parenthesis, open absolute-value sign or comma is encountered in the Translation List. A level parenthesis is put in the Processed List before the first symbol is picked up from the Translation List and, when the equals sign is encountered, level and term parentheses are also added. A term parenthesis is added at the beginning of each term, i.e., after a binary + or - sign.

A library (LIB) parenthesis is added before each Library Routine symbol unless there is already an unclosed library parenthesis (on the same level) in the list.

When POW is encountered, the last open parenthesis is changed to a POW parenthesis in the Parenthesis List (PL).

The anticipation parenthesis is added in the following places:

1) After every multiplication, division or unary minus sign in anticipation of the next operation being POW. (If is isn't POW, the anticipation parenthesis will not alter the interpretation.)
2) Before and after a library call word when there is already a library parenthesis on this level. This is to handle the case:

$$
\stackrel{i}{A}_{(\operatorname{LIB}(\operatorname{LIB}(X)))}^{A}
$$

where all of the parentheses have been added, i.e., none were originally written in the expression. This puts the rightmost Library Routine on the highest level.
3) After a library call word so the operands will be assigned larger numbers than the library call word.
4) Before every unary minus to associate the unary minus with the operand which follows.

The preceding discussion deals with open parentheses. When closing parentheses, a closed parenthesis with a count of zero is added to the Processed List and open parentheses in the Parentheses List are examined one at a time starting with the last parenthesis item in the list. Parentheses are closed by adding one to the count of both the closed and open parentheses in the Processed List. If the parenthesis just closed is not of the type sought, it is deleted from the Parentheses List by subtracting 2 from its address in the Parentheses List. This puts the next parenthesis "on deck" and the process continues until the type of parenthesis sought is closed. After this the parenthesis is left "on deck" or deleted from the Parenthesis List depending on circumstances.

Following is a summary of what is done upon encountering each of the symbols of an equation in the Translation List ("level" means the level due to parentheses or absolute value signs written in the UNICODE Program.)

Subscripted Variable - Anticipation parenthesis to Processed and Parentheses lists. Variable call word to Processed List.

Library Routine - l) Previous library parenthesis on same level, still in Parenthesis List: Anticipation parenthesis to lists. Library call word to Processed List. Anticipation parenthesis to lists.
2) No previous library parenthesis on same level, still in Parentheses List: Library parenthesis to lists. Library call word to Processed List. Anticipation parenthesis to list.

P 0 W - l) Previous POW parenthesis on same level, still in Parenthesis List: Close parentheses to POW parenthesis (leave POW parenthesis "on deck"). POW to Processed List.
2) Previous library parenthesis on same level, still in Parenthesis List: Close to library parenthesis and change it to a POW parenthesis in the Parenthesis List (leave POW parenthesis "on deck"). POW to Processed List.
3) No previous library or POW parenthesis. Close to last open parenthesis and change it to a POW parenthesis. POW to Processed List.

Special powers
(Square, Square Root, etc.)

Open parenthesis and Open absolute value sign

Closed Parenthesis

Closed Absolute Value Sign

- Same as POW then: Close to POW parenthesis (leave "on deck").
- Increase level. Level and term parentheses to lists. (Note that no open absolute value sign is put in Processed List.)
- Close to level parenthesis and delete it from Parenthesis List. Decrease level.
- Close to level. Absolute value sign to Processed List. Close to level and delete from Parenthesis List. Decrease level.
+ or - sign - Close to level. + or - to Processed List. Term parenthesis to lists.

Unary plus	- Ignore.
Unary minus	- Anticipation parenthesis to lists. Unary minus to

- Close to level parenthesis. Add level and term parenthesisto lists. (Note no comma is sent to Processed List.)

Equals sign - Close to level parenthesis. Add level and term parentheses to lists. (Note no equals sign is sent to Processed List.)

* or / sign - Close to term parenthesis. * or / to Processed List. Anticipation parenthesis to lists.

Space period

- Close to level parenthesis. Space period to Processed List. Jump to numbering routine.

In addition, indicator bits are kept for each term of the expression so ambiguous sequences can be recognized and a warning printed on the typewriter.

Then, if the programmer is not sure of the interpretation of UNICODE he can rewrite the sentence and put parentheses in the expression so he will be sure to get the correct interpretation. The following ambiguous terms are recog nized (the interpretation of UNICODE is on the right):

$$
\begin{aligned}
& \text { A POW B POW } C=\left(\begin{array}{ll}
A & \text { POW B }
\end{array}\right) \text { POW } C \\
& A / B / C=(A / B) / C \\
& \text { LIB } A \quad P O W A B B \\
& \text { LIB A*B }=\left(\begin{array}{ll}
\text { LIB } & A
\end{array}\right) * B \\
& \text { LIB } A / B=\left(\begin{array}{ll}
\text { LIB } & A
\end{array}\right) / B
\end{aligned}
$$

Compilation continues after the warning is printed.
Numbering:
Call words are numbered by use of the last number in the Numbers of Symbols List (NS). The numbers in this list are in the u addresses, one number per word. Two things must be known to use this list:

1. The address of the last number in the list.
2. The largest number put in the list so far. (The last number in the list is the largest in the list but not necessarily the largest number which has been in the list for this equation.)

Once a number has been in the list and has been taken out, it will not appear in the list again. The first number put in the list is 1.

Call words and parentheses are picked up from the Processed List starting with the last call word (space period). Call words other than parentheses are numbered with the last number in the NS List; then the numbered call word is sent to the Numbered List.

When a closed parenthesis is encountered, numbers are added to the NS List, the number of numbers added being equal to the count associated with the closed parenthesis. Numbers which are added are equal to the largest number which is or has been in the list plus l. The address of the last number in the list is increased by one for each number added to the list, of course.

When an open parenthesis is encountered, the count is subtracted from the address of the last number in the list, hence essentially deleting numbers from the list.

The space period is numbered zero.

Sorting:

The Numbered List is sorted, largest first, to produce the Sorted List which is the output of equation generator No. 1.

For example, consider the following equation as input to the routine.
$F(I, J)=-X$ POW $y+(S I N|u-v|) * W \Delta$.
The Processed List would be as follows (numbers above parentheses are counts and letters below are types, where $L=$ level, $T=$ term, $A=$ anticipation, $\mathrm{B}=$ library, $\mathrm{P}=$ POW.) :

Numbering the symbols:
Δ. is numbered zero and sent to Numbered List.

Symbol	NS List	Numbered List	
		Number	Symbol
Δ.		0	Δ.
\}	1,2,3		
W		3	W
(1,2		
*		2	*
)	1,2,4		
)	1,2,4,5,6,7,8		
j	1,2,4,5,6,7,8,9		
1		9	1
$)^{2}$	1,2,4,5,6,7,8,9,10,11		
V		11	V
(1,2,4,5,6, 7, 8, 9, 10		
-		10	-
$)^{2}$	1,2,4,5,6,7,8,9,10,12,13		
U		13	U
$($	1,2,4,5,6,7,8,9,10,12		
${ }^{3}$	1,2,4,5,6,7,8		
(1,2,4,5,6,7		
SIN		7	SIN
'	1,2,4,5,6		
${ }^{\prime}$	1,2,4,5		
${ }^{\prime}$	1,2,4		
${ }^{2}$	1		
+		1	+
$)^{4}$	1,14,15,16,17		
Y		17	Y
POW		17	POW
j	$1,14,15,16,17,18$		

Symbol	NS List	Numbered List	
		Number	Symbol
$\begin{aligned} & x_{2}^{2} \\ & c_{2} \end{aligned}$	1,14,15,16	18	X
-		16	-
(1,14,15		
'	1,14		
${ }^{2}$	list empty		
$)^{2}$	19.20		
$)^{2}$	19,20,21,22		
J		22	J
${ }^{\prime}$	19,20,21		
('	19,20		
$)^{2}$	19,20,23,24		
I		24	I
${ }^{\prime}$	19,20,23		
${ }^{\prime}$	19,20		
F		20	F
'	19		
${ }^{\prime}$	list empty		

Note: Numbers over parentheses denote count of parentheses occurring at this point.

Sorted List:

I	
J	
F	
X	
Y $\}$	both numbered 17 but operands always have larger call words
POW $\}$	than operations.
-	Unary
U	
V	
-	Binary
1	
SIN	
W	
*	
+	
Δ.	

Equation Generation No. 1

Open Parenthesis to Lists (VY)

Symbol to Processed List (VZ)

Close Parentheses (VW)

1208

Clear Indicators (VB)

Check for Ambiguity (XB)

NUMBERING ROUTINE

Sort Routine

Equation Generator No. l Regions and Coding

Region	Address	Name or Symboi Handied
VD	2512	Setup
VB	2523	Clear Indicators
VC	2532	Constants
VE	2616	Switch
VF	2654	Subscripted Variable
VH	2660	Library Routine
VI	2674	Special POWS
VJ	2752	Open Parenthesis and Open absolute
VK	2760	Closed Parenthesis
VL	2770	Closed Absolute Value
VM	3003	+or -
VN	3013	Unary -
VO	3020	Comma
VP	3033	I
VQ	3044	*
VR	3062	$/$
VS	3075	POW
VT	3077	Q.
VU	3114	Numbering Routine
VW	3147	Close Parentheses
VX	3172	(+l and +1
VY	3202	Add Parenthesis to List
VZ	3220	Symbol to Processed List
XA	3226	Trans. List +l
XB	3230	Check for Ambiguity
XC	3236	Constants
SR	3244	Sort Routine
VA	3324	Variable
PR	3351	Processed List
NS	4351	Numbers of Symbols List
PL	5351	Parentheses List
WL	2242	Translation List
NT	2774	Close to level and Sym \rightarrow Processed List

Setup Equation Generation

Translation Switch

Subscripted Variable

Special POWS

Open Parenthesis (and Open Absolute |

	IA	VJ		
0	LQ	VA		Raise level
1	TP	VC44	VY2)	
2	RJ	VY	VY1	Add level and term ('s
3	TP	VC45	VY2	Add level and term (s
4	RJ	VY	VY1	
5	MJ	0	XA	\rightarrow (a)
	CA	VJ6		

	IA	VK		
0	RJ	XB	XBI	Print term checker Clear ind.
1	RJ	VB	VB1	
2	TP	VC20	VW2	Close to level (clear) plus lower level
3	TP	VC44	A	
4	AT	VA	VW3	
5	RJ	VW	VWI)	
6	LQ	VA	43	Lower level
7	MJ	0	XA	\rightarrow ©
	CA	VK10		

Closed Absolute Value I

	IA	VL		
0	RJ	XB	XB1	Amb. term check
1	RJ	VB	VB1	Clear ind.
2	RJ	NT	NTl	Sym \rightarrow Pro. List
3	MJ	0	VK2	Close to level (clear)

				IA
0	NT			
1	MJ	0	30000	Exit
2	TP	VC	VW2	
3	NT	VA	A	
4	RJ	VW	VW1	
4	VW			
5	RJ	VZ	VZl	Close to level (no clear)
6	MJ	0	NT	
	CA	NT7		Eym \rightarrow Processed List

$$
+ \text { or - }
$$

	IA	VM		
0	RJ	XB	XB1	Ambiguous term checker
1	RJ	VB	VBl	Clear
2	RJ	NT	NT1	Close to level (no clear) sym \rightarrow Pro.
3	TP	VC45	VY2	
4	RJ	VY	VYl	
5	MJ	0	XA	Term $(\rightarrow$ list
	CA	VM6		$\rightarrow \infty$

Unary Minus

Comma

	IA	VO			
0	RJ	XB	XB1		
1	TP	VC20	VW2		
2	TP	VC44	A		
3	AT	VA	VW3		
4	RJ	VW	VW1		
5	TP	VC44	VY2		
6	RJ	VY	VY1		
7	TP	VC45	VY2		
10	RJ	VY	VY1		
11	RJ	VB	VBl		
12	MJ	0	XA	\quad	Close to level (clear)
:---					

Equals ($=$)

Floating and Fixed *

		IA	VQ		
	0 1	TP	VA	$\left.\begin{array}{l}\text { Q } \\ \text { A }\end{array}\right\}$	LIB \| no \rightarrow (30)
	2	ZJ	VQ3	VQ4	
	3	QS	VC55	VA2	Set print term
30	4	TN	VA	Q $\left.{ }_{\text {VB3 }}\right\}$	Clear LIB, POW,
(19)	5 6	RJ TP	VB	vB3 ${ }^{\text {V }}$	
	7	TP	VC45	A	Close to term (
	10	AT	VA	vW3	Close to term (no
	11	RJ	VW	vW1	
(36)	12	RJ	VZ	VZ1	* Pro. List
	13	TP	VC	VY2 ${ }_{\text {VY1 }}$,	$0(\rightarrow$ lists
	14	RJ	VY	VY1	
	15	MJ	$\begin{aligned} & 0 \\ & \text { VQ16 } \end{aligned}$	XA	\rightarrow (a)

Floating and Fixed /

		IA	VR			
	0	TP	VA	Q		
	1	QT	VA5	A	$1 \rightarrow$ VR6 not	
	2	ZJ	VR6	VR3	\rightarrow VR6 not	
	3	QS	VC55	VA5	Set /	
	4	QT	VA3	A ${ }^{\text {VR7 }}$ \}	LIB \\| no \rightarrow (33)	
(32)	5	ZJ	VR6	VR7 $\}$	Lib 1 no - 3	
32	6	QS	VC55	VA2	Set print term	
(33)	7	TN	VA	Q		
	10	QT	VA3	VA3	Clear LIB \& POW	
	11	QT	VA4	VA4		
	12	MJ	0	VQ6	\rightarrow (19)	
		CA	VR13			

			POW	
	IA	VS		
0	RJ	VI26	VI	\rightarrow POW sect.
1	MJ	0	XA	$\rightarrow(a)$

Space Period Δ.

	IA	VT	
0	TP	VA16	Q
1	QJ	VT2	VT5
2	RJ	WA	WA2
3	TP	XC	UP3
4	RJ	UP2	UP
5	TP	VC20	VW2
6	TP	VC44	A
7	AT	VA	VW3
10	RJ	VW	VW1
11	RJ	VB	VB1
12	RJ	VZ	VZ1
13	TP	VC60	VA6
14	MJ	0	VU
	CA	VT15	

Print term \downarrow no \rightarrow VT5
Print WARNING, $\triangle \triangle$ AMBIGUOUS TERMS.
Close to level (clear)
Clear
Δ Set address of no. list
\rightarrow numbering routine

Print

	IA	XC	
0	40	XCl	5
1	71	24545	03450
2	32	21010	12447
3	25	34326	75167
4	65	01663	05447
5	17	65432	27777
	CA	XC6	

W	A	R	N	I	N
G	,	Δ	Δ	A	M
B	I	G	U	0	U
S	Δ	T	E	R	M
$($	S	$)$.	77	77

Numbering Routine

Sort Routine

	IA	SR			
0	SP	VA6			
1	ST	VC60	VA21	No. to be sorted \rightarrow VA	
2	TP	VC7	Q ${ }_{\text {S } 4}$ \}		
3	QS	VA21	SR4	Set n of repeat	
4	RP	30000	SR6 ${ }^{\text {S }}$		
5	TN	WL24	WL24	List negative	
6	TP	VC60	VA6	Address of no. list = WL24	
7	SP	VC61	0		
10	SA	VA21	0	Address of Sorted List \rightarrow VA7	
11	ST	VCl	VA7		
12	TV	A	SR13 $\}$	lst sym \rightarrow Sorted List	
13	TP	WL24	(30000) ${ }^{\text {d }}$	Lst sym \rightarrow Sorted List	
14	RA	VA6	VC1	No. List +l	
15	TU	A	SR23		
16	TU	A	SR51	\# of nos. in Sorted List \rightarrow VA22	
17	ST	VC60	VA22		
20	TP	VC7	Q ${ }^{\text {Q }}$	Set n of repeat	
21	QS	VA22	SR24	Set n of repeat	
22	TU	VA7	SR25	Set address of Sorted List	
23	TP	(30000)	A	\# \rightarrow A	
24	RP	20000	SR35	largest \# yet \rightarrow SR35 No	
25	TJ	(30000)	SR26	largest \# yet \rightarrow SR35 No	
26	TU	SR24	VA24	j $\mathrm{n} \rightarrow$ VA24	
27	LQ	Q	17		
30	SP	VA24		$r-l \rightarrow$ VAl2	
31	SS	Q	0	$\mathrm{r}-1 \rightarrow$ VA12	
32	ST	VC3	VAl2		
33	AT	VC52	SR43	Set repeat to move back nos.	
34	MJ	0	SR40		
35	TP	VC7	Q	Set to move back all nos.	
36	QS	SR24	SR43	Set to move back all nos.	
37	QS	SR24	VAl2	$\mathrm{r}-\mathrm{l}=$ all nos.	
40	SP	VC54	0	TP 00	
41	SA	VA7	0	TP SL+ SL+	
42	ST	VC4	SR44	TP SL+ (SL+) -l	
43	RP	30000	SR45 $\}$	Move nos. back	
44	TP	(30000)	(30000)	Move nos. back	
45	LQ	VAl2	25	$\mathrm{r}-\mathrm{l} \rightarrow \mathrm{V}$ address	
46	SP	SR44	0		
47	SA	Q	0	TP no. L+ (SL+) + r -	
50	TV	A	SR51	IP no. L+ (SL+) + r -	
51	TP	(30000)	(30000)		
52	RS	VA7	VCl	Sorted list address -1	
53	TJ	VC50	SR55	Done \rightarrow SR55 no \\|	
54	MJ	0	SR14	\rightarrow SR14	
55	TU	SR4	SR56	Set n of repeat	

\(\left.\begin{array}{llll}56 \& RP \& 0 \& VD

57 \& TN \& PR \& WL4\end{array}\right\} \quad\)| Exit |
| :--- |
| Change to positive |

Add Parenthesis to Lists

$$
\text { Sym } \rightarrow \text { Processed List }
$$

	IA	VZ		
0	MJ	0	(30000)	Exit
1	TU	VA6	VZ3	
2	TV	VA7	VZ3	Sym \rightarrow Pro. List
3	TP	(30000)	(30000)	
4	RA	VA7	VC1	Pro. List +1
5	MJ	0	VZ	Exit
	CA	VZ6		

Close Parentheses

	IA	VW		
0	MJ	0	(30000)	Exit
1	MJ	0	VW4	Start
2	0	0	0	- Take off list, + leave on
3	0	0	0	Code of (and level
4	TV	VA 7	VW5 $\}$	$) \rightarrow$ Pro. List (
5	TP	VC43	(30000) $\}$	$) \rightarrow$ Pro. List (count ze
6	TU	VAll	VW10	
7	RS	VW10	VC57 $\}$	Code of $(\rightarrow$ A
10	TP	(30000)	A	
11	EJ	VW3	VW15	$\rightarrow \rightarrow$ VWl5 nod
12	RJ	VX	VXI	$(+1$ and $)+1$
13	RS	VAll	VC2	Take (off list
14	MJ	0	VW6	Return
15	RJ	VX	VXI	(+1 and) + 1
16	TP	VW2	Q	
17	QJ	VW20	VW21	Delete from list ${ }^{\text {no }} \rightarrow$ VW21
20	RS	VAll	VC2	Clear (from list
21	RA	VA7	VC1	Add. of Pro. List +l
22	MJ	0	VW	Exit
	CA	VW23		

$$
(+1 \text { and })+1
$$

	IA	VX		
0	MJ	0	(30000)	Exit
1	TU	VW10	VX3	
2	RA	VX3	VC3	
3	TU	(30000)	VX4	
4	RA	(30000)	VC4	
5	TU	VA 7	VX6	
6	RA	(30000)	VC4 4	Increase count on open
7	MJ	0	Increase count on closed	
	CA	VX10		Exit

Clear Indicators

$\left.\begin{array}{lllll} & \text { IA } & \text { VB } & & \\ 0 & \text { MJ } & 0 & (30000) & \text { Exit } \\ 1 & \text { TN } & \text { VA } & \text { Q } & \\ 2 & \text { QT } & \text { VA2 } & \text { VA2 } & \text { P.T. } \\ 3 & \text { QT } & \text { VA3 } & \text { VA3 } & \text { LIB } \\ 4 & \text { QT } & \text { VA4 } & \text { VA4 } & \text { POW } \\ 5 & \text { QT } & \text { VA5 } & \text { VA5 } & \text { DIVIDE } \\ 6 & \text { MJ } & 0 & \text { VB } & \text { Exit } \\ & \text { CA } & \text { VB7 } & & \end{array}\right\}$

Check for Ambiguity

IA				XB
0	MJ	0	(30000)	Exit
1	TP	VA	0	
2	QT	VA2	A	
3	ZJ	XB4	XB	

	IA	VC		
0	0	0	0	Zero
1	0	1	1	One
2	0	2	2	Two
3	0	1	0	One in u
4	0	0	1	One in v
5	0	2	1) count of 1
6	0	1	0	(numbering bit
7	0	07777	0	Sort
10	0	0	0	NP routine
11	0	0	07777	
12	0	0	77777	
13	0	0	70000	Sub. var.
14	0	0	60000	Single operand
15	0	0	50000	LIB
16	0	0	40000	Pseudo Op.
17	0	0	10000	POW'S
20	40	0	0	Close off bit indicator
21	0	0	10	1 (open)
22	0	0	12	\| (closed) floating
23	0	0	20	F1. +
24	0	0	21	Fx. +
25	0	0	30	F1. -
26	0	0	31	Fx. -
27	0	0	32	Fl. Unary -
30	0	0	33	Fx. Unary -
31	0	0	40	,
32	0	0	50	$=$
33	0	0	60	F1. *
34	0	0	61	Fx. *
35	0	0	70	Fl. /
36	0	0	71	Fx. /
37	0	0	100	POW
40	0	0	13	\| (closed) fixed
41	0	0	120	Δ.
42	0	1	0	(
43	0	2	0)
44	1	0	0	Level
45	2	0	0	Term
46	3	0	0	LIB
47	4	0	0	POW
50	0	PR1	PR1	Sort
51	0	PR1000	PR1000	Limit of Processed List
52	RP	30000	SR45	Sort routine
53	0	0	2	NP3 and NP32
54	TP	0	0	Sort
55	77	77777	77777	

56	0	0	101	POW (int.)
57	0	2	0	2 in u
60	0	WL24	WL24	Sym/wd and No. Lists
61	0	PR	PR	Processed and Sorted Lists
62	0	NS	NS	Number of Symbol List
63	0	PL	PL	Parenthesis List

Variables (VA) - Explanation of Temporaries

EQUATION GENERATION NO. 2

Equation redundancy check and equation generation phase

The purpose of the Equation Redundancy check and Equation Generation Phase is two-fold:

1) The elimination of redundant calculations within the same equation;
2) The generation of a relatively coded routine for each equation.

The inputs to this phase are the Sorted List, the Dimension List, and the Pseudo Operation List. The symbols for a given equation are obtained in order from the Sorted List and each operator, together with its operand (s), is put in the form of a pseudo instruction to facilitate the check for redundant calculations. These pseudo instructions are entered in what is called the Expanded List, unless an identical pseudo instruction has been previously entered. In the case of an identical previous entry, the current pseudo instruction represents a redundant calculation and provision is made to utilize the result of the prior calculation. Through the special formats for the pseudo instructions, many redundant calculations will be eliminated. For example:

1) Identical Symbol Strings.
eg., $X=\sin (A+B+C-D / E)+(A+B+C-D / E)$ Pow 2
The quantity ($\mathrm{A}+\mathrm{B}+\mathrm{C}-\mathrm{D} / \mathrm{E}$) will be calculated only once.
2) Simple Transpositions.
eg., $X=A * B-\sin (B * A)$
The quantity $A * B$ will be recognized as equivalent to the quantity $B * A$ and would not be recomputed.
3) Transpositions within Expressions where some reordering is caused by the hierarchy of operators.
eg., $X=(A+B * C) / E-\tan ((C * B+A) / E)$
The quantities $\left(A+B^{*} C\right) / E$ and $(C * B+A) / E$ will be recognized as equivalent and only one computation will be made.

A unique partial result symbol for each calculation is entered in the Expanded List following each pseudo instruction. This partial result symbol identifies the result of a given calculation as an operand for a succeeding calculation. When a partial result from a calculation is used as an operand for
the next calculation, register storage (A or Q) may be utilized; hence, each pseudo instruction is checked to determine if the last assigned partial result appears as one of its operands. In this way, effective utilization of register storage is realized; thereby minimizing the need for temporary storage.

The Expanded List, together with lists of supplemental information, serves as input for the generation of the relatively coded equation routine. Each pseudo instruction is obtained in order from the Expanded List and decoded. The series of relatively coded machine instructions necessary to perform the required computation and store the partial result is then generated. After all pseudo instructions have been processed, the fixed constants and relative constants are transferred to the generated routine package. At this time also, the Op File describing this generated routine is prepared. The equation routine and 0 p File are then transcribed on magnetic tape for use as input to succeeding phases of the compiler.

As an example, consider the equation:

$$
X=A+B * C-\sin (C * B)
$$

In the Sorted List this equation would appear as:
X
B
C
*
A
$+$
C
B
*
\sin
Δ.
Following the elimination of redundant calculations, the equation appears in pseudo instruction form in the Expanded List as:

The Expanded List is processed to form the following generated equation routine:

EXIT	MJ	0	[]	
ENTRY	FM	B	C	$\mathrm{B}^{*} \mathrm{C} \rightarrow \mathrm{Q}$
	TP	Q	TEMP 1	$\mathrm{B}^{*} \mathrm{C} \rightarrow$ TEMP 1
	FA	Q	A	$\mathrm{B} * \mathrm{C}+\mathrm{A} \rightarrow \mathrm{Q}$
	TP	Q	TEMP 2	$\mathrm{B}^{*} \mathrm{C}+\mathrm{A} \rightarrow$ TEMP 2
	TP	TEMP 1	SIN	$B^{*} \mathrm{C} \rightarrow$ SIN +3
	10	0	3	
	RJ	SIN	SIN	$\operatorname{SIN}\left(B^{*} \mathrm{C}\right) \rightarrow \mathrm{Q}$
	10	2	0	
	TN	Q	Q	$-\operatorname{SIN}\left(\mathrm{B}^{*} \mathrm{C}\right) \rightarrow \mathrm{Q}$
	FA	Q	TEMP 2	$\left[-\operatorname{SIN}\left(\mathrm{B}^{*} \mathrm{C}\right)\right]+\left[\mathrm{B}^{*} \mathrm{C}+\mathrm{A}\right] \rightarrow \mathrm{Q}$
	TP	Q	X	$\mathrm{A}+\mathrm{B}^{*} \mathrm{C}-\mathrm{SIN}\left(\mathrm{B}^{*} \mathrm{C}\right) \rightarrow \mathrm{X}$

Consider another equation which appears in the Sorted List as:

8	X
6	B
5	C
4	D
4	POW
3	$*$
2	A
2	+
1	Δ.

Following the elimination of redundancies (none in the example), the equation appears in the Expanded List as:

POW	C	D
		PR 1
*	PR 1	B
		PR 2
+	PR 2	A
\triangle	PR 3	PR 3

Finally, the generated equation routine would be:

EXIT	MJ	0	$\left[\begin{array}{l}\text { I }\end{array}\right.$
ENTRY	TP	C	POW
	10	0	3
	TP	D	POW
	10	0	4
	RJ	POW	POW
	10	2	0
	FM	Q	B
	FA	Q	A
	TP	Q	X
	MJ	0	EXIT

Equation Redundancy Check (Subscripted Variable Operator

To Conn. (179A)

Equation Redundancy Check (Library Routine Operator)

Equation Redundancy Check (Library Routine Operator)

Equation Redundancy Check (Power Operators)

Equation Redundancy Check (Integral Power Operator)

Equation Redundancy Check (Integral Power Operator) Subroutine To Check for Redundancy of Integral Power Operator

Equation Redundancy Check (Floating Point Divide and Subtract Operators)

Equation Redundancy Check (Fixed Point Unary Minus and Absolute Value Operators)

Equation Redundancy Check (Storage Operator)

Equation Redundancy Check (Storage Operator)

(VS) Subroutine To Sort Operands for Floating Point Addition or Multiplication

(PN) Set Condition Indicator for Floating Point Operations

(RR) Subroutine To Check for Redundant Floating Point Binary Operation

(RS) Subroutine to Store Redundant Partial Result in Operand List and Redundant Partial Result List.

(FS) Subroutine To Store Callword in Op. File 1 Item Input-Callword in " " of "A" Register

(BR) Subroutine to Advance or Decrease Available Address in Operand List (Beta Routine)

(LQ) Subroutine To Search for or Store Partial Result Symbol in "Q" List Input-Redundant Partial Result in "A" Register for Search

(LA) Subroutine To Search for or Store Partial Result Symbol in "A" List Input-Redundant Partial Result in "A" Register for Search

(ES) Subroutine To Search for Dummy Instruction or Advance Dummy Tally in Expanded List Input-Dummy Instruction in "A" Register

(DS) Subroutine to Search Dimension List (Input-Callword in "A" Register)

(PR) Subroutine to Decrease and Check Partial Result Counter

 $(\mathrm{PP})-\mathrm{S}$

Subroutine to Store Partial Result Symbol for "Sub" Operation in Expanded List and Operand List

(LS) Subroutine to Store in List 1, Callword of Library Routine and, if Fixed Library Routine, Callwords

Equation No. 2 (Redundancy Check) Coding

Regional Assignments for Equation Redundancy Check Phase

		Region and Address	Name or Description
General Subroutines (not part of this phase)	RE	UP421	Uniprint Routine
	RE	EP537	Alarm Routine
	RE	BQ632	Rewind Tapes Routine
	RE	WA653	Type Alarm Heading
	RE	CW1211	Constant Callword Routine
	RE	LR1465	Build List l Routine
Input from Transla-	RE	SL2242	Sorted List
Program	RE	BB2512	Setup Redundancy Check Phase (Start)
	RE	SS2544	Check Symbol from Sorted List
	RE	ER2614	End Redundancy Check Phase
	RE	S02633	Subscript Operator (77-.-type callword)
	RE	SP2715	Subscript Operator (continued)
	RE	SQ2757	Subscript Operator (continued)
	RE	ST3010	Subscript Operator (76_..or 75_..type callword)
	RE	LJ 3064	Library Operator
	RE	LK3111	Library Operator (continued)
	RE	LL3133	Library Operator (continued)
	RE	LM3161	Library Operator (continued)
	RE	LN3210	Library Operator (continued)
	RE	IP3236	Power Operators (3), (-3), (2), (-2), (1/2), (-1/2)
	RE	IQ3300	Power Operators (-1), (4to63), (-4 to -63)
	RE	IR3335	Power Operators (continued)
	RE	IS3375	Power Operators (continued)
	RE	FD3454	Floating Point Divide and Subtract Operators
	RE	FP3513	Floating Point Plus and Multiply Operators
	RE	P03544	Fixed Point Plus Operator
	RE	M03570	Fixed Point Multiply Operator
	RE	N03617	Fixed Point Subtract Operator
	RE	D03651	Fixed Point Divide Operator
	RE	FN3700	Floating Point Unary Minus and Absolute Value Operators
	RE	NF4014	Fixed Point Unary Minus and Àbsolute Value Operators
	RE	NE4041	Fixed Point Unary Minus and Abs. Val. (continued)
	RE	EE4051	Storage Operator (space-period)

	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$	EF4110 EG4152 EH4206	Storage Operator (continued) Storage Operator (continued) Storage Operator (continued)
Subroutines	RE RE	VC4246 VS4317 PN4404 RR4502 RS4562 054610 FS4624 BR4642 LQ4654 LA4703 ES4726 DS4746 PR4755 EK4764 PP5012 SR5023	Subroutine to Check Variables Subroutine to Sort Operands for Floating Plus or Multiply Set Condition Indicator for Floating Point Operations Subroutine to Check for Redundant Floating Point Binary Operation Subroutine to Store Redundant Partial Result Symbol in Operand List and Redundant Partial Result List Subroutine to Sort Operands for Fixed Plus or Multiply Subroutine to Store Callword in Op. File 1 Subroutine to Advance or Decrease Address β in Operand List (Beta Routine) Subroutine to Search for or Store Partial Result Symbol in "Q" List Subroutine to Search for or Store Partial Result Symbol in "A" List Subroutine to Search for Dummy Instruction or Advance Dummy Tally in Expanded List Subroutine to Search Dimension List Subroutine to Decrease and Check Partial Result Counter Subroutine to Check for 6l_-_Type Operands in Dummy Instruction Subroutine to Enter Current Partial Result Symbol in Expanded List and Operand List Subroutine to Store Partial Result Symbol for Subscript Operation in Expanded List and Operand List
Constants	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$	$\begin{aligned} & \text { FC5051 } \\ & \text { RC5174 } \\ & \text { T05227 } \\ & \text { IA5233 } \\ & \text { LV5245 } \end{aligned}$	Fixed Constants Relative Constants Alarm Text Initial Addresses of Lists Limiting Addresses for Lists etc.
Subroutine	RE	LS5257	Subroutine to Store in List 1, Callword of Library Routine and If Fixed Library Routine, Callwords of Cross-References

Temporaries	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$	$\begin{aligned} & \text { WT5306 } \\ & \text { CT5315 } \end{aligned}$	Working Temporaries Counters
Lists	RE RE RE RE RE RE RE	RA5550 XQ556I XA5761 RL6161 EL6261 FL7161 BL7361	Running (current) Addresses in Lists "Q" List "A" List Redundant Partial Result List Expanded List Op. File l Item Operand List
Permanent List	RE	DL40102	Dimension List

(1)		IA	SS		Check Symbol from Sorted List			
	0	TP	FC	CT10	Zeroize condition Indicator			
	1	TP	FC32	Q	Mask for "v" to "Q"			
	2	RA	SS3	FC2	Adv. add. in Sorted List \rightarrow Add. next symbol			
	3	QT	[30000]	A	Symbol from Sorted List \rightarrow " v " of "A"			
2	4	TP	A	WT3	Symbol \rightarrow "v" of WT3			
	5	TJ	FC112	SS11	$50000>$ Symbol? (Is this operation Symbol?)			
	6	TJ	FC43	LJ 3	$61000>$ Symbol? (Is this Library Symbol?)			
	7	TJ	FC61	SQ14	75000 > Symbol? (Is this Non-sub Var. or Const. Sym?)			
3	10	MJ	0	S0	Subscripted Variable Symbol (77... , 76_.-., or 75_-.)			
	11	LQ	A	17	Symbol \rightarrow " u " of Q			
	12	QT	FC114	A	Mask rightmost 4 octal digits to "u" of A			
	13	AT	FC113	A	FormMJ O[symbol] 00000 			
	14	RP	30031	SS47	Search List for Operation Symbol			
	15	TJ	SS16	SS16	Jump according to symbol			
	16	MJ	12	FN2	Floating Point Absolute Value			
	17	MJ	13	NF2	Fixed Point Absolute Value			
	20	MJ	20	FP	Floating Point Plus			
(4)	21	MJ	21	P0	Fixed Point Plus			
	22	MJ	30	FD7	Floating Point Subtract			
	23	MJ	31	N0	Fixed Point Subtract			
	24	MJ	32	FN	Floating Point Unary Minus			
	25	MJ	33	NF	Fixed Point Unary Minus			
	26	MJ	50	SS	$=$			
(5)	27	MJ	52	SS	By			
	30	MJ	60	FP2	Floating Point Multiply			
	31	MJ	61	M0	Fixed Point Multiply			
	32	MJ	70	FD	Floating Point Divide			
	33	MJ	71	D0	Fixed Point Divide			
	34	MJ	100	LJ	General "POWER"			
(6)	35	MJ	101	LJ2	\| POW	>63 or	Non-integral POW	<63
					(superscript cases only)			
	36	MJ	120	EE	Storage Operater (space-period)			
	37	MJ	3077	IQ14	Integral Power (4 to 63)			
	40	MJ	3177	IQ16	Integral Power (-4 to -63)			
(7)	41	MJ	4000	IP	Integral Power (3)			
	42	MJ	4100	IP2	Integral Power (-3)			
	43	MJ	5000	IP11	Integral Power (2)			
	44	MJ	5100	IPI 3	Integral Power (-2)			
	45	MJ	6000	IP22	Power (1/2)			
	46	MJ	6100	IP24	Power ($-1 / 2$)			
	47	MJ	7100	IQ	Integral Power (-1)			
		CA	S					

$7 \mathrm{~A}$		IA	ER		End Redundancy Phase
	0	TP	RA7	A	Initial Relative constant Running Address to "A"
	1	TJ	LV7	ER6	Number Lines in object program body \leq 10018 ?
	2	RJ	WA	WAl	No; Type sentence Number
	3	TP	T0	UP3	Codeword to Alarm Print
	4	RJ	UP2	UP	Alarm; SENTENCE_---T00 LONG.
	5	MJ	0	BQ6	Rewind Tapes and Stop
	6	RS	RA2	IA2	\#Entries "Q" List to "u" and "v" of "A"
	7	AT	FC110	RA	jn for " Q " List Search to Generation Input
	10	RS	RA3	IA3	\#Entries "A" List to "u" and "v" of "A"
	11	AT	FC110	RAl	jn for "A" List Search to Generation Input
	12	RS	RA10	IA7	\#Redundancy Temps to "u" and "v" of "A"
	13	AT	FC110	RA2	jn for Redundant Partial Result Search to Gen. Inp.
	14	TP	FC107	RA3	Initial Relative Running Address to Gen. Input
(7B)	15	TP	IAll	RA10	Initial Address in Expanded List +2 to Generation Input
	16	$\begin{aligned} & \mathrm{MJ} \\ & \mathrm{CA} \end{aligned}$	0 ERI7	BB	

(8)		IA	S0		Subscript Operator (77_-_ callword)
	0	TP	A	WT1	7.-.- symbol to "v" of working Temp \#1
	1	RJ	ES	ES12	Advance "D" to available dummy inst. address
	2	TV	A	WT4	Address of dummy inst. to "v" of Temp 4
	3	TV	A	S04	Address for dummy inst, to "v" of NI
	4	TP	RCl	[30000]	Dummy "sub" instruction to Dummy List (D)
	5	TP	WT3	Å	7-_-- type symbol to "A"
	6	TJ	FC53	ST	Symbol 77_-_ ? (i.e. 77000> A)
(9)	${ }^{7}$	RJ	FS	FSl	Yes, store symbol in Op. File 1.
	10	TP	WT3	A	77-.-type symbol to "A"
	11	RJ	DS	DS1	Search Dimension List for symbol (Address of next word in "u" of A)
	12	TU	A	S013	Address of modulus to "u" of next inst.
	13	TU	[30000]	WT	Modulus to "u" of Temp 0
	14	SP	WT	71	Modulus to "v" of A_{R}
	15	RJ	CW	CWl	Store modulus in constant pool (callword in "u" of A)
	16	TV	S04	S017	Address of Dummy inst. in Dummy List (D) to "v" of NI
	17	TU	A	[30000]	Callword of Modulus to "u" of Dummy instruction
	20	TU	S013	S02I	Address of \# S.S. to "u" of NI
10	21	TV	[30000]	CTIl	\# of subscripts to index counter C_{1}
	22	TP	FCl	A	1 in "v" to "A"
	23	EJ	CTIl	SQ	\# Subscripts = one?
	24	TV	S04	S025	Address of dummy instruction to " v " of NI
	25	TV	CTll	[30000]	\# Subscripts to "v" of dummy instruction
	26	SP	CTIl	17	\#Subscripts to "u" of "A"
	27	AT	CTll	Q	\#Subscripts to "u" and "v" of Q
	30	RS	RA	Q	Decrease add. in Operand List (β) by \#S.S. in " u " and " v "
	31	RJ	BR	BR2	Has β decreased beyond lower limit.
	32	TU	A	S040	Address of first s.s. to "u" of TP
	33	TV	RC31	S042	Preset switch for multiplier in "v"
	34	TU	S013	S046	Preset address of multiplier
(11)	35	RS	CTll	FCl	Decrease index counter by 1 in " v "
	36	RJ	ES	ES12	Advance D to next address in Dummy List
	37	TV	A	S040	Address for subscript in Dummy List to "v" of NI
	40	TP	[30000]	[30000]	Subscript from Operand List to Dummy List in "v"
	41	RA	S040	FC2	Advance address to next s.s. in Operand
	42	IJ	CTIl	[30000]	All subscripts transferred to Dummy List?
	43	MJ	0	SP	Yes

	44	TV	RC32	S042	Preset switch for multiplier in "u"
	45	RA	S046	FC2	Advance "u" of NI by one (Add. of Mult.)
	46	TV	[30000]	WT1	Multiplier to "v" of working Temp.
	47	TP	WTI	A	Multiplier to "v" of A
$(12$	50	RJ	CW	CW1	Store multiplier in constant pool (callword in "u" of A)
	51	TV	S040	S052	Address of subscript in Dummy List to "v" of NI
	52	TU	A	[30000]	Multiplier to Dummy List with Corres. Subscript
	53	MJ	0	S036	
	54	TU	S046	S055	Address of Multiplier in Dim. List to "u" of NI
	55	TU	[30000]	WT	Multiplier to "u" of Working Temp.
	56	SP	WT	25	Multiplier to "v" of Al
	57	LT	0	A	Multiplier to "v" of Ar
	60	TV	RC31	S042	Preset switch for multiplier in "v"
	61	MJ	0	S050	
		CA	S062		

(13)		IA	SP	
	0	SP	S04	17
	1	TU	A	SP2
	2	TP	[30000]	A
	3	TV	A	CT11
	4	TV	A	CT12
	5	RJ	ES	ESI
	6	SJ	SP22	SP7
	7	TP	FC35	Q
	10	SS	FC2	0
	11	TU	A	SP20
	12	TU	SP2	SP21
	13	IJ	CT11	SP16
	14	RA	SP20	FC2
	15	MJ	0	SQ20
	16	RA	SP20	FC2
	17	RA	SP21	FC2
	20	QT	[30000]	A
	21	EJ	[30000]	SP13
(14)	22	TP	CTl2	A
	23	EJ	FC23	SP26
	24	EJ	FC57	SP31
(15)	25	MJ	0	SP34
	26	RA	RA7	FC24
	27	TP	FC6	CT10
16	30	MJ	0	SP36
	31	RA	RA7	FC25
	32	TP	FCl0	CT10
(17)	33	MJ	0	SP36
	34	RA	RA7	FC26
	35	TP	FC70	CT10
	36	SP	RA5	17
	37	TU	A	SR
	40	MJ	0	SQ12
		CA	SP41	

Subscript Operator (continued) Address of Dummy Inst. to "u" of A Address of Dummy Inst. to " u " of NI Dummy inst to A
\#Subscripts to index counter C_{1} \#Subscripts to index counter C_{2} Search Expanded List for Redundancy Is dummy inst. redundant? yes to SP7 Mask for " u " and " v " to " Q " Add. of prev. entry in Exp. List to " u " of A
Add. of prev. entry in Expanded List to "u" of QT
Add. of Dummy inst, to "u" of EJ
All subscripts compared for redundancy?
Yes
Adv. "u" of $\mathrm{QT} \rightarrow$ Add. of next s.s. in Exp. List
Adv. "u" of EJ \rightarrow Add. of next s.s. in Dummy List
Subscript from Expanded List \rightarrow A
S.S. in Dummy List $=$ S.S. in Expanded List?
\#Subscripts \rightarrow A
\#Subscripts $=2$?
\#Subscripts $=3$?
Assume four subscripts
Adv. Nrp by 3
Set Cond. Ind. $\rightarrow 2(2$ subs w/s.s. not in A)

Adv. Nrp by 4
Set Cond. Ind. $\rightarrow 4$ (3subs. w/s.s. not in A)

Adv. Nrp by 5
Set cond. Ind. $\rightarrow 6$ (4 subs. w/s.s. not in A)

Add. of last entry in Exp. List \rightarrow " u " of A
Address of Last Subscript \rightarrow "u" of TV

(18)		IA	SQ		Subscript Operator (continued)
	0	RJ	BR	BR1	```Decrease address in Operand List (\beta) by l in "u" and "v"```
	1	TU	RA	SQ3	Address of last operand in Oper. List \rightarrow "u" of TV
	2	TV	S04	SQ3	Address of Dummy instruction \rightarrow " v " of NI
	3	TV	[30000]	[30000]	Subscript \rightarrow "v" of dummy instruction
	4	SP	S04	17	Address of Dummy inst. \rightarrow " ${ }^{\prime \prime}$ of A
	5	TU	A	SQ6	Address of Dummy inst. \rightarrow " u " of NI
	6	TP	[30000]	A	Dummy instruction \rightarrow A
	7	RJ	ES	ESI	Search Expanded List for redundancy
	10	SJ	SQ26	SQ20	Is dummy inst. = prev. entry in Expanded
(20)	11	TU	SQ6	SR	List? Address of dummy inst. \rightarrow " u " of TV
	12	RJ	SR25	SR	P.R. Value \rightarrow Oper. List and Exp. List; Cond. Ind. \rightarrow Exp. List
21	13	TP	FC3	CT7	Set increment (I) \rightarrow one in " u " and " v "
	14	TV	RA	SQ15	Available address in Operand List $(\beta) \rightarrow$ " v " of NI
	15	TP	WT3	[30000]	Operand Symbol \rightarrow Operand List
	16	RJ	BR	BR4	Advance address in Operand List (β) by 1 in " u " and " v "
	17	MJ	0	SS	Return to pick up next symbol in Sorted
(19)	20	TP	RA4	RA5	List Set $D=\gamma$ (delete Dummy List from Expanded List)
	21	RJ	RS	RS1	Redundant P.R. \rightarrow Operand List and Red. P.R. List
	22	SJ	SQ23	SQ24	Was P.R. previously entered in Redundant P.R. List?
	23	TP	WTI	A	No, Redundant Partial Result to A
	24	RJ	LA	LAl	Redundant P.R. in "A" List? (If yes, Advance Nrp by one)
	25	MJ	0	SQ14	
	26	RA	RA7	FC4	Advance Nrp by 2
	27	TP	FC	CT10	```Set Cond. Ind }->\mathrm{ zero (l subs. w/s.s. not in A)```
	30	MJ	0	SQ11	
		CA	SQ31		

(22)		IA	ST		Subscript Operator ($76 \ldots \ldots$ or $75-\ldots$ CW
	0	TJ	FC60	ST45	Symbol 76_-_ ? (i.e. 76000>A)
	1	TP	FC73	Q	Mask for 3rd octal digit of " v " \rightarrow Q
	2	QT	WT3	CT11	\#s.s. \rightarrow 3rd octal digit of " v " of Counter C_{1}
	3	LQ	CT11	36	\#S.s. \rightarrow " ${ }^{\text {" }}$ " of index counter C_{1}
	4	TP	FC74	Q	Mask for rightmost 2 octal digits of " v " \rightarrow Q
	5	QT	WT3	A	Mask Rel. Location in Ps. Op. Input from 76..- callword
	6	AT	LV11	WT2	Add callword of pseudo op. input region (63000)
	7	SA	CT11	17	Callword of Modulus Location \rightarrow "u" of A
	10	TV	S04	STIl	Preset address of Dummy Instruction in Dummy List (D)
	11	TU	A	[30000]	Callword of Modulus Location \rightarrow " u " of Dummy Inst.
	12	TP	FCl	A	1 in " v " \rightarrow A
(23)	13	EJ	CTll	SQ	\#s.s. $=1$? yes to SQ
	14	TV	S04	ST15	Add of Dummy Inst. \rightarrow " v " of NI
	15	TV	CTIl	[30000]	\#s.s. \rightarrow "v" of Dummy Inst.
	16	SP	CTll	17	\#s.s. - "u" of A
	17	AT	CTll	Q	\#s.s. \rightarrow " u " and " v " of Q
	20	RS	RA	Q	Decrease address in Operand List (β) by \#s.s. in " u " and " v "
	21	RJ	BR	BR2	Has β decreased beyond Lower Limit
	22	TU	A	ST32	Address of first s.s.
	23	RS	CTll	FCl	Reduce " v " of index counter (\#s.s.) by one
24	24	SP	WT2	17	Callword of Location of Subs. Variable to "u" of A
	25	TU	A	WT	Callword to working temp.
	26	IJ	CT11	ST30	All subscripts but one transferred to Dummy List
	27	MJ	0	ST40	Yes
	30	RJ	ES	ES12	Advance D \rightarrow next address in Dummy List
	31	TV	A	ST 32	Address for subscript in Dummy List \rightarrow "v" of NI
	32	TP	[30000]	[30000]	Subscript to Dummy List in "v"
	33	RA	WT	FC2	Adv. "u" of working temp by one \rightarrow Add. of next mult.
	34	TV	ST32	ST35	
	35	TU	WT	[30000]	Callword of Multiplier Location to Dummy List
	36	RA	ST32	FC2	Adv. "u" address of $\mathrm{TP} \rightarrow$ next s.s. in Operand List
(25)	37	MJ	0	ST26	
	40	RJ	ES	ES12	Advance $\mathrm{D} \rightarrow$ next address in Dummy List

(27)	0	IA TP	$\begin{aligned} & \text { LJ } \\ & \text { FC64 } \end{aligned}$	WT3	Library Operator "Gen. Pow." callword (50012) \rightarrow "v" of symbol Temp.
	1	MJ	0	LJ3	
(28)	2	TP	FC67	WT3	"Var. Exp." CW (50022) \rightarrow "v" of symbol temp.
(29)	3	TP	FC3	CT3	```Set Trp }->\mathrm{ one (count transfer of control) in "u" and "v"```
	4	TP	FC	CT4	Set $\operatorname{Trc} \rightarrow$ Zero
	5	TP	FC3	CT5	Set Trpt \rightarrow one (count 10 line for transfer of cont.)
	6	TP	FC	CT6	Set Trct \rightarrow Zero
	7	TP	RC4	WT5	Dummy inst \rightarrow working temp.
	10	TU	FC	WT5	Zero \rightarrow "u" of dummy inst.
	11	TV	WT3	WT5	Lib CW \rightarrow "v" of dummy inst.
)	12	RJ	ES	ESI2	Adv. "D" to available dummy inst address
	13	TV	A	WT4	Add of dummy inst. \rightarrow " v " working temp.
	14	TV	A	LJ 15	Add. of dummy inst. \rightarrow "v" of TP
	15	TP	WT5	[30000]	Dummy inst. w/callword \rightarrow Dummy List
	16	TP	FC30	Q	Mask for rightmost octal digit of " v " \rightarrow Q
	17	QT	WT3	CTll	\#Arguments \rightarrow index counter C_{1}
	20	TP	CTIl	CTl2	\#Arguments \rightarrow index counter C_{2}
	21	TV	RCl5	LL6	Set switch N to N2
	22	TV	RCl3	LM24	Set switch S to Sl
(31)	23	IJ	CT12	LK	All arguments transferred \rightarrow Dummy List
	24	MJ	0 LJ25	LM	

		IA	LK		Library Operator (continued)
	0	RJ	BR	BR1	Decrease Add. in Oper. List by 1 in " u " and "v"
	1	TU	RA	LK2	
	2	SP	[30000]	17	Arg. \rightarrow "u" of A
	3	TP	A	WT5	Arg. \rightarrow "u" of temp. 5
	4	TP	FC54	A	$74777 \rightarrow$ "u" of A
	5	TJ	WT5	LL3	Is arg. subscripted? No to LK6
(32)	6	SP	RA6	17	P.R. counter \rightarrow "u" of A
	7	TU	WT5	WT	Operand \rightarrow "u" of working temp.
	10	EJ	WT	LL	Operand = P.R. counter? (oper in Q)
	11	TP	FC103	Q	No
	12	QT	WT5	A	
	13	EJ	FC101	LK17	Operand 6l_-_Type?
	14	RA	CT3	FC3	No-adv. Trp by one in " u " and "v"
	15	RA	CT5	FC3	Adv. Trpt by one in "u" and "v"
	16	MJ	0	LL22	
	17	RA	WT5	FCI15	Adv. indicator by 338 in op. code
	20	RA	CT3	FC4	Adv. Trp by two in "u" and "v"
	21	MJ	0	LK15	
		CA	LK22		

(33)	0	IA	LL	Library Operator	
		RA	WT5	FC5	Set indicator to l in op. code (oper in Q)
	1	TV	RCl 2	LM24	Set switch (S) to (52)
(34)	2	MJ	0	LK14	
	3	RJ	BR	BR1	Dec. add. in Oper. List by 1 in " u " and "v"
	4	TU	RA	LL5	
	5	TV	[30000]	WT5	Subscript \rightarrow "v" of Ârg, word
(N1)	6	RJ	LL6	[30000]	Switch (N)
	7	TP	FC56	A	$76777 \rightarrow$ "u" of A
	10	TU	WT5	WT	Oper. \rightarrow "u" of working temp.
	11	TJ	WT	LL16	Operand 77-- type?
	12	RA	CT3	FC25	Adv. Trp by 4 in " u " and "v"
	13	RA	CT5	FC3	Adv. Trpt by 1 in " u " and "v"
	14	RA	WT5	FC6	Adv. ind. by 2 in op. code (75__or 76... type arg.)
35	15	MJ	0	LL22	
	16	RA	CT3	FC24	Adv. Trp by 3
	17	RA	CT4	FC3	Adv. Trc by 1
	20	RA	CT6	FC3	Adv. Trct by 1
36	21	RA	WT5	FCl0	Adv. indicator by 4 in op. code (77
	22	RJ	ES	ES12	type arg.) Adv. "D" to avail. Dummy inst. Add.
	23	TV	RA5	LL24	Add. for Arg. word in Dummy List \rightarrow " v " of NI
	24	TP	WT5	[30000]	Arg. word \rightarrow Dummy List
	25	MJ	0	LJ23	
		CA	LL, 26		

37		IA	LM		Library Operator
	0	SP	WT4	17	Add. of Dummy inst. to "u" of A
	1	TU	A	LM2	Add. of Dummy Inst. to "u" of NI
	2	TP	[30000]	A	Dummy inst. to A
	3	RJ	ES	ESI	Search Exp. List for Redundancy
	4	SJ	LM17	LM5	Is dummy inst. redundant? yes to LM5
	5	TU	A	LM12	Preset address in Expanded List of first argument
	6	TU	LM2	LM15	Preset address of dummy library instruction
	7	TP	FC35	Q	Mask for "u" and "v" to Q
	10	IJ	CTll	LM12	All arguments compared for redundancy?
	11	MJ	0	LM25	
	12	QT	[30000]	WT2	Argument from Expanded List to temp. 2
	13	RA	LM12	FC2	Advance to next argument in Expanded List
	14	RA	LM15	FC2	Advance to next argument in Dummy List
	15	QT	[30000]	A	Argument from Dummy List to A
	16	EJ	WT2	LM10	Arg. in Dummy List $=$ Arg. in Expanded List
(38)	17	TP	RA5	RA4	Setr $=$ D (add Dummy List to Expanded List)
	20	RA	RA7	CT3	Adv. Nrp by Trp
	21	RA	CT	CT4	Adv. Crc by Trc
	22	RA	CTl	CT5	Adv. Crpt by Trpt
	23	RA	CT2	CT6	Adv. Crct by Trct
	24	MJ	0	[30000]	Switch (S)
	25	TP	LM12	A	Address of redundant partial result to "u" of A
	26	MJ	0	LN21	
		CA	LM27		

		IA	LN	
S1	0	RA	RA7	CT7
	1	MJ	0	LN5
S2	2	RJ	LQ	LQ7
\%	3	MJ	0	LN5
S3	4	RJ	LA	LA6
(39)	5	TP	FC3	CT7
	6	RJ	PP10	PP
(40)	7	TP	WT3	A
	10	RJ	FS	FSl
	11	MJ	0	LN23
N2	[12	TV	WT5	WT1
	13	TP	RA6	A
$\xrightarrow{\sim}$	14	EJ	WT1	LN16
	15	MJ	0	LL7
\bigcirc	16	TV	RCl4	LM24
¢	17	RA	WT5	FC5
ご	20	MJ	0	LL7
	21	TP	RA4	RA5
	22	MJ	0	RR50
	23	SP	WT3	17
	24	RJ	LS	LS1
	25	MJ	0	SS
		CA	LN26	

Library Operator
Adv. Nrp by Increment (I)
Enter P.R. in "Q" List
Enter P.R. in "A" List
Set increment (I) \rightarrow one in "u" and "v" Enter current P.R. in Oper. List and Exp. List
Lib. callword \rightarrow A
Enter Lib. callword in Op. File 1
Subscript \rightarrow "v" of working temp.
P.R. counter \rightarrow A
P.R. counter $=$ subscript?

Set (S) to (3)
Set indicator \rightarrow l in op. code (s.s. in A)

Set $D=\gamma$ (inst. Red. do not add Dummy List to Exp. List)

Library Routine Callword to List 1

Power Operators

$\begin{aligned} & 41 \\ & (42 \\ & 43 \end{aligned}$	0	IA TP	IP RC11	WT5	(3), (-3), (2), (-2), (1/2), (-1/2) Entrance-POW (3)
	1	MJ	0	IP3	
	2	TP	RC12	WT5	Entrance-POW (-3)
	3	RJ	IR15	IR	Check for redundancy
	4	QJ	IP5	IP7	Is operand subscripted?
	5	RA	RA7	FC26	Advance Nrp by 5 in " u " and "v"
	6	MJ	0	IR16	
	7	RA	RA7	FC4	Advance Nrp by 2 in " u " and "v"
44 $(45$ (46)	10	MJ	0	IS33	
	11	TP	RC7	WT5	Entrance-POW (2)
	12	MJ	0	IP14	
	13	TP	RC10	WT5	Entrance-POW (-2)
	14	RJ	IR15	IR	Check for redundancy
	15	QJ	IP16	IP20	Is operand subscripted?
	16	RA	RA7	FC25	Advance Nrp by 4 in " u " and "v"
	17	MJ	0	IR16	
	20	RA	RA7	FC3	Advance Nrp by one in "u" and "v"
(47) 48 (49)	21	MJ	0	IS33	
	22	TP	RC13	WT5	Entrance-POW (1/2)
	23	MJ	0	IP25	
	24	TP	RC14	WT5	Entrance-POW (-1/2)
	25	RJ	IR15	IR	Check for redundancy
	26	QJ	IP27	IP32	Is operand subscripted?
(50)	27	RA	RA7	FC25	Advance Nrp by 4 in " u " and "v"
	30	RJ	IP41	IP35	Square root callword to 0 p. File 1 and List 1
	31	MJ	0	IR16	
(51)	32	RA	RA7	FC4	Advance Nrp by 2
	33	RJ	IP41	IP35	Square root callword to Op. File land List l
	34	MJ	0	IS21	
	35	TP	FC66	A	Square root callword to "A"
	36	RJ	FS	FSI	Store square root callword in Op. File l
	37	TP	LS25	A	Square root callword to "A"
	40	RJ	LS	LSl	Store square root callword in List l
	41	MJ	0	[30000]	
		CA	IP42		

(52)		IA	IQ		Power Operators (-1), (4to63), (-4 to -63)
	0	TP	RC17	WT5	Entrance-POW (-1) inst. to temp. 5
	1	RJ	IR15	IR	Check for redundancy
	2	QJ	IQ3	IS21	Is operand subscripted?
	3	RA	RA7	FC4	Advance Nrp by 3 in " u " and "v"
	4	TU	WT5	WT	Operand to working temp.
	5	TP	FC56	A	$76777 \rightarrow$ "u" of A
	6	TJ	WT	IR27	Is operand 77-.-type?
(53)	7	TP	FCl2	CT10	$10 \rightarrow$ op. code of cond. ind.
	10	TV	WT5	WTl	
	11	TP	RA6	A	P.R. ocunter \rightarrow A
	12	EJ	WT1	IS	```Operand = P.R. counter? (subscript in "A"?)```
$\begin{array}{r} 54 \\ (55 \\ \hline 56 \\ \hline \end{array}$	13	MJ	0	IR33	No
	14	TP	RCl 5	WT5	Entrance-POW (4 to 63)
	15	MJ	0	IQ17	
	16	TP	RCl6	WT5	Entrance-POW (-4 to -63)
	17	TV	RCl7	IR10	Set switch (T) to (12)
	20	RJ	IR15	IR1	Check for redundancy
	21	RJ	ES	ESl2	Advance dummy tally D by one
	22	TV	RA5	IQ23	Available address in Exp. List \rightarrow "v" of TP
	23	TP	WT3	[30000]	13.-_symbol in "v" \rightarrow Exp. List
	24	QJ	IQ25	IQ27	Is operand subscripted?
	25	RA	RA7	FC27	Advance Nrp by 6 in " u " and "v"
	26	MJ	0	IR16	
	27	RA	RA7	FC24	Advance Nrp by 3 in " u " and "v"
(T2)	30	MJ	0	IS33	
	31	TU	A	IQ32	Address of 13 __symbol (POW word) in Exp. List \rightarrow "u" of TP
	32	TP	[30000]	A	13.-. symbol (POW word) from Exp. List \rightarrow A
	33	EJ	WT3	RR50	Is 13__ symbol (POWword) also redundant?
	34	MJ	0	IRll	
		CA	IQ35		

（62）	0	$\begin{aligned} & \mathrm{I} A \\ & \mathrm{RA} \end{aligned}$	IS CT10	FC5	Power Operators（continued） Adv．op．code of cond．ind．by one（s．s． in A）
	1	RJ	LA	LA6	Enter P．R．value in＂A＂List
63	2	TP	FC3	CT7	Set increment（I）\rightarrow one
	3	RJ	PP10	PP	New P．R．value \rightarrow Exp．List and Oper．List
	4	TV	RA4	IS6	Address of P．R．value in Exp．List \rightarrow＂v＂ of QT
	5	TP	FC36	Q	
	6	QS	CT10	［30000］	Indicator \rightarrow op．code of P．R．word
	7	TP	FC73	Q	Mask for 3rd octal digit of＂v＂\rightarrow Q
	10	QT	WT3	A	3rd octal digit \rightarrow A
	11	ZJ	IS13	IS12	3rd octal digit $=1$（is this neg．power）
	12	MJ	0	IS44	
64	13	RA	RA 7	FC3	Advance Nrp by one in＂u＂and＂v＂
	14	TP	FC65	A	Floating point one \rightarrow A
	15	RJ	CW	CWl	Store floating pt．＂one＂in constant pool
	16	TV	IS6	IS17	Address of P．R．word \rightarrow＂v＂of NI
	17	TU	A	［30000］	Callword of fixed const．\rightarrow＂u＂of P．R． word
	20	MJ	0	IS44	
$\pm \quad 165$	［21	TU	WT5	WT	Operand \rightarrow working temp．
$\xrightarrow{\sim}$	22	SP	RA6	17	P．R．counter \rightarrow＂u＂of A
边 ${ }^{-1}$	23	EJ	WT	IS30	Operand＝P．R．counter？（operand in＂Q＂）
2\％	24	TP	FC	CT10	No，set op．code of cond．ind．\rightarrow Zero
$\underset{\sim}{3}$	25	RJ	EK25	EK6	To 6l＿－＿routine（＂u＂ent．）
－ 0^{\prime}	26	RA	RA7	CT7	Advance Nrp by increment（I）
	27	MJ	0	IS2	
67	30	TP	FC5	CT10	Set op．code of cond．ind．\rightarrow one
	31	RJ	LQ	LQ7	Enter P．R．value in Q list
	32	MJ	0	IS2	
68	33	RA	RA7	CT7	Advance Nrp by increment（I）
	34	TP	FC	CT10	Set op．code of cond．ind．\rightarrow zero
$\stackrel{12}{1}$	35	TP	FCl03	Q	Mask for first two octal digits of＂u＂ $\rightarrow Q$
＋	36	QT	WT5	A	First two octal digits of＂u＂of $D \rightarrow A$
	37	EJ	FCl01	IS41	Operand $=6 l_{\text {＿－}}$ type？
己゙1	40	MJ	0	IS2	
近	41	RA	CT10	FC115	Adv．cond．ind．by 338 in op．code． （oper in＂u＂6l＿－＿）
$\bigcirc{ }^{\circ}$	42	RA	RA7	FC4	Adv．Nrp by 2 in＂u＂and＂v＂
	（43	MJ	0	IS2	
69	44	TP	WT3	A	Operation symbol to＂A＂
\bigcirc	45	EJ	FCl17	IS50	Symbol $=16000($ POW $1 / 2)$ ？
	46	EJ	FCl20	IS50	Symbol $=16100$（ POW－1／2）？
	47	MJ	0	SS	
（70）	50	TP	CT10	A	Condition indicator to A
	51	EJ	FCl0	IS54	Cond．ind $=4$ ？

(71)

52	RA	CT1	FC4
53	MJ	0	SS
54	RA	CT1	FC3
55	RA	CT2	FC3
56	MJ	0	SS
	CA	IS57	

[^0]SS
CA IS57

Floating Divide and Floating Subtract Operators
Dummy fl. divide inst. \rightarrow working temp. Check variables and set switch (H) Is there a subscript word?
Subscript word
No subscript word
Dummy fl. subtract inst. \rightarrow working temp.
Check variables and set switch (H) Is there a subscript word? Subscript word
Set switch (M) \rightarrow (M2)
Set cond. ind. $\rightarrow 4$ in op. code (oper. for "v" in Q)

No subscript word
Advance Nrp by one in " u " and "v" Set cond. ind. $\rightarrow 16$ in op. code (oper. for "v" in Q)

Set switch (M) \rightarrow (MI)
Jump to redundancy routine
" v " of dummy inst. \rightarrow "v" of working temp. P.R. counter \rightarrow A
P.R. counter \rightarrow "u" of A

Jump to Redundancy Routine
" v " of dummy inst \rightarrow " v " of working temp. P.R. counter \rightarrow A
P.R. counter $=$ " v " of dummy inst. Advance Nrp by increment (I)

(75)	0	$\begin{aligned} & \text { IA } \\ & \text { TP } \end{aligned}$	$\begin{aligned} & \text { FP } \\ & \text { RC21 } \end{aligned}$	WT3
(76) (77)	1	MJ	0	FP3
	2	TP	RC22	WT3
	3	RJ	VS64	VS
	4	RA	WT5	WT3
	10	$\begin{aligned} & \text { QJ } \\ & \text { RJ } \\ & \text { TU } \\ & \text { EJ } \end{aligned}$	FP6 RR22 WT6 WT	FP26 RR WT FP23
	11	TP	RA6	A
	12	TV	WT6	WT1
	13	EJ	WT1	FP17
	14	RA	RA7	CT7
	15	TP	FC	CTIO
79	16	MJ	0	RR44
	17	TV	RC3	PN14
	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & \text { TV } \\ & \text { TP } \end{aligned}$	RC5	PN44CT10
80	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & \text { MJ } \\ & \text { TP } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { FC5 } \end{aligned}$	FP24 CTIO
	24	RJ	LA	LA6
(81)	25	MJ	0	RR44
	26	RJ	RR42	RR25
	27	RA	RA7	CT7
	30	MJ	0	RR44
		CA	FP31	

Floating Plus and Floating Multiply Operators
Dummy fl. plus w/zero in "u" and "v" working temp.

Dummy fl. mult. w/zero in " u " and " v " \rightarrow working temp.
Sort operands and set switch (H)
Dummy floating [multiply] with operands \rightarrow "A" and temp.
Is there a subscript word? yes to FP6
Is operation redundant? no to FP7
"u" of s.s. word \rightarrow working temp.
Is P.R. counter $=$ "u" of s.s. word (s.s. for "u" in A)
P.R. courter \rightarrow "v" of A
"v" of s.s. word - working temp.
P.R. counter $=" v "$ of s.s. word (s.s. for "v" in A)
Advance Nrp by increment (I)
Set cond. ind. \rightarrow Zero (neither s.s. in A)
Set switch (G) \rightarrow (G2
Set switch (J) \rightarrow (2)
Set cond. ind. $\rightarrow 2$ in op. code (s.s. for "v" in A)

Set cond. ind. \rightarrow l in op. code (s.s. for "u" in A)
Enter P.R. in "A" list
Is operation redundant? no to FP27 Advance Nrp by increment (I)

Fixed Point Plus Operator
Advance " $D^{\prime \prime}$ to availabie dummy inst. address
Available dummy inst. address \rightarrow " v " of AT Address of dummy inst. \rightarrow " v " of temp. Sorted operands \rightarrow "u" and "v" of A
Dummy "fixed plus" inst. w/operands \rightarrow Dummy List
Operand in "u" of dummy inst. \rightarrow working temp.
Search Expanded List for redundancy "u" if inst. not redundant - "v" if inst. is redundant
Partial result counter \rightarrow "u" of A Is P.R. counter $=$ "u" of dummy inst. (operand in A?)
No, advance \#lines in running prog (Nrp) by 2 in "v"
P.R. value \rightarrow Exp. List and Oper. List; cond. ind. \rightarrow Expanded List
Set increment (I) \rightarrow zero
Advance \#lines in running prog (Nrp) by l in "u" and "v" P.R. value \rightarrow "A" List, Exp. List and Oper. List; cond. ind. \rightarrow Exp. List

Set $D=\gamma$ (delete Dummy List from Expanded List)
Redundant P.R. value \rightarrow Expanded List and Red. P.R. List

(85)		IA	M0		Fixed Point Multiply Operator Advance "D" to available dummy inst. address
	0	RJ	ES	ES12	
	1	TV	A	M04	Available dummy inst. address \rightarrow " v " of AT
	2	TV	A	WT4	Address of dummy inst \rightarrow " v " of temp.
(86)	3	RJ	0S13	OS	Sorted operands \rightarrow "u" and "v" of A
	4	AT	RC25	[30000]	Dummy "fixed mult" inst w/operands \rightarrow Dummy List Operand in "u" of dummy inst \rightarrow working t emp.
	5	TU	A	WT	
	6	RJ	ES	ES1	Search Expanded List for redundancy " u " if not redundant; " v " if redundant Partial result counter \rightarrow " u " of A
(87)	7	SJ	M010	M021	
	10	SP	Ra6	17	
	11	EJ	WT	M016	Is P.R. counter $=$ "u" of dummy inst.? (operand in A)
	12	RJ	SR25	SR4	No, P.R. symbol \rightarrow Exp. List and Oper. List; cond. ind. \rightarrow Exp. List
(88)	13	RA	RA7	FC3	Advance \#lines in running prog. (Nrp) by 1 in "v"
	14	TP	FC3	CT7	Set increment (I) \rightarrow one in " u " and " v "
	15	MJ	0	SS	
(89)	16	RA	RA7	FC3	Advance \#lines in running prog (Nrp) by 1 in "u" and "v"
	17	RJ	SR25	SR7	P.R. value \rightarrow "A" list, Exp. List and Oper. List; cond. ind \rightarrow Exp. List
(86A)	20	MJ	0	M014	
	21	TP	RA4	RA5	Set $D=\gamma$ (delete Dummy List from Expanded List)
	22	RJ	RS	RSl	Redundant P.R. \rightarrow Expanded List and Red. P.R. List
	23	SJ	M024	M026	Was P.R. previously entered in Redundant P.R. List?
	24	TP	WTl	A	Redundant P.R. in "A" List (if yes, advance Nrp by 1)
	25	RJ	LA	LAl	
	26	$\begin{aligned} & \mathrm{MJ} \\ & \mathrm{CA} \end{aligned}$	0 M027	SS	

90		IA	N0		Fixed Point Subtract Operator
	0	RJ	ES	ES12	Advance "D" to available dummy inst. address
	1	TV	A	NO12	Dummy inst. address \rightarrow " v " of AT
	2	TV	A	WT4	Dummy inst. address \rightarrow "v" of working temp
	3	RJ	BR	BRI	Decrease address in Oper. List (β) by 1 in " u " and " v "
	4	TU	RA	N05	Address of first operand \rightarrow "u" of NI
	5	TP	[30000]	WT5	First operand \rightarrow " v " of working temp.
	6	RJ	BR	BR1	Decrease add. in Oper. List (β) by lin "u" and "v"
	7	TU	RA	N010	Address of second operand \rightarrow " u " of NI
	10	SP	[30000]	17	Second operand \rightarrow "u" of A
	11	SA	WT5	0	Operand \rightarrow "u" and "v" of A
	12	AT	RC24	[30000]	Dummy "fixed minus" inst. w/operands \rightarrow Dummy List
	13	TU	A	WT	Operand in "u" of dummy inst. \rightarrow working temp.
	14	TV	A	WT1	Operand in "v" of dummy inst. \rightarrow working temp.
(91)	15	RJ	ES	ES1	Search Expanded List for redundancy
	16	SJ	N017	P021	" u " if inst. not redundant - "v" if inst. redundant
	17	SP	RA6	17	Partial result counter \rightarrow "u" of A
	20	EJ	WT	P017	Is P.R. counter $=$ " u " of dummy inst. (operand in A)
	21	RA	RA7	FC4	Advance \#lines in running prog (Nrp) by 2 in " u " and " v "
	22	TP	RA6	A	Partial result counter \rightarrow " v " of A
	23	EJ	WT1	N026	Operand for " v " in A
(92)	24	RJ	SR25	SR4	P.R. value - Exp. List and Oper. List; cond, ind \rightarrow Exp. List
(93)	25	MJ	0	N030	
	26	TP	FC6	CT10	```Set condition indicator }->\mathrm{ two (operand for "v" in A)```
	27	RJ	SR25	SR10	P.R. value \rightarrow "A" list, Exp. List and Oper. List; cond. ind. \rightarrow Exp. List
	30	TP	FC	CT7	Set increment (I) \rightarrow Zero
	31	MJ	0	SS	
		CA	N032		

(94)		IA	D0		Divide Operator
	0	RJ	ES	ES12	Advance "D" to available dummy inst. address
	1	TV	A	D012	Dummy inst. address \rightarrow " v " of AT
	2	TV	A	WT4	Dummy inst. address \rightarrow " v " of working temp.
	3	RJ	BR	BRI	Decrease add. in Oper. List (β) by 1 in "u" and "v"
	4	TU	RA	D05	Address of first operand - "u" of NI
	5	TP	[30000]	WT5	First operand \rightarrow " v " of dummy inst. (divisor)
	6	RJ	BR	BR1	Decrease add. in Oper. List (β) by lin "u" and "v"
	7	TU	RA	D010	Address of second operand \rightarrow " u " of NI
	10	SP	[30000]	17	Second operand \rightarrow " u " of A (dividend)
	11	SA	WT5	0	Operand \rightarrow "u" and "v" of A
	12	AT	RC26	[30000]	Dummy "fixed divide" inst. w/operands \rightarrow Dummy List
	13	TU	A	WT	Operand in "u" of dummy inst \rightarrow working temp.
	14	RJ	ES	ES1	Search Expanded List for redundancy
	15	SJ	D016	M021	" u " if inst. not redundant - "v" if inst. redundant
95	16	SP	RA6	17	Partial result counter \rightarrow "u" of A
	17	EJ	WT	D024	Is P.R. counter $=$ "u" of dummy inst. (operand in A?)
	20	RA	RA7	FC4	Advance \#lines in running prog (Nrp) by 2 in " u " and " v "
	21	RJ	SR25	SR4	P.R. value \rightarrow Exp. List and Oper. List; cond. ind \rightarrow Exp. List
	22	TP	FC	CT7	Set increment (I) \rightarrow Zero
	23	MJ	0	SS	
	24	RA	RA7	FC3	Advance \#lines in running prog (Nrp) by 1 in " u " and " v "
	25	RJ	SR25	SR7	P.R. value \rightarrow "A" list, Exp. List and Oper List; cond. ind. \rightarrow Exp. List
	26	MJ	0	D022	
		CA	D027		

Floating Point Unary Minus and Âbsoiute Vaiue
Dummy floating Unary minus \rightarrow temp 5
Dummy floating absolute value \rightarrow temp 5
Check variable and set switch (H) Is there a subscript? no, take " v " Yes
Subscript \rightarrow "v" of dummy instruction Dummy instruction to "A"
Search Exp. List for instruction
Is instruction redundant? yes to FN26
Advance dummy tally by one.
Available address in Exp. List \rightarrow "v" of TP

14	TP	WT5
15	TV	WT5
16	TP	RA6
17	EJ	WTI

[30000] Inst. at $D \rightarrow$ Expanded List
WTl s.s. \rightarrow "v" of working temp.
A P.R. counter \rightarrow A
FN23 Is P.R. counter $=$ subscript? (s.s. for "u" in "A"?)
Set cond. ind. \rightarrow Zero (neither s.s. in "A")
Advance Nrp by increment (I)
Set cond. ind. \rightarrow one (s.s. for " u " in A)
Enter P.R. value in "A" List
Redundant P.R. value \rightarrow Oper. List and
Red. P.R. List
Was redundant P.R. in Red. P.R. List?
Redundant P.R. \rightarrow A
Is redundant P.R. in " Q " List (yes $\rightarrow \mathrm{NI}$;
no \rightarrow SS)
$-\mathrm{jn} \mathrm{n} \mathrm{r} \rightarrow$ "u" of A
$+r \rightarrow$ "u" of A
(r-1) \rightarrow "u" of A
IQ $+\mathrm{r}-1 \rightarrow$ " v " of A_{L} (address of P.R. in "Q" List)
IQ $+\mathrm{r}-\mathrm{l} \rightarrow$ " v " of A_{R}
FN40 Address of redundant P.R. in "Q" List \rightarrow "v" of NI
[30000] Delete redundant P.R. from "Q" List
FN43 Add. of redundant P.R. in Exp. List \rightarrow "u" of TP
Adv. to address afiter redundant P.R. in Exp. List
Mask for op. code and "v" \rightarrow Q
Op. code and " v " of word following Red. P.R. \rightarrow working temp.

	45	TP	WT2	A	Op. code and "v" of word following red. P.R. \rightarrow A
	46	TP	RC2	WT2	Dummy FS \rightarrow working temp.
	47	TV	WT1	WT2	Redundant P.R. \rightarrow " v " of dummy FS in working temp.
	50	EJ	WT2	FN52	Is inst. following red. P.R. in Exp. List $=F S$ with red. P.R. in "v"?
	51	MJ	0	SS	
(105)	52	TU	Q	WT	"u" of inst. following red. P.R. \rightarrow "u" of working temp.
	53	TP	FC56	A	$76777 \rightarrow$ "u" of A
	54	TJ	WT	FN107	"u" of FS inst. 77... type? no to FN55
	55	TP	FC54	A	$73777 \rightarrow$ "u" of A
	56	TJ	WT	FN110	"u" of FS inst. 75_-. or 76_--type?
	57	MJ	0	FN107	
(108)	60	TV	FC	WT5	Zero to "v" of dummy instruction
	61	TP	WT5	A	Dummy instruction \rightarrow A
	62	RJ	ES	ESl	Search Exp. List for instruction
	63	SJ	FN64	FN26	Is instruction redundant? yes, take "v"
	64	RJ	ES	ES12	Advance dummy tally by one
	65	TV	RA5	FN66	Available address in Expanded List \rightarrow " ${ }^{n}$ of TP
	66	TP	WT5	[30000]	Instruction \rightarrow Expanded List
	67	RA	RA7	FC3	Advance Nrp by one
	70	TP	FCl3	CT10	Set cond. ind. $\rightarrow 12$ in op. code (neither "u" nor "v" subs)
	71	SP	RA6	17	P.R. counter \rightarrow "u" of A
	72	TU	WT5	WT	"u" of dummy inst. \rightarrow "u" of working temp.
	73	EJ	WT	FN77	P.R. counter $=$ "u" of dummy inst.?
(109)	74	RA	RA7	CT7	Advance Nrp by increment (I)
	75	RJ	EK25	EK6	To 6l_-_ routine "u" ent.
	76	MJ	0	FN101	
(110)	77	RA	CT10	FC7	Set cond. ind. $\rightarrow 15$ in op. code
	100	RJ	LQ	LQ7	Enter partial result symbol in "Q" List
111	101	TV	RC7	PN	Set switch (H) . to (1)
(11A)	102	TV	RA5	WT4	Address of dummy inst. \rightarrow " v " of working temp.
	103	TP	FC	CT7	Set increment (I) \rightarrow Zero
	104	TV	RC20	PN61	Set switch (M) to (M3)
	105	RJ	SR25	SR11	P.R. value \rightarrow Oper. List (β) and Exp. List (γ); cond. ind \rightarrow Exp. List
	106	MJ	0	PN	
106	107	RS	RA7	FC3	Reduce Nrp by one
(107)	110	TU	FN43	FN112	
	111	RA	FN112	FC2	
	112	RS	[30000]	FC10	```Change ind for "FS" }->\mathrm{ operand for "v" not in Q```
	113	MJ	0	SS	
		CA	FN114		

Fixed Point Unary Minus and

$\begin{aligned} & 1122 \\ & 113 \\ & 114 \\ & \hline \end{aligned}$			NF	
	0	TP	RC27	WT5
	1	MJ	0	NF3
	2	TP	RC30	WT5
	3	RJ	ES	ES12
	4	TV	A	NF12
	5	TV	A	WT4
	6	RJ	BR	BR1
	7	TU	RA	NF10
	10	TP	[30000]	Q
	11	SP	Q	17
	12	AT	WT5	[30000
115	13	TP	Q	WT1
	14	RJ	ES	ES 1
	15	SJ	NF16	NF22
	16	RA	RA7	FC3
	17	TP	WT1	A
	20	EJ	RA6	P017
(116)	21	MJ	0	P013
	22	TP	RA4	RA5
	23	RJ	RS	RSI
	24	SJ	NE	SS
		CA	NF25	

Absolute Value Operators
Dummy fixed pt. unary minus inst. to temp
Dummy fixed pt. abs. value inst. to temp Adv. "D" to available dummy inst. address Preset address in Exp. List for dummy inst.
Store address for dummy inst. in temp Decrease address in Operand List (β) by 1 Preset address of next operand Obtain next operand from Operand List

Dummy instruction with operands to Dummy List

Search Expanded List for redundancy " u " if not redundant, " v " if redundant Advance Nrp by 1 Operand to "A"
P.R. counter $=$ operand? (operand in "A"?) No
Delete Dummy List from Expanded List (set $\mathrm{D}=\gamma$)
Was redundant P.R. in redundant P.R. List "u" if no, "v" if yes

	IA	NE	
0	TP	WT1	A
1	EJ	RA6	NE5
2	TU	RA3	NE3
3	RP	$[30000]$	SS
4	EJ	XA	NE6
5	TP	FCl22	CT7
6	RA	RA7	FC3
7	MJ	0	SS
	CA	NE10	

Fixed Point Unary Minus and Absolute Value Operators
Redundant partial result to A Redundant P.R. = P.R. counter (current P.R.)?

Search "A" List
Is redundant P.R. in "A" List?
Set increment (I) to minus one Advance Nrp by one

(17)		IA	EE		Storage Operator (space-period)
	0	TP	RC20	WT5	Dummy store inst, to working temp
	1	RJ	BR	BR1	Decrease β by l in " u " and "v"
	2	TU	RA	EE3	Preset address of operand
	3	SP	[30000]	17	Operand to "u" of A
	4	TU	A	WT5	Operand to "u" of working temp 5
	5	TU	A	WT	Operand to "u" of working temp
	6	TP	FC54	A	74777 to "u" of A
	7	TJ	WT	EG	Operand > 74777? (operand subscripted?)
	10	RJ	BR	BR1	Decrease β by 1 in " u " and "v"
	11	TU	RA	EE12	Address of 2 nd operand - "u" of NI
	12	TV	[30000]	WT5	Operand \rightarrow "u" of working temp 5
	13	TV	WT5	WT1	Operand \rightarrow " v " of working temp 1
118	14	TP	FC52	A	$76777 \rightarrow$ "v" of A
	15	TJ	WT1	EF26	Operand in "v"> 76777? (i.e. 77..- type)
	16	TP	FC76	A	$74777 \rightarrow$ "v" of A
	17	TJ	WT1	EF5	Operand in "v"> 74777? (i.e. 75--- type)
	20	TP	FCl3	CTIO	Set cond. ind. \rightarrow (12) in op. code - ("u" and " v " non-subs)
119	21	RA	RA7	FC4	Advance Nrp by 2 in " u " and "v"
	22	TU	WT5	WT	Operand for "u" to temp
	23	SP	RA6	17	P.R. counter \rightarrow "u" of A
	24	EJ	WT	EF	P.R. counter $=$ operand? (i.e. oper. for "u" in "Q"?)
120	25	RJ	EK25	EK	No, to 61.--routine ("u" and "v" ent.)
	26	TP	FC36	Q	Mask for op. code \rightarrow Q
	27	QS	CT10	WT6	Condition indicator to op. code temp 6
	30	RJ	ES	ES12	Advance D by $l \rightarrow$ next available add. in Exp. List
	31	TV	A	EE32	Next available add. in Exp. List \rightarrow "v" of NI
(121)	32	TP	WT5	[30000]	Dummy storage instruction \rightarrow Expanded List
	33	RJ	ES	ES12	Advance D by $l \rightarrow$ next available add. in Exp. List
	34	TV	A	EE35	Next available address in Exp. List \rightarrow "v" of NI
	35	TP	WT6	[30000]	Indicator and s.s. word \rightarrow Expanded List
	36	$\begin{aligned} & \mathrm{MJ} \\ & \mathrm{CA} \end{aligned}$	0 EE37	ER	Exit-to end redundancy phase

		IA	EF		Storage Operator (continued)
(122)	0	RJ	LA	LA6	Store P.R. value in "A" list
	1	RJ	EK25	EK14	To 6i_.-routine (V^{v} "ent.)
(123)	2	RA	CT10	FC7	Adv. cond. ind. by 3 (oper. for " u " in Q)
	3	RJ	LQ	LQ7	Store P.R. value in "Q" List
	4	MJ	0	EE26	
(124)	5	RJ	BR	BR1	Decrease β by l in "u" and "v"
	6	TU	RA	EF7	Address of s.s. for "v" \rightarrow " u " of NI
	7	TV	[30000]	WT6	s.s. at $\beta \rightarrow$ "v" of temp 6
	10	TP	FC62	CT10	Set cond. ind. \rightarrow (11) in op. code ("u" non-subs and "v" 75_..)
	11	RA	RA7	FC25	Advance Nrp by 4 in " u " and "v"
	12	TV	WT6	WT1	Subscript for "v" operand to temp l
	13	TP	RA6	A	P.R. value \rightarrow "v" of A
	14	EJ	WT1	EF22	P.R. counter $=$ subscript? (s.s. for " v " in "A"?)
(125)	15	TU	WT5	WT	"u" operand to temp 0
	16	SP	RA6	17	P.R. value \rightarrow " u " of A
	17	EJ	WT	EF2	"u" operand = P.R. counter? (oper. for "u" in "Q"?)
	20	RJ	EK25	EK6	To 6l___routine ("u" ent.)
	21	MJ	0	EE26	
126	22	RJ	EK25	EK6	To 6l__rroutine ("u" ent.)
(126)	23	RA	CT10	FC6	Adv. cond. ind. by 2 in op. code
	24	RJ	LA	LA6	Store P.R. value in "A" list
	25	MJ	0	EE26	
(127)	26	RJ	BR	BR1	Decrease β by 1 in " u " and " v "
	27	TU	RA	EF30	Address of s.s. for "v" \rightarrow " u " of NI
	30	TV	[30000]	WT6	s.s. at $\beta \rightarrow$ "v" of temp 6
	31	TP	FCll	CT10	Set cond. ind. \rightarrow (5) ("u" non-subs and "v" 77_-_)
	32	RA	CT	FC3	Advance \#rel. const. (Crc) by lin "u" and " v "
	33	TV	WT6	WTl	Subscript for "v" operand to temp l
	34	TP	RA6	A	P.R. value \rightarrow " v " of A
	35	EJ	WT1	EF40	```Subscript = P.R. counter? (s.s. for "v" in "A"?)```
	36	RA	RA7	FC25	Advance Nrp by 4 in " u " and "v"
	37	MJ	0	EF15	
	40	RA	RA7	FC24	Advance Nrp by 3 in " u " and " v "
	41	MJ	0	EF22	
		CA	EF42		

$(128$		IA	EG		Storage Operator (continued)
	0	RJ	BR	BR1	Decrease β by 1 in " u " and " v "
	1	TU	RA	EG2	Address of s.s. \rightarrow "u" of NI
	2	SP	[30000]	17	s.s. \rightarrow "u" of A
	3	TP	A	WT6	s.s. \rightarrow "u" of temp 6
	4	RJ	BR	BR1	Decrease β by l in "u" and "v"
	5	TU	RA	EG6	Add. of oper. for "v" \rightarrow "u" of NI
	6	TV	[30000]	WT5	Operand \rightarrow "v" of temp 5
	7	TV	WT5	WT1	"v" operand to "v" of working temp l
	10	TP	FC52	A	$76777 \rightarrow$ " v " of A
(129)	11	TJ	WT1	EH23	Operand for "v" > 76777? (i.e. 77._-type)
	12	TP	FC76	A	$74777 \rightarrow$ "v" of A
	13	TJ	WTI	EH	"v" operand > 74777? (i.e. 76..- type)
	14	TU	WT5	WT	"u" operand to temp 0
	15	TP	FC56	A	$76777 \rightarrow$ "u" of A
	16	TJ	WT	EG22	"u" operand > 76777? (i.e. 77_- type)
	17	TP	FC	CT10	Zero to cond. ind. ("u" 75__or 76_... and "v" non-subs)
	20	RA	RA7	FC26	Adv. Nrp by 5 in "u" and "v"
$(130$	21	MJ	0	EG25	
	22	TP	FC6	CT10	Set cond. Ind. - (2) in op. code ("u" 77... and "v" non-subs.)
	23	RA	RA7	FC25	Adv. Nrp by 4 in "u" and "v"
	24	RA	CT	FC3	Adv. Crc by l
(131)	25	RJ	EK25	EK14	To 6l_-_routine ("v" ent.)
	26	TU	WT6	WT	Subscript for "u" operand to temp 0
	27	SP	RA6	17	P.R. counter \rightarrow A
	30	EJ	WT	EG32	```Subscript = P.R. counter? (s.s. for "u" in "A"?)```
132	31	MJ	0	EE26	
	32	RA	CT10	FC5	Adv. cond. ind by lin op. code (s.s. for "u" in A)
	33	MJ	0	EF24	
		CA	EG34		

(133)		IA	EH		rage Operator (continued)
	0	RJ	BR	BR1	Decrease β by 1 in "u" and"v"
	1	TU	R4	EH2	Address of s.s. \rightarrow "u" of NI
$(134$	2	TV	[30000]	WT6	s.s. \rightarrow " v " of temp 6
	3	TU	WT5	WT	"u" operand to "u" of temp 0
	4	TP	FC56	A	$76777 \rightarrow$ "u" of A
	5	TJ	WT	EHIl	"u" operand > 76777? (i.e. 77__-type)
	6	TP	FCl6	CTIO	Set cond. ind. to 22 ("u" 75__or 76_._ and "v" 75___)
	7	RA	Râ7	FCl21	Adv. Nrp by 7 in " u " and "v"
$(135$	10	MJ	0	EH14	
	11	TP	FC20	CT10	Set cond. ind. $\rightarrow 30$ in op. code ("u" $77 \ldots \ldots$ and "v" $75 \ldots$.
	12	RA	RA7	FC27	Adv. Nrp by 6 in "u" and "v"
136	13	RA	CT	FC3	Adv. Crc by 1 in " u " and "v"
	14	TU	WT6	WT	Subscript for "u" to working temp
	15	SP	RA6	17	P.R. counter \rightarrow "u" of A
	16	EJ	WT	EG32	```Subscript = P.R. counter? (s.s. for "u" in "A"?)```
137	17	TV	WT6	WT1	Subscript for "v" to working temp
	20	TP	RA6	A	P.R. counter \rightarrow "v" of A
	21	EJ	WTI	EF23	```Subscript = P.R. counter? (s.s. for "v" in "A"?)```
$(138$	22	MJ	0	EE26	
	23	RJ	BR	BR1	Decrease β by 1 in " u " and " v "
	24	TU	RA	EH25	Add. of s.s. \rightarrow "u" of NI
	25	TV	[30000]	WT6	Subscript to "v" of temp 6
	26	TU	WT5	WT	"u" operand to working temp
	27	TP	FC56	A	$76777 \rightarrow$ "u" of A
	30	TJ	WT	EH34	"u" operand > 76777? (i.e. 77_._ type)
	31	TP	FCl7	CT10	Set cond. ind. to 25 ("u" 75_._or 76... and "v" 77.__)
	32	RA	RA7	FC27	Adv. Nrp by 6 in "u" and "v"
$(139$	33	MJ	0	EH36	
	34	TP	FCl4	CT10	Set cond. ind. \rightarrow (17) in op. code ("u" and "v" 77._.)
$(140$	35	RA	RA7	FC26	Adv. Nrp by 5 in " u " and "v"
	36	RA	CT	FCl	Adv. Crc by 1 in " u " and " v "
	37	MJ	${ }_{\text {EH40 }}$	EH14	

141		IA	VC		Subroutine to Check Variables
	0	RJ	BR	BR1	Decrease β by l in " u " and "v"
	1	TU	RA	VC3	Address of lst operand \rightarrow "u" of TV
	2	TP	FC76	A	$74777 \rightarrow$ "v" of A
	3	TV	[30000]	WT1	Operand \rightarrow " v " of working temp
(141)	4	TJ	WTl	VC24	lst operand> 74777 ? (i.e. subscripted?)
	5	RJ	BR	BR1	Decrease β by 1 in " u " and " V "
	6	TU	RA	VC7	Address of second operand \rightarrow " u " of NI
	7	SP	[30000]	17	2 nd operand \rightarrow "u" of A
	10	TU	A	WT	2nd operand \rightarrow "u" of working temp
	11	TU	A	WT5	2nd operand \rightarrow "u" of temp 5
	12	TP	FC54	A	$74777 \rightarrow$ "u" of A
	13	TJ	WT	VCl6	2nd operand > 74777? (i.e. subscripted?)
	14	TP	FC	Q	$\left(\mathrm{Q}_{35}=0\right)$ no subscript word
$(142$	15	MJ	0	VC46	
	16	RJ	BR	BR1	Decrease β by 1 in " u " and " v "
	17	TU	RA	VC20	Address of s.s. for oper. in " u " \rightarrow " u " of NI
	20	SP	[30000]	17	s.s. for oper. in " u " \rightarrow " ${ }^{\text {" of }} \mathrm{A}$
	21	TP	A	WT6	s.s. \rightarrow "u" of temp. 6
	22	TV	RC6	PN	Set switch (H) to (H3), "u" subs and "v" non-subs
(143)	23	MJ	0	VC45	
	24	RJ	BR	BR1	Decrease β by 1 in " u " and " v "
	25	TU	RA	VC26	Address of s.s. for oper. in $" \mathrm{v} " \rightarrow$ " u " of NI
	26	TP	[30000]	WT6	s.s. \rightarrow "v" of temp 6
	27	RJ	BR	BR1	Decrease β by 1 in " u " and " v "
	30	TU	RA	VC31	Address of 2 nd operand \rightarrow "u" of NI
	31	SP	[30000]	17	2nd operand \rightarrow "u" of A
	32	TU	A	WT	2nd operand \rightarrow "u" of working temp
	33	TU	A	WT5	2nd operand \rightarrow "u" of temp 5
	34	TP	FC54	A	$74777 \rightarrow$ "u" of A
	35	TJ	WT	VC40	2nd operand > 74777?
	36	TV	RC	PN	Set switch (H) to (12), "u" non-subs and "v" subs
$(144$	37	MJ	0	VC45	
	40	RJ	BR	BRI	Decrease β by l in " u " and " v "
	41	TV	RA	VC42	Address of s.s. for oper. in " u " \rightarrow " u " of NI
	42	SP	[30000]	17	s.s. for oper. in "u" \rightarrow "u" of A
	43	TU	A	WT6	s.s. \rightarrow "u" of temp 6
	44	TV	RCl	PN	Set switch (H) to (H1), "u" non-subs and "v" subs
	45	TP	FC36	Q	($\mathrm{Q}_{35}=1$) subscript word
	46	TV	WT1	WT5	Operand \rightarrow " v " of dummy inst.
	47	TP	WT5	A	Dummy inst. w/operands \rightarrow A
	50	MJ	0	[30000]	Exit
		CA	VC51		

(147)		IA	vs	
	0	RJ	BR	BR1
	1	TU	RA	VS2
	2	TP	[30000]	Q
	3	TP	FC76	A
	4	TJ	Q	VS31
	5	RJ	BR	BR1
	6	TU	RA	VS7
	7	TP	[30000]	A
(148)	10	TJ	Q	VS25
	11	LQ	Q	17
	12	AT	Q	WT5
	13	TV	WT5	WTI
	14	TP	FC76	A
(150)	15	TJ	WT1	VS20
	16	TP	FC	Q
	17	MJ	0	VS64
	20	RJ	BR	BR1
	21	TU	RA	VS22
(148)	22	TP	[30000]	WT6
	23	TV	RC	PN
(149)	24	MJ	0	VS63
	25	TV	A	WT1
	26	LA	A	17
	27	AT	Q	WT5
(151)	30	MJ	0	VS16
	31	RJ	BR	BR1
	32	TU	RA	VS33
(152)	33	TP	[30000]	WT6
	34	RJ	BR	BRI
	35	TU	RA	VS36
	36	TP	[30000]	A
	37	TJ	Q	VS50
	40	LQ	Q	17
	41	AT	Q	WT5
	42	RJ	BR	BR1
	43	TU	RA	VS45
(153)	44	LA	WT6	17
	45	TV	[30000]	WT6
	46	TV	RCl	PN
(154)	47	MJ	0	VS63
	50	TV	A	WT1
	51	LA	A	17
	52	AT	Q	WT5
	53	TP	FC76	A

Subroutine to Sort Operands for Floating Plus or Multiply Decrease β by lin " u " and " v " Address of list operand \rightarrow "u" of NI First operand \rightarrow Q $74777 \rightarrow$ "v" of A
First operand > 74777? (i.e. subscripted)
Decrease β by 1 in " u " and " v "
Address of 2 nd operand \rightarrow " u " of NI
Second operand \rightarrow A
First operand $>$ second operand?
First operand \rightarrow "u" of Q
Operands \rightarrow " u " and " v " of temp 5 Second operand \rightarrow "v" of working temp $74777 \rightarrow$ A
Second operand > 74777? (i.e. subscripted) $\left(Q_{35}=0\right)$ no subscript word

Decrease β by 1 in " u " and " v " Address of s.s. for oper. in "v" \rightarrow " u " of NI
s.s. for oper. in " v " \rightarrow " v " of temp 6 Set (H) to (H2) "u" non-subs and "v" subscripted

Second operand \rightarrow "v" of working temp
Second operand \rightarrow "u" of A
Operands \rightarrow " u " and " v " of temp 5
Decrease β by 1 in " u " and "v"
Address of s.s. for first oper. \rightarrow "u" of NI
s.s. \rightarrow "v" of temp 6

Decrease β by 1 in " u " and "v"
Address of second operand \rightarrow " u " of NI
Second operand \rightarrow A
First operand $>$ second operand?
First operand \rightarrow " u " of Q
Operands \rightarrow " u " and "v" of temp 5
Decrease β by 1 in " u " and "v"
Address of second s.s. \rightarrow "u" of TV
First s.s. \rightarrow "u" of temp 6
Second s.s. \rightarrow "v" of temp 6
Set (H) to (HI) "u" and "v" subscripted
Second oper. \rightarrow "v" of working temp
Second operand \rightarrow "u" of A
Operands \rightarrow " u " and "v" of temp 5
$74777 \rightarrow$ "v" of A

(155)	54	TJ	WT1	VS56	```Oper. in "u" (2nd oper.) > 74777? (i.e. subscripted)```
	55	MJ	0	VS23	
	56	RJ	BR	BR1	Decrease β by 1 in " u " and " v "
	57	TU	RA	VS60	Address of s.s. for oper. in "u" \rightarrow " u " of NI
	60	SP	[30000]	17	s.s. for 2nd oper. \rightarrow "u" of A
	61	TU	A	WT6	s.s. for 2nd oper. \rightarrow "u" of temp 6
	62	TV	RCl	PN	Set (H) to (H1) "u" and "v" subscripted
156	63	TP	FC36	Q	$\left.\mathrm{Q}_{35}=1\right)$ subscript word
(157)	64	MJ	0	[Exit]	

Subroutine to Check for Redundant

Floating Point Operation

ESl Search Expanded List for Dummy inst.
RR2 Is instruction redundant? No; to RR6
RR4 Address of s.s. word in Expanded List \rightarrow 'u" of QT
$3 \quad$ TP FC35 \quad Q
4 QT [30000] A
5 EJ WT6 RR47
6 RJ ES ES12

Subscript word from Expanded List \rightarrow A Is subscript word in temp 6 redundant? Yes; to RR47

7	TV	A
10	TP	WT5
11	RJ	ES
12	TV	A

13 TP WT6
14 TV RR10

15	TV	RC3
16	TV	RC4
17	SP	RA6
20	TU	WT5
21	EJ	WT

22 MJ 0

23 TP FC7
24 MJ 0
25
RJ ES
26 SJ RR27
27 RJ ES
30 TV RA5
31 TV RA
TP WT5
33 RA RA7
$34 \quad \mathrm{TP} \quad \mathrm{FCl} 3$

35	SP	RA6
36	TU	WT5
37	TV	RC7
40	EJ	WT
41	RJ	EK25
42	MJ	0
43	RJ	LQ
44	TP	FC3

No, advance dummy tally by one Available address in Exp. List \rightarrow "v" of NI
[30000] Dummy instruction to Expanded List
ESI2 Advance dummy tally by one
RR13 Available address in Exp. List \rightarrow " v " of NI
[30000] Subscript word to Expanded List
WT4 Address of dummy instruction to "v" of temp
PN14 Set switch (G) to (G2)
PN44 Set switch (J) to (II)
17 P.R. counter \rightarrow "u" of A
WT "u" of dummy inst. \rightarrow working temp.
Is P.R. counter $=$ " u " operand? (oper. for "u" in Q)
[30000 I Exit - subscript word
CT10 Set cond. ind. $\rightarrow 3$ in op. code (oper. for "u" in Q)
RR43
ESl Search Expanded List for dummy instruction
RR50 Is instruction redundant? yes; to RR50
ES12 No, advance dummy tally by one
RR32 Available address in Exp. List \rightarrow " v " of TP
WT4 Address of dummy inst. \rightarrow " v " of temp.
[30000] Dummy instruction to Expanded List
FC3 Advance Nrp by one in " u " and "v"
CTIO Set cond. ind. $\rightarrow 12$ in op. code (neither "u" nor "v" subs)
17 P.R. counter \rightarrow "u" of A
WT "u" of dummy inst, to working temp
PN Set switch (H) \rightarrow (1)
RR55 P.R. counter = "u" operand? (oper. for "u" in "Q")
EK To 6l.-- routine ("u" and "v" ent.)
[30000] Exit - no subscript word
LQ7 Enter P.R. value in Q List
CT7 Set increment (I) \rightarrow one in " u " and " v "

	45	RJ	SR25	SR11	P.R. value \rightarrow Oper. List (β) and Exp. List r; cond. ind. \rightarrow Exp. List
	46	MJ	0	PN	Go to (H) (prediction routine)
	${ }^{47}$	RA	RR4	FC2	Address of redundant P.R. value \rightarrow " u " of A
	50	RJ	RS	RS1	Redundant P.R. value \rightarrow Oper. List and Red. P.R. List
	51	SJ	RR52	SS	Was redundant P.R. in List?
	52	TP	WTl	A	Redundant P.R. \rightarrow A
	53	RJ	LQ	LQ1	Was redundant P.R. in Q List?
	-54	MJ	0	SS	
¢	55	RA	CT10	FC7	Adv. cond. ind. by 3 in op. code (oper. for "u" in Q-set ind \rightarrow (15))
	56	RJ	EK25	EK14	To 6l..- routine ("v" ent.)
	57	MJ	0	RR43	
		CA	RR60		

		IA	RS		Subroutine to Store Redundant Partial Result
	0	MJ	0	[30000]	Exit
(175)	1	TU	A	RS2	Address of redundant P.R. value \rightarrow " u " of NI
	2	TV	[30000]	WT1	Redundant P.R. \rightarrow " v " of working temp
	3	TV	RA	RS4	Available address in Operand List \rightarrow " v " of NI
	4	TP	WT1	[30000]	Redundant P.R. value \rightarrow Operand List (β)
	5	RJ	BR	BR4	Advance address in Operand List (β) by 1 in "u" and "v"
	6	TP	WT1	A	Redundant P.R. \rightarrow A
	7	TU	RA10	RS10	Length of redundant P.R. List \rightarrow jn of repeat
	10	RP	[30000]	RS12	Search Redundant P.R. List
	11	EJ	RL	RS24	Is P.R. in "A" in Redundant P.R.List?
(176)	12	TV	RA10	RS13	No; available address in Redundant P.R. List \rightarrow "v" of NI
	13	TP	A	[30000]	Redundant P.R. \rightarrow redundant P.R. List
	14	RA	RAl0	FC3	Advance available add. and jn for Red. P.R. List by one
	15	TJ	LVI	RS22	Redundant P.R. List too long?
	16	RJ	WA	WAI	Sent. \# \rightarrow print out
	17	TP	T0	UP3	Codeword \rightarrow alarm print
	20	RJ	UP2	UP	Alarm-Red. P.R. List too long [type: SENTENCE TOO LONG .]
	21	MJ	0	BQ6	Rewind tapes
	22	TP	FC36	A	Set (A) \rightarrow Red. P.R. was not in list (A-)
	23	MJ	0	RS	
(176A)	24	TP	FC	A	Set (A) \rightarrow Red. P.R. was in list (${ }^{+}$)
\checkmark	25	MJ	0 RS26	RS	

(177) \begin{tabular}{lllll}

IA \& OS \& | Fixed Plus or Multiply |
| :--- |
| 0 | \& RJ \& BR

\quad BR1 \quad

Decrease address in Operand List (β) by

l in " u " and "v"
\end{tabular}

(178)		IA	FS		Subroutine to Store Callword in Op. File 1
	0	MJ	0	[30000]	Exit
	1	SP	A	17	Callword \rightarrow "u" of A
	2	TU	RAl	FS3	Length Op. File l \rightarrow jn of repeat
	3	RP	[30000]	FS5	Search Op. File l for callword
	4	EJ	FL2	FS	Callword in Op. File l? no to FS5
	5	TV	RA1	FS6	Available address in 0p. File $1 \rightarrow$ " v " of NI
	6	TP	A	[30000]	Store callword in 0p. File l
	7	RA	FL	FCl	Adv. \#lines this Op. File 1 item by one
	10	RA	RAl	FC3	Adv. available add. and jn for 0p. File 1 by one
	11	TJ	LV2	FS	Op. File 1 too long?
	12	RJ	WA	WAl	Sent.\# \rightarrow print out
	13	TP	T0	UP3	Codeword \rightarrow alarm print
	14	RJ	UP2	UP	Alarm-Op. File 1 too long [type: SENTENCE TOO LONG.]
	15	MJ	0	BQ6	Rewind tapes

	IA	BR		in Operand List (Beta Routine)
$\bigcirc \bigcirc$	MJ	0	[30000]	Exit
${ }^{(179)} \stackrel{1}{0}$	RS	RA	FC3	Decrease address in Operand List (β) by 1 in "u" and "v"
(1798) ${ }_{\text {¢ }}^{\substack{0 \\ 0 \\ 0}}$	TJ	IA	EP4	Init. add. Oper. List > current add.? Yes \rightarrow alarm \#4
(180) $\left[\begin{array}{l}4 \\ 4\end{array}\right.$	MA	RA	$\stackrel{\text { FR }}{\text { FC3 }}$	Adv. address in Oper. List (β) by 1 in "u" and "v"
	TJ	LV	BR	Max. address in Oper. List> current address?
	RJ	WA	WAI	Yes; type sentence number
	TP	T0	UP3	Code word \rightarrow alarm print
㐌 10	RJ	UP2	UP	Alarm-too many operands [type: SENTENCE TOO LONG. J
4 (11	$\begin{aligned} & \text { MJ } \\ & \text { CA } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { BR12 } \end{aligned}$	BQ6	Rewind tapes and stop

		IA	LQ	Subroutine to Search for or Store Partial Result Symbol in＂Q＂List		
它	0	M ${ }^{\text {J }}$	0	［30000		Exit
		TU	RA2	LQ2		Ent．－for search＂Q＂List（minnus，mult．，
	2	RP	［30000］	LQ4		Search＂Q＂List
O－	3	EJ	XQ	LQ5		Is redundant P．R．in＂Q＂List
¢ ${ }^{\text {a }}$	4	MJ	0	LQ22		
－	5	RA	RA7	FC3		Advance Nrp by one in＂u＂and＂v＂
¢ ¢		MJ	0	LQ		
（182）		TV	RA2	LQ10		Ent．－for store in＂Q＂List
	10	TP	RA6	［ 30000		Enter P．R．in＂Q＂List
	11	RA	RA2	FC3		Adv．jn and add．in＂Q＂List by one in ＂u＂and＂v＂
	12	TJ	LV3	LQ		＂Q＂List too long
	13	RJ	WA	WA1		Sent．\＃\rightarrow print out
	14	TP	T0	UP3		Codeword \rightarrow alarm print
¢	15	RJ	UP2	UP		Alarm－＂Q＂List too long［type：SENTENCE TOO LONG．］
	16	MJ	0	BQ6		
（183）	17	TU	RA2	LQ20		Ent．－for search＂Q＂List（fl．neg and abs．val．）
	20	RP	［30000］	SS		Search＂Q＂List（exit to sym．search if Red．P．R．not in＂Q＂List）
湤	21	EJ	XQ	LQ		Is red．P．R．in＂Q＂List（return exit－ red．P．R．in＂Q＂List）
－	22	EJ	RA6	LQ24		Redundant P．R．＝P．R．counter？
	23	MJ	0	SS		
	24	RA	RA7	FC3		Adv．Nrp by one in＂ u ＂and＂ v ＂
J	25	TP	FC	CT7		Set increment（I）to zero
¢	26	MJ	0	SS		
内		CA	LQ27			

4		IA	LA		Subroutine to Search for or Store Partial Result Symbol in "A" List
를 184	0	MJ	0	[30000]	Exit
	1	TU	RA3	LA2	Ent.-for search "A" List
	2	RP	[30000]	LA16	Search "A" List
	3	EJ	XA	LA4	Is redundant P.R. in "A" List?
	4	RA	RA7	FC3	Advance Nrp by one in "u" and "v"
	5	MJ	0	LA	
(185)	${ }^{6}$	TV	RA3	LA7	Ent.-for store in "A" List
	7	TP	RA6	[30000]	Enter P.R. in "A" List
,	10	RA	RA3	FC3	Adv. jn and add. in "A" List by one in "u" and "v"
	\{11	TJ	LV4	LA	"A" List too long?
d	12	RJ	WA	WAI	Sent.\# - print out
	13	TP	T0	UP3	Codeword \rightarrow alarm print
	14	RJ	UP2	UP	Alarm-"A" List too long [type: SENTENCE TOO LONG.]
$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{~}{\omega} \end{aligned}$	15	MJ	0	B06	Rewind tapes and stop
	16	EJ	RA6	LA20	Redundant P.R. $=$ P.R. counter?
	17	MJ	0	LA	No
	20	RA	RA7	FC3	Adv. Nrp by l in " u " and "v"
	21	TP	FC	CT7	Set increment (I) to Zero
	22	MJ	0	LA	
		CA	LA23		

*Note: Sent. callword from sorted list \rightarrow first word in Exp. List Sent. number from sorted list \rightarrow second word in Exp. List

189		IA	DS	[30000] Exit Dimension List Search	
	0	MJ	0		
	1	RP	[30000]	EP1	Search Dimension List (preset from f_{6})
	2	EJ	DL	DS3	Callword in Dimension List? Alarm \#l if no.
	3	SN	Q	17	Yes; -jn+r \rightarrow " ${ }^{\text {" }}$ of A
	4	SA	DS1	0	+r \rightarrow "u" of A
	5	SA	DS2	0	BL+r \rightarrow "u" of A
	6	MJ	0	DS	
		CA	DS7		

Subroutine to Decrease and Check Partial Result Counter

(190) | 0 | IA | PR |
| :--- | :--- | :--- |
| RS | RA6 | |$\quad \mathrm{FCl}$

1 TJ LV6 PR3 P.R. symbol

PR3 Has P.R. counter reached minimum value? "v" if yes
[30000] No; to exit
WAl Yes; type sentence number
UP3 Codeword \rightarrow alarm print
UP Alarm-P.R. counter below minimum [type: SENTENCE TOO LONG]

Subroutine to Check for 6l..- Type Operands in Dummy Instruction Mask \rightarrow Q
First two octal digits of "u" and "v" operands to "A"
"u" and "v" operands = 6l_-_type? yes;
take "v"
Mask for first two octal digits of "v" - Q

First 2 octal digits of " v " operand to "A"
"v" operand = 6l_-_type? yes; take "v" Mask for first two octal digits of "u" to "Q"
"u" operand = 6l_-_type? yes; take "v" To exit
Adv. cond ind. by 33 in op. code
Mask for first two octal digits of "v" to "Q"
First 2 octal digits of " v " operand to "A"
" v " operand $=61$ _-_type? yes; take "v"
To exit
Adv. cond. ind. by 35 in op. code
Adv. Nrp by 1 in " u " and "v"
To exit
Adv. Nrp by 2 in " u " and " v "
Adv. cond. ind. by 31 in op. code Exit

Subroutine
to Enter Current Partial Result Symbol in Expanded List and Operand List
Advance dummy tally (D) by 1 in " u " and " v "
Set $\gamma=\mathrm{D}$ (advance γ to add Dummy List to Exp. List)
Decrease P.R. counter \rightarrow new partial result (P.R. in A)
Available address in Operand List $(\beta) \rightarrow$ "v" of NI
[30000] P.R. value \rightarrow Operand List
PP6
[30000]
BR4
Next address in Exp. List \rightarrow " v" of NI P.R. value \rightarrow Expanded List

Adv. add. in Operand List (β) by 1 in "u" and "v"

Subroutine to Store
Partial Result Symbol for Subscript Operation in Expanded List and Operand List Last subscript \rightarrow " v " of WTl Last subscript \rightarrow " v " of A P.R. counter = last subscript (i.e. subscript in A)
No, advance Nrp by one
CT7 Advance Nrp by increment (I)

(198A) | 4 | RA | RA7 | CT7 |
| :--- | :--- | :--- | :--- |
| 5 | MJ | 0 | SR11 |

Vacant
Set condition indicator \rightarrow one (s.s. in A)
Enter P.R. value in "A" list
Advance dummy tally (D) by 1 in " u " and "v" to count P.R.
RA4 Set $\gamma=\mathrm{D}$ (advance γ to add Dummy List to Exp. List)
(201) 13 RJ PR2 PR $\quad \begin{aligned} & \text { Exp. List) } \\ & \text { Decrease } P . R \text {. counter } \rightarrow \text { new partial re- }\end{aligned}$ sult (P.R. in A)
14 TV RA SR15
Available address in Operand List (β) to "v" of NI

	15	TP	A	[30000]	P.R. value \rightarrow Operand List
	16	TV	RA4	SR17	Next address in Expanded List \rightarrow " v " of NI
	17	TP	A	[30000]	P.R. value \rightarrow Expanded List
(202)	20	TV	WT4	SR23	Dummy inst. address \rightarrow " v " of QT
	21	RA	SR23	FCl	Advance add. of $\mathrm{QS} \rightarrow$ word following dummy inst.
	22	TP	FC36	Q	Mask for op. code \rightarrow Q
	23	QS	CT10	[30000]	Condition indicator \rightarrow op. code of word following dummy inst.
	24	RJ	BR	BR4	Advance address in Operand List (β) by 1 in " u " and " v "
	25	MJ	0 SR26	[30000]	

	IA	FC	
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	0	2	2
5	1	0	0
6	2	0	0
7	3	0	0
10	4	0	0
11	5	0	0
12	10	0	0
13	12	0	0
14	17	0	0
15	20	0	0
16	22	0	0
17	25	0	0
20	30	0	0
21	40	0	0
22	70	0	0
23	0	0	2
24	0	3	3
25	0	4	4
26	0	5	5
27	0	6	6
30	0	0	7
31	0	0	10
32	0	0	77777
33	0	77777	0
34	0	07777	0
35	0	77777	77777
36	77	0	0
37	77	0	77777
40	$1 A$	FC40	77777
41	07	77777	77777
42	07	77000	0
43	0	0	61000
44	0	0	62000
45	0	0	64000
46	0	0	70000
47	0	0	73000
50	0	0	73777
51	0	0	74000
52	0	0	76777
53	0	0	77000
54	0	74777	0
55	0	74000	0
56	0	76777	0

Fixed Constants

Subscript for "u" in A
Subscript for "v" in A
Operand for "u" in Q
Operand for " v " in Q

57	0	0	3	
60	0	0	76000	
61	0	0	75000	
62	11	0	0	
63	0	0	7	
64	0	0	50012	General power library routine callword
65	20	14000	0	Floating point-one
66	0	0	50051	Square root library routine callword
67	0	0	50022	Int. x^{y} where $\|\mathrm{y}\|>29$
70	6	0	0	
71	0	0	31000	
72	0	31000	0	
73	0	0	700	
74	0	0	77	
75	37	40000	0	
76	0	0	74777	
77	0	77000	77000	
	IA	FC100		
100	0	61000	61000	
101	0	61000	0	
102	0	0	61000	
103	0	77000	0	
104	0	0	77000	
105	35	0	0	
106	31	0	0	
107	0	01000	01000	
110	0	20000	20000	
111	0	0	4	
112	0	0	50000	
113	MJ	0	0	
114	77	07777	77777	
115	33	0	0	
116	0	777	777	
117	0	0	16000	
120	0	0	16100	
121	0	7	7	
122	77	77777	77776	
	CA	FCl23		

				Op. Codes Contain Operation		
0	IA	${ }^{\text {RC }}$	PN34	Symbols for Expanded List;	Relative to set	Constants in "v" (H) \rightarrow H2
1	37	0	PNI	Subscript operator	to set	(1) \rightarrow (HI)
2	52	0	PN15	Floating subtract	to set	(G) \rightarrow (G1)
3	54	0	PN17	Floating divide	to set	(G) \rightarrow (6)
4	61	0	PN45	Library operator	to set	(J) \rightarrow (1)
5	62	0	PN47	Floating unary minus	to set	(J) \rightarrow (12)
6	64	0	PN5I	Floating absolute value	to set	(1) \rightarrow (H3)
7	66	0	SS	POW +2	to set	(11) \rightarrow (1)
10	67	0	PN62	POW -2	to set	(Mi) \rightarrow (MI)
11	70	0	PN64	POW +3	to set	(11) \rightarrow (12)
12	71	0	LN2	POW -3	to set	(S) \rightarrow (S2
13	72	0	LN	POW 1/2	to set	(S) \rightarrow S1
14	73	0	LN4	POW -1/2	to set	(S) \rightarrow S3
15	74	0	LN12	POW (4 to 63)	to set	(N) \rightarrow N2
16	75	0	RR50	POW (-4 to -63)	to set	(T) \rightarrow T1
17	76	0	IQ31	POW -1	to set	(T) \rightarrow T2
20	77	0	PN74	Storage operator	to set	(1) \rightarrow (13)
21	41	0	0	Floating plus		
22	53	0	0	Floating multiply		
23	55	0	0	Fixed plus		
24	56	0	0	Fixed subtract		
25	57	0	0	Fixed multiply		
26	60	0	0	Fixed divide		
27	63	0	0	Fixed unary minus		
30	65	0	0	Fixed absolute value		
31	0	0	S044			
32	0	0	S054			
	CA	RC33				

	IA	T0		Alarm Text	
0	40	T01	3		
1	65	30506	63050	SENTEN	
2	26	30016	65151	CESTOO	
3	01	46515	03222	$\triangle \mathrm{L} 0 \mathrm{NG}$	
	CA	T04			

		IA	IA	
To preset RA	0	0	BL	BL
To preset RA1	1	0	20000	FL2
To preset RA2	2	0	20000	XQ
To preset RA3	3	0	20000	XA
To presetRA4ERA5	4	0	20000	EL1
To preset RA6	5	0	0	31000
To preset RA7	6	0	01001	01001
To preset RA8	7	0	20000	RL
To preset SS3	10	0	SL3	0
	11	0	EL2	0

	IA	LV	
0	0	BL177	BL177
1	0	20077	RL77
2	0	20175	FL177
3	0	20177	XQ177
4	0	20177	XAl77
5	0	20675	EL677
6	0	0	30000
7	0	02002	02002
10	0	0	62000
11	0	0	63000

Limiting Addresses for Lists, etc. Max. address in Oper. List in " u " and "v" (max. β)
Max. jn in " u " and max. address in " v " for redundant P.R. List
Max. jn in " u " and max. address in " v " for 0 p. File litem
Max jn in " u " and max. address in "v" for "Q" List
Max. jn in " u " and max. address in " v " for "A" List Max. jn in "u" and max. address in "v" for Expanded List
Minimum P.R. value in "v" Max. \#lines object prog. body (incl. jump to exit) +1001
Dummy callword for function input region Dummy callword for pseudo operation input region

Subroutine to Store in List l, Callword of Library Routine and if Fixed Library

(203)		IA	LS		Routine, Callwords of its Cross-references
	0	MJ	0	[30000]	
	1	TU	LS26	LSI3	
	2	TP	FC	CT13	Zero \rightarrow index C_{3}
	3	EJ	LS25	LSll	Callword = 50012? yes; to LSll
	4	EJ	LS21	LS12	Callword $=50022 ?$ yes; to LS12
	5	RP	20003	LS14	Callword $=50031$, 50041, or 50051?
	6	EJ	LS22	LS7	Yes; to LS7
	7	RJ	LR	LR1	50031, 50041, or 50051 callword to List l
	10	MJ	0	LS13	50002 callword to list l
	11	RA	CT13	FC23	Advance index by 2 in " v "
	12	RA	CT13	FC57	Advance index by 3 in "v"
	13	TP	[30000]	A	Callword \rightarrow A
	14	RJ	LR	LR1	Callword to list 1
	15	RA	LSI3	FC2	Advance by l in " u " to address of next callword
	16	IJ	CT13	LS13	More callwords to store in list l? yes; to LS13
	17	MJ	0	LS	No; to exit
	20	0	50002	0	
	21	0	50022	0	
	22	0	50031	0	
	23	0	50041	0	
	24	0	50051	0	
	25	0	50012	0	
	26	0	LS20	0	
		CA	LS27		

Explanation of working Temporaries (WT)

WT0	[30000	0	Temp 0 - op. code and "v" always Zero
0	0	[30000]	Temp 1 - op. code and "u" always Zero
2 [-		-]	Temp 2
3		-	Symbol temp Floating point inst.
4 [-		-]	Dummy inst. address/Register indicato
5		-]	Dummy instruction
6 [-		\bigcirc	Subscript word following dummy instruc tion

RAO [-		$\begin{gathered} \text { List of } \\ -3 \end{gathered}$	running (current) Addresses in Lists (RA) β (available open address in Operand List in "u" and "v")
[-]	0p. File 1 tally ($j n$ in " u "-available address in "v")
2 []	"Q" List tally (jn in "u"-available address in "v")
3 []	"A" List tally (jn in "u"-available address in "v").
4 [-]	γ-Expanded List tally (jn in "u"-last used address in "v")
5 [-]	Dummy tally (D) for Expanded List (same format as γ)
[-]	Partial result (P.R.) counter (current P.R. in " v ")
[-]	Tally of number of lines in running program +1000
10 [-		-]	Redundant P.R. List tally (jn in " u "available address in " v ")

Equation Generation Phase

(15) \longleftarrow| Send parameter to write |
| :--- |
| generated routine from |
| drum |

Equation Generation Phase (Fixed Point Operators)

31

32

(73 3000032000) Instruction to temp 3

Equation Generation Phase (Fixed Point Operators and Floating Point Binary Operators)

$\varepsilon \angle \& I$

Equation Generation Phase (Library Routine Operator)

Equation Generation Phase (Floating Point Unary Minus and Absolute Value Operators)

Equation Generation Phase (Integral Power Operators)

Equation Generation Phase (Operator to Store Result)

$\stackrel{\boxed{\circ}}{\circ}$

Equation Generation Subroutine for Floating Point Operators

Equation Generation Subroutine for Floating Point Unary Minus and Absolute Value Operators

Equation Generation Subroutine for Power (1/2) and (-1/2)

Equation Generation Subroutine for Power (2) and (-2)

Equation Generation Subroutines

Equation Generation Subroutines

Equation Generation Subroutines

Equation Generation Subroutine to Store Instruction in Routine Buffer

Equation Generation Subroutine to Store Relative Constant in Relative Constant Image

Equation Generation Subroutine to Obtain Pertinent Temporary Storage Callword (TR)

Equation Generation Subroutines for Fixed Point Operators

REGIONS FOR EQUATION GENERATION NO. 3

RE UP421
RE EP537
RE BQ632 $\}$
RE WA653
RE OP1047
RE CW1211
RE BG2512
RE GE2542
RE EG2603
RE GY2730
RE GZ3030
RE NZ3120
RE ZZ3150
RE GF3176
RE GG3262
RE GH3357
RE GI3457
RE GJ3564
RE GK3624
RE GL3661
RE GM3713
RE GN3764
RE GP4043
RE GQ4131
RE GR4210
RE GW4277
RE GX4376
RE GA4472
RE GB4545
RE GS4600
RE GT4716
RE GU5014
RE GV5073
RE SI5133
RE TR5154
RE GC5171.
RE TI5245
RE T05316
RE LG5322

RE TT5324
RE RB5360
RE RA5550
RE XQ5561
RE XA5761
RE RL6161
RE EL6261
RE FL7161
RE CI7361

Uniprint
Machine Error Routine
Routine to Print Error Heading
0 p . Control Routine
Constant Callword Routine

Temporary Storage
"Generated Routine" Buffer (1708 words)
Relative Address List Inputs
"Q" List
"A" List
Redundant Partial Result List
Expanded List
Op. File 1 Item for Generated Routine
"Generated Relative Constants" Image \int check

REGIONS FOR EQUATION GENERATION NO. 3 (continued)

RE DL40102	Dimension List
RE RI65000	"Generated Routine" Image (used when Routine
RE II5245	exceeds routine buffer, RB)

Equation Generation No. 3
\(\left.\left.$$
\begin{array}{lllll} & \text { IA } & \text { BG } & {[30000]} & \begin{array}{l}\text { Begin Generation } \\
\text { Exit from phase }\end{array}
$$

0 \& MJ \& 0 \& Preset initial relative constant\end{array}\right] $$
\begin{array}{l}\text { callword (10000 })\end{array}
$$\right]\)| Preset initial redundancy temp callword |
| :--- |
| 1 |

(1)		IA	GE	
	0	TU	RA10	GE2
	1	RA	RA10	GC6
	2	SP	[30000]	0
(2)	3	TP	A	TT5
	4	LT	6	Q
	5	SP	Q	17
	6	AT	III6	A
	7	RP	30027	GE40
	10	TJ	GE11	GE11
	11	MJ	37	GY
	12	MJ	41	GF
	13	MJ	52	GF2
	14	MJ	53	GF4
(3)	15	MJ	54	GF6
	16	MJ	55	GZ
	17	MJ	56	GZ3
	20	MJ	57	GZ5
	21	MJ	60	GZ16
	22	MJ	61	GL
	23	MJ	62	GN
(4)	24	MJ	63	GZ26
	25	MJ	64	GN2
	26	MJ	65	GZ30
	27	MJ	66	GP
	30	MJ	67	GP2
	31	MJ	70	GQ
(5)	32	MJ	71	GQ2
	33	MJ	72	GX
	34	MJ	73	GX2
	35	MJ	74	GW
	36	MJ	75	GW2
	37	MJ	76	GR
		CA	GE40	

Generator Symbol Search
Preset address of next word in Expanded List
Advance address in Expanded List by one Dummy instruction from Expanded List
$\longrightarrow A$
Dummy instruction to temp 5
Get operator symbol from 0 p.code of dummy instruction
Operator symbol to " $\mathrm{u}^{\text {" }}$ of A
Form MJ
Search list for operat or symbol
Jump according to symbol
Symbol for subscript manipulation
Symbol for floating plus
Symbol for floating subtract
Symbol for floating multiply
Symbol for floating divide
Symbol for fixed plus
Symbol for fixed subtract
Symbol for fixed multiply
Symbol for fixed divide
Symbol for library operator
Symbol for floating unary minus (neg)
Symbol for fixed unary minus (neg)
Symbol for floating Abs. value
Symbol for fixed Abs. value
Symbol for POW +2
Symbol for POW - 2
Symbol for POW + 3
Symbol for POW - 3
Symbol for POW $1 / 2$
Symbol for POW - 1/2
Symbol for POW (4 to 63)
Symbol for POW (-4 to -63)
Symbol for POW -1

Symbol for storage operator

End Generation of Equation
Number lines in object program body to A
Is number of lines in object prog body more than 1001 g ?
Yes; Type: SENTENCE__(EQUATION)
Parameter for alarm text to type routine Type: SENTENCE TOO LONG.
Rewind tapes and stop
Number of relative constants for object program to A
Is number of relative constants more than 10008 ?
Yes, jump to type alarm
Number of redundancy temps for object program to A.
Is number of redundancy temps more than 1000 ?
Yes, jump to type alarm
Number of reusable temps for object program to A
Is number of reusable temps more than 7768 ?
Yes, jump to type alarm
Number reusable temps + number redundancy temps
Add number of relative constants
Add number of lines in object program body
Number lines in object prog. including temps to 0p. File 1
Form codeword containing number of redundancy temps, number of reusable temps and number of relative constants for third line of prelude for routine.
Store codeword temporarily
$\left[\begin{array}{lll}\text { MJ } & 0 & 1000\end{array}\right]$ to temp 2 (jump to exit)
Store inst. in temp 2 in routine image
Number of instructions in generated
routine ≤ 1708 ?
No
Number of relative constants in relative constant image to A

		IA	EG40		
	40	MJ	0	EG45	
	41	TP	SI12	A	
	42	ST	GC30	TT3	Number of relative constants in relative constant image to A
	43	SA	SIl	0	
	44	TJ	GC42	EG101	Number lines in Gen. routine including re1. const. $\leq 170_{8}$?
(9)	45	TP	SIl	A	
	46	ST	GC24	TT4	
	47	SA	GC31	17	
	50	TU	A	EG52	
	51	TV	SI6	EG53	
	52	RP	[30000]	$\text { EG54 }\}$	Generated Instructions from routine buffer
	53	TP	RB	[30000] $]$	to current address in routine image on drum
	54	TP	TT3	A	
	55	SA	GC31	17	
	56	TU	A	EG62	
	57	TV	TT4	TT1	
	60	TV	SI6	EG63	
	61	RA	EG63	TT1	
	62	RP	[30000]	EG64 $]$	Relative constants from relative
	63	TP	CI	[30000]	constant image to routine image on drum
	64	TV	EG63	EG53	following generated instructions
	65	RA	TT3	EG53	
	66	SS	GC27	0	
	67	TV	A	RI	Number lines in prelude \mathcal{E} routine to lst line of prelude
(10)	70	ST	GC40	RIl	Number lines subject to address modification to 2 nd line of prelude
	71	TP	RA5	RI2	Codeword to third line of prelude for routine
	72	TP	EL	A	Sentence callword from first word in Expanded List to A
	73	TJ	GC46	EG75	Is callword for equation in pseudo operation? (22-m)
	74	TJ	GC15	EG77	No, is callword for separate equation? (24-m or $25-m$)
(11)	75	RA	RA7	GC2	No, advance highest reusable temp callword by two
	76	TV	A	RI6	Callword to " v " of exit line for Generated Routine
	77	TP	GC16	OP1	Send parameter to write Generated Routine from drum

$\left.\begin{array}{lllll} & & \text { IA } & \text { EG100 } & \\ \text { (12) } & & 100 & \text { MJ } & 0 \\ 101 & \text { TP } & \text { TT3 } & \text { EG123 } \\ & & & \\ 102 & \text { SA } & \text { GC31 } & 17 \\ 103 & \text { TU } & \text { A } & \text { EG105 } \\ & 104 & \text { TV } & \text { SI1 } & \text { EG106 } \\ & 105 & \text { RP } & {[30000]} & \text { EG107 } \\ & 106 & \text { TP } & \text { CI } & {[30000]}\end{array}\right\}$

Number of relative constants in rel. const. image to A

Relative constants from relative constant image to routine buffer in core following generated instructions

Number lines in prelude and routine to lst line of prelude
Number lines subject to address modification to 2 nd line of prelude Codeword to third line of prelude Sentence callword from first word in Expanded List to A
Is callword for equation in Pseudo operation? (22-m)
No, is callword for separate equation? (24-m or 25--)
No, advance highest reusable temp callword by two
Callword to "v" of exit line for Generated Routine
Send parameter to write Generated Routine from core
Write generated routine and 0p. File 1 item on tape Jump to exit from phase

(16) "Sub" Operator		IA	GY	
		RJ	GS5	GS
	1	LQ	A	25
$\begin{aligned} & 17 \text { Ind } \\ & =0 \end{aligned}$	2	AT	II16	A
	3	RP	30007	GY14
	4	TJ	GY5	GY5
	5	MJ	0	GY15
	6	MJ	1	GY20
	7	MJ	2	GY22
	10	MJ	3	GY30
	11	MJ	4	GY34
	12	MJ	5	GY42
	13	MJ	6	GY47
	14	MJ	7	GY61
	15	RA	RA3	GCl
$\begin{aligned} & \text { (18) Ind } \\ & =1 \end{aligned}$	16	RJ	GS12	GV31
	17	MJ	0	GY73
	20	RA	RA3	GC2
$\begin{aligned} & (19) \text { Ind } \\ & =2 \end{aligned}$	21	MJ	0	GY73
	22	RA	RA3	GC
	23	RA	RA10	GC6
	24	TU	A	GV2
$\stackrel{(20)}{=3} \text { Ind }$	25	RJ	GV21	GVIl
	26	RJ	GS12	GV7
	27	MJ	0	GY56
	30	RA	RA3	GC1
	31	TU	RA10	GV2
	32	RA	RA10	GC6
${\underset{4}{(21)} \text { Ind }}^{2}$	33	MJ	0	GY67
	34	RA	RA3	GC4
	35	RA	RA10	GC36
	36	TU	A	GV2
	37	RJ	GV21	GV11
		CA	GY40	

Generate Subscript Instructions
Next word from Expanded List to temp 6
Indicator from 0 p. code of word to " u " of A

MJ	INDICATOR	00000
A		

Search list for indicator
Jump according to indicator
Ind $=0$
Ind $=1$
Ind $=2$
Ind $=3$
Ind $=4$
Ind $=5$
Ind $=6$
Ind $=7$
Adv. current rel. address by 3 in " u " and " v "
To R7
Adv. current re1. address by 2 in "u" and " v "

Adv. current rel. address by 4 in "u" and " v "
Adv. add. in Exp. List by $1 \rightarrow$ Add. of
P.R. value

Add. of word following last subs. in Exp. List \rightarrow " u " of TP
To R4
To R2
Adv. current rel. address by 3 in " u " and "v"
Add. of last S.S. in Exp. List \rightarrow " u " of TP
Adv. Add. in Exp. List by $1 \rightarrow$ add. of P.R. value

Adv. current rel. address by 5 in " u " and " V "
Adv. Add. in Exp. List by $2 \rightarrow$ Add. of P.R. value

Add. of word following last S.S. in Exp. List \rightarrow " u " of TP
To R4

Generate Fixed Point Inst. $\left[\begin{array}{lll}\text { At } & 30000 & \text { A }\end{array}\right] \longrightarrow$ Temp 3
To Zl
$\left[\begin{array}{lll}\text { ST } & 30000 & \text { A }\end{array}\right] \rightarrow$ Temp 3
Next word from Expanded List to temp 6 [MP A 30000] \rightarrow temp 2
Check indicator from op. code of
word in temp 6
Indicator $=0$ (to S33)
Indicator $=1$ (to S29)
Adv. current relative address by one
Store inst. in temp 2 in routine image
$\left[\begin{array}{lll}{[D V} & 30000 & \text { A }\end{array}\right] \rightarrow$ temp 3
To Zl
Adv. current rel. address by 1 in " u " and " v "
Store inst. in temp 2 in routine image $\left[\begin{array}{lll}\mathrm{TP} & \mathrm{Q} & \mathrm{A}\end{array}\right] \rightarrow$ temp 2
Partial result symbol \rightarrow "A" register
Is partial result symbol in " $A^{\prime \prime}$ List?

$\left[\begin{array}{lll}\mathrm{TM} & \mathrm{A} & \mathrm{A}\end{array}\right] \rightarrow$ temp 2
Next word from Expanded List to temp 6 Check Indicator from op. code of word in temp 6
Indicator $=0$. (to S33)
Ind. $=1$; P.R. symbol \rightarrow " V " of temp 1
P.R. \longrightarrow " v " of A

Next word from Expanded List to temp 6 Check indicator in op. code of word (to GZ42 if ind $=0$)
Âdv. current relative address by one
0 perand symbol from " v " of temp 5 to "u" of temp 0
To S34
Operand or temp callword to "u" of temp 3
$\left[\begin{array}{lll}\operatorname{TP} 30000 & \text { A }\end{array} \rightarrow\right.$ to temp 2
To S32A
Instruction from temp 3 to temp 2

To GZ64 if indicator = 1
Ind $=2$; $\left[\begin{array}{lll}\mathrm{TN} & \mathrm{A} & \mathrm{A}\end{array}\right]$ to temp 2
Store instruction in temp 2 in routine image
0 perand symbol from "u" of temp 5 to "u" of temp 0
Advance current relative address by one $[$ AT 30000 A] \rightarrow temp 2
To S34
Ind $=1$
Operand symbol from "v" of temp 5 to "u" of temp 0
Instruction from temp 3 to temp 2

		IA	NZ		
(34A)	0	RP	[30000]	NZ11	Is partial result symbol in "A" List?
	1	EJ	XA	NZ2	Yes \rightarrow NZ2; no \longrightarrow NZll
	2	RA	RA3	GC3	Advance current relative address by one
	3	RJ	SI	SIl	Store instruction in temp 2 in routine image
	4	TP	II31	TT4	Set register indicator to " A " in " u " and "v"
	5	TP	II42	TT2	$\left[\begin{array}{lll}\text { TP } & \text { A } & 30000\end{array}\right] \rightarrow$ temp 2
	6	TP	TT1	A	Partial result symbol \rightarrow " V " of A
	7	RJ	NZ21	NZ21	To Z2 (search Redundant P.R. List for P.R.)
	10	MJ	0	GE	Exit - P.R. in "A" List and not in Redundant P.R. List
(34B)	11	RJ	NZ21	NZ21	To Z2 (search Red. P.R. List when P.R. not in "A" List)
	12	RA	RA6	GC3	Advance current reusable temp callword by one
	13	TJ	RA7	NZ15	Is highest temp callword used>current callword?
	14	TP	A	RA7	No; retain current temp callword as highest used
	15	TV	A	TT2	Reusable temp callword \rightarrow " v " of temp 2
	16	RA	RA3	GC3	Advance current relative address by one
	17	RJ	SI	SIl	Store instruction in temp 2 in routine image
	20	MJ	${ }^{0}$	GE	
(2)	21	RP	[30000]	[30000]	Is partial result symbol in Redundant P.R. List?
	22	EJ	RL	NZ23	Yes \rightarrow NZ23; No \rightarrow repeat exit
	23	TP	RA2	A	$\mathrm{jn} \rightarrow$ " $\mathrm{u}^{\prime \prime \mathcal{E}}$ "v" of A
	24	SS	Q	0	$\mathrm{jn}-(\mathrm{jn}-\mathrm{r}) \rightarrow \mathrm{V}^{\prime \prime}$ of A
	25	SA	RA5	0	Base redundancy temp callword $+\mathrm{r} \longrightarrow$ " v " of A
	26	TV	A	TT2	Redundancy temp callword to "v" of temp 2
	27	MJ	0	NZ16	
		CA	NZ30		

		IA	ZZ	
(23)	0	TV	GZ25	ZZ15
	1	MJ	0	ZZ3
(24)	2	TV	GC22	ZZ15
	3	TV	TT6	TT1
	4	TP	TT1	A
	5	RP	[30000]	ZZ14
	6	EJ	RL	ZZ7
	7	TP	RA2	A
	10	SS	Q	0
	11	SA	RA5	0
	12	TV	A	TT2
	13	MJ	0	[30000]
(35)	14	RP	[30000]	ZZ16
	15	EJ	XA	[30000]
	16	RA	RA6	GC3
	17	TJ	RA7	ZZ21
	20	TP	A	RA7
	21	TV	A	TT2
(36)	22	RA	RA3	GC3
	23	RJ	SI	SII
(37)	24	TP	II31	TT4
	25	MJ		GE
		CA	ZZ26	

Partial result symbol to "v" of temp 1 P.R. symbol \rightarrow " v " of A

Is P.R. in Redundant P.R. List?
Yes to ZZ7 ; no to ZZ14
$j n \rightarrow$ " u " and " v " of A
$j n-(j n-r) \longrightarrow " v "$ of A
Base redundancy temp. callword $+\mathrm{r} \rightarrow$ " v " of A
Redundancy temp. callword \longrightarrow " v " of temp 2
Exit
Is partial result symbol in "A" List? No to ZZ16
Adv. current reusable temp callword by one
Is highest temp used > current temp? No, retain current temp callword as highest used
Current temp. callword \longrightarrow " v " of temp 2 Advance current relative address by one Store inst. in temp. 2 in routine image Set register indicator to " A " in " u " and "v"

		IA	GF		Generate Floating Point Ins		
(40) Fl.	0	TP	II20	TT3	[FA	300003000	\rightarrow temp
plus	1	MJ	0	GF7			
(41) Fl.	2	TP	IT21	TT3	[FS	3000030000	$]$ temp
subt.	3	MJ	0	GF7			
(42) Fl.	4	TP	II22	TT3	[FM	300003000	\rightarrow temp
mult.	5	MJ	0	GF7			
(43) Fl.	6	TP	II23	TT3	[FD	30000300	\rightarrow temp
divide	7	RJ	GS5	GS			
(44)	10	LQ	A	25	Indicator from op. code of word to "u" of A		
	11	AT	II16	A	MJ	INDICATOR	$00000 \rightarrow$
	12	RP	30047	GF63	Search list for indicator		
	13	TJ	GF 14	GF14	Jump according to indicator		
	14	MJ	0	GG	Ind. $=0$		
	15	MJ	1	GG6	Ind	$=1$	
(45)	16	MJ	2	GG10	Ind. $=2$		
	17	MJ	3	GG15	Ind. $=3$		
	20	MJ	4	GG17	Ind. $=4$		
	21	MJ	5	GG41	Ind. $=5$		
	22	MJ	6	GG55	Ind. $=6$		
	23	MJ	7	GG46	Ind. $=7$		
	24	MJ	10	GG50	Ind. $=10$		
	25	MJ	11	GH	Ind. $=11$		
	26	MJ	12	GH5	$\text { Ind. }=12$		
(46)	27	MJ	13	GH10	Ind. $=13$		
	30	MJ	14	GH14	Ind. $=14$		
	31	MJ	15	GH2I	Ind. $=15$		
	32	MJ	16	GH24	Ind. $=16$		
	33	MJ	17	GH40	Ind. $=17$		
	34	MJ	20	GH45	Ind. $=20$		
	35	MJ	21	GH50	Ind. $=21$		
	36	MJ	22	GH56	Ind. $=22$		
	37	MJ	23	GH66	Ind. $=23$		
		CA	GF40				

(47)		IA	GF40		
	40	MJ	24	GH72	Ind. $=24$
	41	MJ	25	GJ	Ind. $=25$
(48)	42	MJ	26	GJ6	Ind. $=26$
	43	MJ	27	GJII	Ind. $=27$
	44	MJ	30	GJ20	Ind. $=30$
	45	MJ	31	GJ27	Ind. $=31$
	46	MJ	32	GJ32	Ind. $=32$
	47	MJ	33	GI	Ind. $=33$
	50	MJ	34	GI7	Ind. $=34$
	51	MJ	35	GI13	Ind. $=35$
	52	MJ	36	GI21	Ind. $=36$
	53	MJ	40	GI25	Ind. $=40$
	54	MJ	42	GI33	Ind. $=42$
	55	MJ	43	GI36	Ind. $=43$
	56	MJ	44	GI43	Ind. $=44$
	57	MJ	45	GI50	Ind. $=45$
	60	MJ	46	GI54	Ind. $=46$
	61	MJ	47	GI61	Ind. $=47$
	62	MJ	50	GI65	Ind. $=50$
	63	MJ	51	GI71	Ind. $=51$
		CA	GF64		

$\begin{aligned} & \text { (49) } \operatorname{Ind} \\ & =0 \end{aligned}$		IA	GG	
	0	RJ	GS12	GS42
	1	RA	RA3	GC
$\begin{aligned} & (50) \text { Ind } \\ & \overline{=} 1 \\ & (51) \text { Ind } \\ & =2 \end{aligned}$	2	RJ	GS12	GS6
	3	RJ	GS12	GS27
	4	RJ	GS12	GT2
	5	MJ	0	GK
	6	RJ	GS12	GS45
	7	MJ	0	GG1
	10	RJ	GS12	GS42
	11	RA	RA3	GC1
(52) Ind $=3$ (53) Ind $=4$	12	RJ	GS12	GS32
	13	RJ	GS12	GT60
	14	MJ	0	GK
	15	RJ	GS12	GS45
	16	MJ	0	GGIl
	17	RA	RA3	GC
(54)	20	TP	IT21	A
	21	EJ	TT3	GG27
	22	RJ	GS12	GS42
	23	RJ	GS12	GS6
	24	RJ	GS12	GS27
	25	RJ	GS12	GT70
	26	MJ	0	GK
	27	RJ	GS12	GS60
	30	TP	II5	TT2
	31	RJ	GS12	GS7
	32	TP	II6	TT2
	33	LQ	TT6	25
	34	TU	RA3	TT2
(55)	35	RJ	GS12	GV4
	36	TP	II40	TT2
	37	RJ	SI	SIl
		CA	GG40	

Generate Floating Point (cont.)
To Sll
Adv. current rel. add. by 4 in "u" and "v"
To S2
To S6
To S28
To S12
To Sll
Adv. current rel. add. by 3 in "u" and "v"
To S7
To S44
To S12
Adv. current rel. add. by 4 in " u " and " v "
$\left[\begin{array}{lll}\text { ES } & 30000 & 30000\end{array}\right] \rightarrow \mathrm{A}$
Is floating subtract inst. in temp 3?
No; to Sll
To S2
To S6
To S46
To Sl6
[TV A 30000] \rightarrow temp 2
To S2A
$\left[\begin{array}{lll}\mathrm{B} A & 30000 & 30000\end{array}\right] \rightarrow$ temp 2
Current relative address to "u" of temp 2
To R3
[FA Q 30000] \rightarrow temp 2
Store inst. in temp 2 in routine image

		IA	GG40		
	40	MJ	0	GK	
$\begin{aligned} & \text { (56) Ind } \\ & =5 \end{aligned}$	41	RA	RA3	GC1	Adv. current rel. address by 3 in "u" and "v"
	42	RJ	GS12	GS62	To S17
	43	RJ	GS12	GS32	To S7
	44	RJ	GS12	GT64	To S45
(57)	45	MJ	0	[30000]	Switch(A)
$\begin{aligned} & (58) \text { Ind } \\ & =7 \end{aligned}$	46	RA	RA3	GC2	Adv. current re1. address by 2 in "u" and "v"
	47	MJ	0	GG43	
$\begin{aligned} & \text { (59) Ind } \\ & =10 \end{aligned}$	50	RA	RA3	GCl	Adv. current rel. address by 3 in " u " and "v"
	51	RJ	GS12	GS62	To S17
	52	RJ	GS12	GS32	To S7
	53	RJ	GS12	GT52	To S42
	54	MJ	0	GG45	To switch ${ }^{\text {A }}$
(60) Ind	55	TP	II21	A	[FS 30000 30000] \rightarrow A
$=6$	56	EJ	TT3	GG64	Is floating subt. inst. in temp 3?
	57	RA	RA3	GC1	No, advance current relative address by three
	60	RJ	GS12	GS42	To Sll
	61	RJ	GS12	GS32	To S7
	62	RJ	GS12	GT50	To S41
	63	MJ	0	GK	
(61)	64	RA	RA3	GC	Adv. current rel. address by 4 in " u " and "v"
	65	RJ	GS12	GS60	To S16
	66	RJ	GS12	GS70	To S20
	67	RJ	GS12	GS32	To S7
	70	TP	II40	TT3	FA $\left.\mathrm{F}^{\text {F }} 30000\right] \rightarrow$ temp 3
	71	LQ	TT5	25	
	72	TV	Q	TT3	0 perand symbol from " u " of temp 5 to " v " of temp 3
	73	RJ	GS12	GT43	To S39A
	74	MJ	0	GK	
		CA	GG75		

$\begin{aligned} & 62 \text { Ind } \\ & =11 \end{aligned}$		IA	GH	
	0	RA	RA3	GCl
	1	RJ	GS12	GSI3
	2	RJ	GS12	GT73
	3	RJ	GS12	GT16
$\begin{aligned} & \text { (63) Ind } \\ & =12 \end{aligned}$	4	MJ	0	GG45
	5	RA	RA3	GC3
	6	RJ	GS12	GT54
	7	MJ	0	GK3
$\begin{aligned} & \text { (64) Ind } \\ & =13 \end{aligned}$	10	RA	RA3	GC1
	11	RJ	GS12	GS13
	12	RJ	GS12	GS27
	13	MJ	0	GH3
$\begin{aligned} & \text { (65) Ind } \\ & =14 \end{aligned}$	14	RA	RA3	GC1
	15	RJ	GS12	GS13
	16	RJ	GS12	GT73
	17	RJ	GS12	GT30
	20	MJ	0	GG45
$\begin{aligned} & \text { (66) Ind } \\ & =15 \end{aligned}$	21	RA	RA3	GC3
	22	RJ	GS12	GT33
	23	MJ	0	GK3
$\begin{aligned} & \text { (67) Ind } \\ & =16 \end{aligned}$	24	TP	II21	A
	25	EJ	TT3	GH31
	26	RA	RA3	GC3
(68)	27	RJ	GS12	GT36
	30	MJ	0	GK3
	31	RA	RA3	GC2
	32	RJ	GS12	GS60
	33	TP	II40	TT2
	34	LQ	TT5	25
	35	RJ	GT13	GT5
	36	RJ	SI	SII
	37	MJ	0	GK3
		CA	GH40	

Generate Floating Point (cont.)
Adv. current rel. address by 3 in "u" and "v"
To S3
To S47
To S32
To switch (A)
Adv. current rel. address by 1 in " u "
and "v"
To S43
Adv. current rel. address by 3 in " u " and "v"
To S3
To S6
Adv. current rel. address by 3 in " u " and "v"
To S3
To S47
To S35
To switch (A)
Adv. current rel. address by 1 in " u " and "v"
To S36
[FS 30000 30000] $\rightarrow \mathrm{A}$
Is floating subt. inst. in temp 3?
No, advance current relative address by one
To S37
Adv. current rel. address by 2 in "u" and "v"
To S16
[FA \quad Q 30000] \rightarrow temp 2
Operand symbol from "u" of temp 5 to " v " of temp 5
To S29
Store inst in temp 2 in routine image

$\begin{aligned} & \text { (69) Ind } \\ & =17 \end{aligned}$		IA	GH40		Generate Floating Point (cont.)
	40	RA	RA3	GC	Adv. current rel. address by 4 in "u" and " ${ }^{7}$ "
	41	RJ	GS12	GS42	To Sll
$\begin{aligned} & \text { (70) Ind } \\ & =20 \end{aligned}$	42	RJ	GS12	GS47	To S13
	43	RJ	GS12	GS32	To S7
	44	MJ	0	GH54	
	45	RA	RA3	GC	Adv. current rel. address by 4 in " u^{n} and "v"
	46	RJ	GS12	GS45	To S12
$\begin{aligned} & \text { (71) Ind } \\ & =21 \end{aligned}$	47	MJ	0	GH42	
	50	RA	RA3	GC	Adv. current rel. address by 4 in " u " and " v "
	51	RJ	GS12	GS35	To S9
$\begin{aligned} & \text { (72) Ind } \\ & =22 \end{aligned}$	52	RJ	GS12	GS42	To Sll
	53	RJ	GS12	GS40	To S10
	54	RJ	GS12	GT41	To S38
	55	MJ	0	GG45	To switch (A)
	56	RA	RA3	GC5	Adv. current rel. address by 6 in " u " and " v "
	57	RJ	GS12	GS42	To S11
	60	RJ	GS12	GS47	To S13
	61	RJ	GS12	GS6	To S2
	62	RJ	GS12	GS13	To S3
$\begin{aligned} & \text { (73) Ind } \\ & =23 \end{aligned}$	63	RJ	GS12	GS27	To S6
	64	RJ	GS12	GT14	To S31
	65	MJ	0	GG45	To switch(A)
	66	RA	RA3	GC5	Adv. current rel. address by 6 in " u^{n} and "v"
	67	RJ	GS12	GS45	To S12
$\begin{aligned} & \text { (74) } \text { Ind } \\ & =24 \end{aligned}$	70	RJ	GS12	GS47	To S13
	71	MJ	0	GH61	
	72	RA	RA3	GC5	Adv. current rel. address by 6 in " u " and "v"
	73	RJ	GS12	GS6	To S2
	74	RJ	GS12	GS53	To S14
	75	RJ	GS12	GS17	To S4
	76	RJ	GS12	GS42	To Sll
	77	MJ	0	GH63	
		CA	GH100		

(75) Ind $=33$		IA	GI	
	0	RA	RA3	GC4
(76) Ind	1	RJ	GS12	GS6
	2	RJ	GS12	GS42
	3	RJ	GS12	GS13
	4	RJ	GS12	GS27
	5	RJ	GS12	GT14
	6	MJ	0	GG45
	7	RA	RA3	GC4
$\begin{aligned} & \text { (77) Ind } \\ & =35 \end{aligned}$	10	RJ	GS12	GS6
	11	RJ	GS12	GS45
	12	MJ	0	GI3
	13	RA	RA3	GC
	14	RJ	GS12	GS72
	15	RJ	GS12	GS42
	16	RJ	GS12	GS32
$\begin{aligned} & \text { (78) Ind } \\ & =36 \end{aligned}$	17	RJ	GS12	GT46
	20	MJ	0	GG45
	21	RA	RA3	GC
	22	RJ	GS12	GS72
$\begin{aligned} & (79) \text { Ind } \\ & =40 \end{aligned}$	23	RJ	GS12	GS45
	24	MJ	0	GI16
	25	RA	RA3	GC
	26	RJ	GS12	GS23
	27	RJ	GS12	GS62
	30	RJ	GS12	GS32
$\begin{aligned} & \text { (80) Ind } \\ & =42 \end{aligned}$	31	RJ	GS12	GT42
	32	MJ	0	GG45
	33	RA	RA3	GC1
	34	RJ	GS12	GS23
$\begin{aligned} & \text { (81) Ind } \\ & =43 \end{aligned}$	35	MJ	0	GI30
	36	RA	RA3	GCl
	37	RJ	GS12	GS6
	CA	GI40		

Generate Floating Pt. (Function 61-m type)
Adv. current rel. add. by 5 in "u"
and "v"
To S2
To S11
To S3
To S6
To S31
To switch(A)
Adv. current rel. add. by 5 in "u"
and "v"
To S2
To S12
Adv. current rel. add. by 4 in "u" and "v"
To S21
To Sll
To S7
To S40
To switch (A)
Adv. current rel. add. by 4 in "u" and " v "
To S21
To S12
Adv. current rel. add. 4 in " u " and " v "
To S8
To S17
To S7
To S39
To switch (A)
Adv. current re1. add. by 3 in "u" and " v "
To S8
Adv. current re1. add. by 3 in "u" and "v"
To S2

		IA	GI40	
	40	RJ	GSI2	GS13
	41	RJ	GS12	GT14
$\begin{aligned} & (82) \\ & (83) \text { Ind } \\ & =44 \end{aligned}$	42	MJ	0	[30000]
	43	RA	RA3	-GC
	44	RJ	GS12	GS6
	45	RJ	GS12	GS13
	46	RJ	GS12	GT73
	47	MJ	0	GH64
$\begin{aligned} & \text { (84) Ind } \\ & =45 \end{aligned}$	50	RA	RA3	GC2
	51	RJ	GS12	GS6
	52	RJ	GS12	GT2
	53	MJ	0	GK3
$\begin{aligned} & \text { (85) Ind } \\ & =46 \end{aligned}$	54	RA	RA3	GC
	55	RJ	GS12	GS6
	56	RJ	GS12	GS13
	57	RJ	GS12	GS27
	60	MJ	0	GH64
$\begin{aligned} & \text { (86) Ind } \\ & =47 \end{aligned}$	61	RA	RA3	GC2
	62	RJ	GS12	GS13
	63	RJ	GS12	GT16
	64	MJ	0	GI42
$\begin{aligned} & (87) \text { Ind } \\ & =50 \end{aligned}$	65	RA	RA3	GC2
	66	RJ	GS12	GS13
	67	RJ	GS12	GT30
	70	MJ	0	GI42
$\begin{aligned} & \text { (88) Ind } \\ & =51 \end{aligned}$	71	TP	II21	A
	72	EJ	TT3	GI77
	73	RA	RA3	GC2
	74	RJ	GS12	GS6
	75	RJ	GS12	GT70
	76	MJ	0	GK3
(89)	77	RA	RA3	GCl
		CA	GI100	
		IA	GI100	
	100	RJ	GS12	GS101
	101	RJ	GS12	GS60
	102	TP	II40	TT2
	103	RJ	SI	SIl
	104	MJ	0	GK3
		CA	GIl05	

Gen. Fl. Pt. (Function 61-m Type) (cont.)
To S3
To S31
Switch (B)
Adv. current rel. add. by 4 in " u " and " v "
To S2
To S3
To S47
Adv. current rel. add.by 2 iñ "u" $\mathcal{E} " v "$ To S2
To S28
Adv. current rel. add. by 4 in " u " and "v"
To S2
To S3
To S6
Adv. current rel. add. by 2 in " u " and "v"
To S3
To S35
To switch B
Adv. current rel. add. by 2 in "u" and "v"
To S2
To S19
To switch B
$\left[\begin{array}{lll}\text { FS } & 30000 & 30000\end{array}\right] \rightarrow \mathrm{A}$
Is floating subtract inst. in temp 3?
No, advance current relative address
by two
To S2
To S46
Adv. current rel. add. by 3 in " u " and " v "

To S23
To S16
$\left[\begin{array}{ccc}\mathrm{FA} & \mathrm{Q} & 30000\end{array}\right] \rightarrow$ temp 2
Store instruction in temp 2 in routine image

$\begin{aligned} & \text { (90) Ind } \\ & =25 \end{aligned}$		IA	GJ		Generate Floating Point (cont.)
	0	RA	RA3	GC4	Adv. current rel. address by 5 in " u " and "v"
	1	RJ	GS12	GS42	To Sll
	2	RJ	GS12	GS47	To S13
	3	RJ	GS12	GS23	To S8
	4	RJ	GS12	GS32	To S7
	5	MJ	0	GJ16	
$\begin{aligned} & \text { (91) Ind } \\ & =26 \end{aligned}$	6	RA	RA3	GC4	Adv. current rel. address by 5 in " u " and " v "
	7	RJ	GS12	GS45	To S12
	10	MJ	0	GJ2	
$\begin{aligned} & (92) \text { Ind } \\ & =27 \end{aligned}$	11	RA	RA3	GC4	Adv. current rel. address by 5 in "u" and " V "
	12	RJ	GS12	GS32	To S7
	13	RJ	GS12	GS6	To S2
	14	RJ	GS12	GS42	To S_{11}
	15	RJ	GS12	GS27	To S6
	16	RJ	GS12	GT42	To S39
	17	MJ	0	GG45	To switch(A)
$\underbrace{(3)}_{30} \text { Ind }$	20	RA	RA3	GC4	Adv. current rel. address by 5 in " u " and "v"
	21	RJ	GS12	GS42	To Sll
	22	RJ	GS12	GS47	To S13
	23	RJ	GS12	GS72	To S 21
	24	RJ	GS12	GS32	To S7
	25	RJ	GS12	GT46	To S40
	26	MJ	0	GG45	To Switch(A)
$\begin{aligned} & \text { (94) } \mathrm{Ind}^{31} \end{aligned}$	27	RA	RA3	GC4	Adv. current rel. address by 5 in " u " and "v"
	30	RJ	GS12	GS45	To S12
	31	MJ	0	GJ22	
$\begin{aligned} & \text { (95) } \mathrm{Ind}^{=} \end{aligned}$	32	RA	RA3	GC4	Adv. current rel. address by 5 in " u " and " v "
	33	RJ	GS12	GS72	To S_{21}
	34	RJ	GS12	GS35	To S9
	35	RJ	GS12	GS42	To Sll
	36	RJ	GS 12	GS40	To S10
	37	MJ	0	GJ25	

(96)		TA	GK	
	0	TU	RA10	GK2
(97)	1	RA	RA10	GC6
	2	TV	[30000]	TT6
	3	TP	II33	TT4
	4	TP	II41	TT3
	5	RJ	GK34	GK13
	6	TP	TT3	A
	7	EJ	II41	GK12
	10	RA	RA3	GC3
K1)	11	RJ	GS12	GT14
	12	MJ	0	GE
	13	TV	TT6	TT1
	14	TU	RA2	GK16
	15	TP	TT1	A
	16	RP	[30000]	GK25
(98)	17	EJ	RL	GK20
	20	TP	RA2	A
	21	SS	Q	0
	22	SA	RA5	0
	23	TV	A	IT3
	24	MJ	0	GK34
	25	TU	RA	GK26
	26	RP	[30000]	GK30
	27	EJ	XQ	GK34
	30	RA	RA6	GC3
(99)	31	TJ	RA7	GK33
	32	TP	A	RA7
(100)	33	TV	A	TT3
	34	MJ	0	[30000]
		CA	GK35	

Generate Floating Point (cont.)
Address of next word in Expanded List \rightarrow "u" of TV
Advance address in Expanded List by 1 in "u"
Partial result symbol from Expanded
List to "v" of temp 6
Set register indicator to " Q " in " u " and "v"
$\left[\begin{array}{lll}\mathrm{TP} & \mathrm{Q} & \mathrm{A}\end{array}\right] \rightarrow$ temp 3
To K1
Inst. in temp $3 \rightarrow \mathrm{~A}$
Is inst. in temp $3=\left[\begin{array}{lll}T P & Q & A\end{array}\right]$?
No; advance current relative address by one
To S31 (store instruction in temp 3 in routine image)

Partial result symbol from " v " of temp 6 to "v" of temp 1
Preset repeat to search Redundant
P.R. List

Partial result symbol to "v" of A
Is partial result symbol in Redundant P.R. List?

Yes, to GK20; no, to GK25
jn to " u " and " v " of A
jn-(jn-r) to " v " of A
Base redundancy temp callword $+r$ to " V " of A
Redundancy temp callword to " v " of temp 3
Preset repeat to search "Q" List
Is partial result symbol in " $Q^{\prime \prime}$ List?
Yes, to GK34; no, to GK30
Advance current reusable temp callword by one
Is highest temp callword used > current callword?
No, retain current temp callword as highest used
Reusable temp callword to " v " of temp 3 Exit

Generate Library Routine Reference Mask for rightmost octal digit of "v" \rightarrow Q
Number of arguments for library routine to temp 7
$\left[\begin{array}{ccc}10 & 0 & 3\end{array}\right] \rightarrow \mathrm{A}$
Set 10 line counter $\rightarrow 10$ line for last argument
Have all arguments been generated?
Yes, advance current relative address by one
[RJ ———] temp 2
Library routine callword from "v" of temp 5 to "u" of A
Library callword to "u" of RJ in temp 2 Library callword to "v" of RJ in temp 2 Store inst. in temp 2 in routine image $\left[\begin{array}{lll}10 & 00002 & 00000\end{array}\right]$ to temp 2
Store " 10 " line in temp 2 in routine image

Next word from Expanded List to temp 6 Indicator from op. code of word to
"u" of A

| MJ | indicator | 00000 |
| :--- | :--- | :--- | :--- |

Search list for indicator
Jump according to indicator
Ind. $=0$
Ind. $=1$
Ind. $=2$
Ind. $=3$
Ind. $=4$
Ind. $=5$
Ind. $=33$

$\begin{aligned} & 105) \\ & =0 \end{aligned}$		IA	GM	
	0	RA	RA3	GC3
	1	TP	III	TT2
	2	TV	TT5	TT2
(106)	3	TU	TT6	TT
		RJ	GT27	GT22
	5	RJ	SI	SIl
	6	TP	TT10	TT2
	7	RJ	SI	SII
$\begin{aligned} & (107) \\ & =1 \end{aligned} \text { Ind }$	10	RS	TT10	GC11
	11	MJ	0	GL4
	12	RA	RA3	GC3
	13	TP	III	TT2
	14	TU	TT4	TT2
$(108) \text { Ind }$	15	TV	TT5	TT2
	16	MJ	0	GM5
	17	RA	RA3	GC
	20	RJ	GS12	GS56
	21	RJ	GS12	GS106
	22	RJ	GS12	GS27
$\stackrel{(109}{=3} \text { Ind }$	23	TP	IIl	TT2
	24	MJ	0	GM15
	25	RA	RA3	GC
$(10) \text { Ind }$	26	RJ	GS12	GS45
	27	MJ	0	GM21
	30	RA	RA3	GCl
	31	RJ	GS12	GS56
	32	RJ	GS12	GS32
	33	TP	IIl	TT3
	34	TU	TT6	TT3
(11)	35	TV	TT5	TT3
	36	RJ	GS12	GT43
	37	TP	TT10	TT3
		CA	GM40	

Generate Library Routine Ref. (cont.) Adv. current rel. add. by 1 in " u " and " v "
$\left[\begin{array}{ccc}\mathrm{TP} & 30000 & \mathrm{~A}\end{array}\right] \rightarrow$ temp 2
Library routine callword to "v" of TP inst. in temp 2
Argument callword from "u" of temp 6 to "u" of temp 1
To S34
Store inst. in temp 2 in routine image " 10 " line for argument to temp 2 Store "10 line" in temp 2 in routine image
Decrease " 10 " line counter by one
Adv. current rel. add. by 1 in "u" and "v"
$[\mathrm{TP} 30000 \mathrm{~A}] \rightarrow$ temp 2
"u" of register indicator to "u" of
TP inst. in temp 2
Library routine callword to " v " of TP inst. in temp 2

Adv. current rel. add. by 4 in " u " and "v"
To Sl 5
To S2
To S6
$\left[\begin{array}{ccc}\mathrm{TP} & 30000 & \mathrm{~A}\end{array}\right] \rightarrow$ temp 2
Adv. current rel. address by 4 in " u " and "v"
To S12
Adv. current rel. address by 3 in " u " and "v"
To S15
To S7
$\left[\begin{array}{ccc}\text { TP } & 30000 & \text { A] }\end{array} \rightarrow\right.$ temp 3
Argument callword to "u" of TP inst. in temp 3
Library routine callword to "v" of TP inst. in temp 3
To S39A (inst. in temp 3 to relative constant image)
" 10 " line for argument to temp 3

		IA	GM40		
	40	RJ	SI	SI12	" 10 " line in temp 3 to relative constant image
	41	RS	TT10	GC11	Decrease "10" line counter by one
	42	MJ	0	GL4	
$\stackrel{(112)}{=} \text { Ind }$	43	RA	RA3	GC1	Adv. current rel. add. by 3 in " u " and "v"
	44	RJ	GS12	GS45	To Sl2
	45	MJ	0	GM32	
$\begin{aligned} & \text { (113) Ind } \\ & =33 \end{aligned}$	46	RA	RA3	GC2	Adv. current rel. add. by 2 in " u " and " v "
	47	RJ	GS12	GS106	To S25
	50	MJ	0	GM23	
		CA	GM51		

Generate Floating Neg. and Abs. Value [TN 30000 Q] \rightarrow temp 3
$\left[\begin{array}{lll}T M & 30000 & Q\end{array}\right] \rightarrow$ temp 3
Next word from Expanded List to temp 6
Indicator from op. code of word to "u"
of A

Form MJ	indicator	00000

Search list for indicator
Jump according to indicator
Ind. $=0$
Ind. $=1$
Ind. $=2$
Ind. $=3$
Ind. $=12$
Ind. $=15$
Ind. $=45$
To S48
Adv. current rel. address by 4 in "u" and "v"
To S7
To S6
To NI
To S31 (store instruction in temp 3 in routine image)

To S12
To S48
Adv. .current rel. address by 3 in " u " and "v"
To S7
Operand callword from "u" of temp 5 to "u" of temp 3
To (N1)
To S39A (inst. from temp 3 to relative constant image)

To S12

$\begin{aligned} & \text { (123) Ind } \\ & =12 \end{aligned}$		IA	GN40	
	40	MJ	0	GN3I
	41	RJ	GT27	GT21
	42	TU	TT2	TT3
$\begin{aligned} & \text { Ind }= \\ & 15 \end{aligned}$	43	RA	RA3	GC3
	44	MJ	0	GN23
	45	TU	TT4	TT3
	46	MJ	0	GN43
Ind $=$	47	RA	RA3	GC2
45	50	RJ	GS12	GS6
(N1)	51	MJ	0	GN23
	52	RJ	GK34	GK13
	53	TV	TT3	TT4
	54	SP	TT3	17
	55	TU	A	TT4
	56	MJ	0	[30000]
		CA	GN57	

Gen. F1. Neg. and Abs. Val. (cont.)
To S33
Operand or temp callword to "u" of temp 3
Advance current relative address by one
" u " of register indicator to " u " of temp 3

Advance current relative address by two To S2

To Kl
Set " v " of register indicator
Set "u" of register indicator

		IA	GP	
(126) POW	0	RJ	GP65	GP5
	1	MJ	0	GK3
(27) POW	2	RJ	GP65	GP5
-2	3	RJ	GS12	GU
	4	MJ	0	GK3
(P2)	5	RJ	GS5	GS
	6	LQ	A	25
	7	AT	IT16	A
	10	RP	30005	GP17
	11	TJ	GP12	GP12
	12	MJ	0	GP20
	13	MJ	4	GP23
	14	MJ	5	GP 35
	15	MJ	10	GP46
	16	MJ	11	GP57
	17	MJ	33	GP61
(128) Ind	20	RA	RA3	GC3
	21	RJ	GS12	G034
	22	MJ	0	GP65
(129) Ind	23	RA	RA3	GC
	24	RJ	GS12	GV36
	25	RJ	GS12	GU54
	26	RJ	GS12	GS32
	27	TP	II22	TT3
	30	T'U	TT5	TT3
	31	LQ	TT5	25
	32	TV	Q	TT3
	33	RJ	GS12	GT43
	34	MJ	0	GP65
(130) Ind	35	RA	RA3	GCl
	36	RJ	GS12	GJ24
	37	RJ	GS12	GS21
		CA	GP40	

Generate Int. Power Inst. To P2

To P2
To S49
Next word from Expanded List to temp 6 Indicator from op. code of word to "u" of A

Form MJ | indicator | 00000 |
| :--- | :--- |
| in " A " | |

Search list for indicator
Jump according to indicator
Ind. $=0$
Ind. $=4$
Ind. $=5$
Ind. $=10$
Ind. $=11$
Ind. $=33$
Adv. current rel. address by 1 in "u" and "v"
To S56
Adv. current rel. address by 4 in " u " and "v"
To S48
To S59
To S7
[FM 3000030000] \rightarrow temp 3
0perand callword to "u" of FM inst. in temp 3

Same callword to "v" of FM inst. in temp 3
To S39A (inst. from temp 3 to relative constant image)

Advance current rel. address by 3 in " u " and " v "
To S54
To S5

		IA	GP40	
	40	RJ	GS12	GS64
	41	RA	RA3	GC3
	42	TP	II34	TT2
	43	RJ	SI	SIl
	44	RJ	GU33	GU27
	45	MJ	0	GP65
(131) Ind	46	RJ	GS12	GS66
$=10$	47	RA	RA3	GC
	50	RJ	GS12	GS76
	51	RJ	GS12	GS21
	52	RJ	GS12	GS64
	53	RA	RA3	GC3
	54	TP	II34	TT2
	55	RJ	SI	SII
$\begin{aligned} & (132) \text { Ind } \\ & =11 \end{aligned}$	56	MJ	0	GP65
	57	RA	RA3	GC1
$\begin{aligned} & \text { (133) Ind } \\ & =33 \end{aligned}$	60	MJ	0	GP50
	61	RA	RA3	GCl
	62	RJ	GS12	GS6
	63	RJ	GS12	GS101
	64	RJ	GS12	G052
	65	MJ	0	[30000]
		CA	GP66	

Generate Int. Power Inst. (cont.) To S18
Adv. current rel. address by 1 in " u " and "v"
[FM A A] to temp 2
Store inst. in temp 2 in routine image To S55

To S19
Adv. current rel. address by 4 in "u" and " v "
To S22
To S5
To S18
Adv. current rel. address by 1 in "u" and "v"
[FM A A] to temp 2
Store instruction in temp 2 in routine image

Adv. current rel. address by 3 in "u" and "v"

Adv. current rel. address by 3 in " u " and "v"
To S2
To S23
To S58
Exit

Generate Int. Power Inst. (cont.)
To P3
To P3
To S49
Next word from Expanded List to temp 6
Indicator from op. code of word to " u "
of A

Form MJ | indicator | 00000 in " A " |
| :--- | :--- |

Search list for indicator
Jump according to indicator
Ind. $=0$
Ind. $=4$
Ind. $=5$
Ind. $=10$
Ind. $=11$
Ind. $=33$
Adv. current rel. address by 2 in " u " and "v"
To S56
" Q " address to " u " of instruction in temp 2
Store instruction in temp 2 in routine image

Adv. current rel. address by 3 in " u " and " v "
To S48
To S7
To S52
Advance current rel. address by 2 in "u" and "v"
To S51
Adv. current rel. address by 3 in " u " and "v"
To S54
To S55
To S5

		IA	GQ40			
	GQ	RJ	GS12	GU20	\quad	Generate Int. Power Inst. (cont.)
:---						
To S53						

$(142 \text { POW }$		IA	GR	
	0	RJ	GS5	GS
	1	LQ	A	25
(143)	$\underline{2}$	AT	II16	A
	3	RP	30006	GR13
	4	TJ	GR5	GR5
	5	MJ	0	GR14
	6	MJ	1	GR21
	7	MJ	4	GR25
(44) Ind	10	MJ	5	GR36
	11	HJ	10	GR50
	12	MJ	11	GR53
	13	MJ	33	GR57
	14	TP	II23	TT2
	15	LQ	TT5	25
(145) Ind	16	RJ	GT13	GT5
	17	RA	RA3	GC3
	20	MJ	0	GR45
	21	RA	RA3	GC3
	22	TP	II23	TT2
	23	TV	TT4	TT2
$(146) \text { Ind }$	24	MJ	0	GR45
	25	RA	RA3	GCl
	26	RJ	GS12	GS66
	27	RJ	GS12	GS32
	30	TP	II23	TT3
	31	TU	TT6	TT3
	32	LQ	TT5	25
	33	TV	Q	TT3
	34	RJ	GS12	GT43
$\begin{aligned} & 147) \\ & = \\ & 5 \end{aligned}$	35	MJ	0	GK3
	36	RA	RA3	GC1
	37	TP	II32	TT2
		CA	GR40	

Generate Int. Power Inst. (cont.)
Next word from Expanded List to temp 6
Indicator from op. code of word to " u " of A

From | MJ | indicator | 00000 |
| :--- | :--- | :--- |
| to | A" | |

Search list for indicator
Jump according to indicator
Ind. $=0$
Ind. = 1
Ind. $=4$
Ind. $=5$
Ind. $=10$
Ind. $=11$
Ind. $=33$
$\left[\begin{array}{lll}\text { FD } & 30000 & 30000\end{array}\right] \rightarrow$ temp 2
Operand callword from " u " of temp 5 to "v" of temp 5
To S29
Advance current relative address by one
Advance current relative address by one [FD 30000 30000] \rightarrow temp 2
${ }^{\mathrm{T}} \mathrm{V}$ " of register indicator \rightarrow " v " of temp 2

Advance current relative address by three
To S19
To S7
[FD 3000030000$] \rightarrow$ temp 3
Constant callword for floating point one to " u " of temp 3

Operand callword to " $\mathrm{v}^{\text {" }}$ of FD inst. in temp 3
To S39A (inst. from temp 3 to relative constant image)

Advance current relative address by three
$\left[\begin{array}{lll}\text { SA } & 30000 & 0\end{array}\right] \rightarrow$ temp 2

(153) POW		IA	GW	
		RJ	GW64	GW10
(4 to 63)		MJ	0	GK
$\begin{aligned} & (154) \mathrm{POW} \\ & (=4 \text { to } \end{aligned}$	2	RJ	GW64	GW10
	3	TU	RA10	GW5
-63)	4	RA	RA10	GC6
	5	TP	[30000]	TT6
	6	RJ	GS12	GD
(14)	7	MJ	0	GK3
	10	RJ	GW73	GW65
	11	LQ	A	25
	12	AT	II16	A
	13	RP	30005	GW22
	14	TJ	GW15	GW15
	15	MJ	0	GW23
	16	MJ	4	GW34
	17	MJ	5	GW46
	20	MJ	10	GW53
	21	MJ	11	GW57
	22	MJ	33	GW61
(155) Ind	23	RA	RA3	GCl
	24	RJ	GS12	GU34
	25	RJ	GS12	GU42
	26	TP	II35	TT2
	27	LQ	TT5	25
	30	TV	Q	TT1
$(156) \text { Ind }$	31	RJ	GT13	GT6
	32	RJ	SI	SIl
	33	MJ	0	GW64
	34	RA	RA3	GCl
	35	RJ	GS12	GV36
	36	RJ	GS12	GS32
	37	MJ	0	GW74
		CA	GW40	

Generate Int. Power Inst. (cont.) To P4

To P4
Address of next word in Expanded List \rightarrow "u" of TP
Advance address in Expanded List by 1 in " $u^{\text {n }}$
Next word in Expanded List to temp 6 To S49

Next word from Expanded List tó temp ó Indicator from op. code of next word to "u" of A
Form MJ indicator 00000 in " A "
Search list for indicator
Jump according to indicator
Ind. $=0$
Ind. $=4$
Ind. $=5$
Ind. $=10$
Ind. $=11$
Ind. $=33$
Adv. current rel. address by 3
To S56
To S57
$\left[\begin{array}{ccc}\text { FM } & \text { Q 30000] }\end{array} \rightarrow\right.$ temp 2
Operand callword from " u " of temp 5 to " v " of temp 1
To S30
Store inst. in temp 2 in routine image
Advance current relative address by three
To S48
To S7

		IA	GW40		Generate Int. Power Inst. (cont.)
	40	RA	RA3	GC1	Adv. current rel. address by 3 in " u " and " v "
	41	RJ	GS12	G020	To S53
	42	RJ	GS12	GU10	To S51
	43	RJ	GS12	GU42	To S57
	44	RJ	GS12	G04	To S50
	45	MJ	0	GW64	
(157) Ind	46	RA	RA3	GC1	Adv. current address by 3 in " u " and " V "
$=5$	47	RJ	GS12	GU24	To S54
	50	RJ	G033	GU27	To S55
	51	RJ	GS12	GS21	To S5
	52	MJ	0	GW40	
$\begin{aligned} & \text { (158) Ind } \\ & =10 \end{aligned}$	53	RA	RA3	GC	Adv. current rel. add. by 4 in "u" and " V "
	54	RJ	GS12	GV31	To R7
	55	RJ	GS12	GS76	To S22
	56	MJ	0	GW51	
$\begin{aligned} & (159) \text { Ind } \\ & =11 \end{aligned}$	57	RA	RA3	GC1	Adv. current rel. address by 3 in " $u^{\prime \prime}$ and " v "
	60	MJ	0	GW55	
$\begin{aligned} & \text { (160) Ind } \\ & =-33 \end{aligned}$	61	RA	RA3	GC2	Adv. current re1. address by 2 in "u" and "v"
	62	RJ	GS12	GS6	To S2
	63	MJ	0	GW40	
	64	MJ	0	[30000]	Exit
(P5)	65	TU	RA10	GW67	Preset address of next word in Expanded List
	66	RA	RA10	GC6	Advance address in Expanded List by one
	67	TP	[30000]	TT6	Next word in Expanded List to temp 6
	70	TU	RA10	GW72	Preset address of next word in Expanded List
	71	TP	GC10	Q	
	72	QT	[30000]	A	Indicator from op. code of this word to op. code of A
	73	MJ	0	[30000]	
	74	RJ	GS12	GU14	To S52
	75	RA	RA3	GC1	Advance current relative address by three
	76	MJ	0	GW42	
		CA	GW77		

$\begin{aligned} & \text { (161) POW } \\ & 1 / 2 \\ & (162) \text { POW } \\ & -1 / 2 \end{aligned}$		IA	GX	
	0	RJ	GX67	GX5
	1	MJ	0	GK3
	2	RJ	GX67	GX5
	3	RJ	GS12	GU
	4	MJ	0	GK3
(PI)	5	TP	GC32	TT10
	6	RJ	GS5	GS
	7	LQ	A	25
	10	AT	II16	A
	11	RP	30006	GX21
	12	TJ	GX13	GX13
	13	MJ	0	GX22
	14	MJ	1	GX26
	15	MJ	4	GX32
(163)	16	MJ	5	GX44
	17	MJ	10	GX46
	20	MJ	11	GX47
	21	MJ	33	GX53
$\begin{aligned} & \text { (165) Ind } \\ & =0 \end{aligned}$	22	RA	RA3	GC3
	23	TP	II30	TT2
	24	RJ	GT27	GT21
	25	MJ	0	GX56
$(166) \text { Ind }$	26	RA	RA3	GC3
	27	TP	II30	TT2
	30	TU	TT4	TT2
$\begin{aligned} & 167) \text { Ind } \\ & =4 \end{aligned}$	31	MJ	0	GX56
	32	RA	RA3	GCI
	33	RJ	GS12	GV36
	34	RJ	GS12	GS32
	35	TP	II30	TT3
	36	TU	TT5	TT3
	37	RJ	GS12	GT43
		CA	GX40	

Generate Int. Power Inst. (cont.)
To Pl
To P1
To S49
Preset " 10 " line counter to $\left[\begin{array}{lll}10 & 00000 & 00003\end{array}\right]$
Next word from Expanded List to temp 6
Indicator from op. code of this word to "u" of A
Form MJ | indicator 00000 in A
Search list for indicator
Jump according to indicator
Ind. $=0$
Ind. $=1$
Ind. $=4$
Ind. $=5$
Ind. $=10$
Ind. $=11$
Ind. $=33$
Adv. current rel. address by l in " u " and "v"
$\left[\begin{array}{lll}\text { TP } & 30000 & 50051]\end{array} \rightarrow\right.$ temp 2
To S33
Advance current relative address by one TP 30000 50051] \rightarrow temp 2
" u " of register indicator to " u " of temp 2

Adv. current rel. add. by 3 in "u" and " v "
To S48
To S7
[TP 30000 50051] \rightarrow temp 3
0 perand callword from
" $u^{\text {" }}$ of temp 5 to " $u^{\text {" }}$ of temp 3
To S39A (Inst. from temp 3 to relative constant image)

		IA	GX40	
	40	RA	TT10	GCII
	41	TP	A	TT3
	42	RJ	SI	SII2
	43	MJ	0	GX62
(168) Ind	44	RJ	GS12	Gu24
$=5$	45	MJ	0	GX72
(169) Ind	46	RJ	GS12	GX70
$=10$	47	BJ	GS12	GS76
$\begin{aligned} & \text { (170) Ind } \\ & =11 \end{aligned}$		RA	RA3	GC1
(171)		RJ	GSI2	GS21
	52	MJ	0	GX55
$\begin{aligned} & \text { Ind }= \\ & 33 \end{aligned}$	53	RA	RA3	GC2
	54	RJ	GS12	GS6
(164)	55	TP	II30	TT2
(172)	56	RJ	SI	SIl
	57	RA	TT10	GC11
	60	TP	A	TT2
	61	RJ	SI	SII
(173)	62	RA	RA3	GC3
	63	TP	II14	TT2
	64	RJ	SI	SI1
	65	TP	II43	TT2
	66	RJ	SI	SII
	67	MJ	0	[30000]
	70	RA	RA3	GC3
	71	MJ	0	GV31
	72	RJ	GU33	GU27
	73	MJ	0	GX50
		CA	GX74	

Gen. Int. Power (cont.)
Advance " 10 " line counter by one
" 10 " line in " A " to temp 3
" 10 " line in temps 3 to relative constant image

To S54

To S22
Advance current relative address by three
To S5
Advance current relative address by two
To S2
[P 30000 50051] to temp 2
Store inst. in temp 2 in routine image Advance " 10 " line counter by one in " v " " 10 " line in A to temp 2
Store inst. in temp 2 in routine image Advance current relative address by one [RJ 5005150051$]$ to temp 2
Store inst. in temp 2 in routine image
$\left[\begin{array}{lll}10 & 00002 & 00000\end{array}\right]$ to temp 2
Store " 10 " line in temp 2 in routine
image
Exit
Advance current relative address by one
To R7
To S55

Generate Store (by or \Rightarrow) Instruction [TP 3000030000 instruction to temp 3
Set switch(A)
Set switch (B)
Next word from Expanded List to temp 6 Indicator from op. code of this word to " u " of A
Form MJ indicator 00000 in A
Search list for indicator
Jump according to indicator
Ind. $=0$
Ind. $=1$
Ind. $=2$
Ind. $=3$
Ind. $=5$
Ind. $=7$
Ind. $=10$
Ind. $=11$
Ind. $=12$
Ind. $=13$
Ind $=14$
Ind $=15$
Ind $=17$
Ind $=20$
Ind $=21$
Ind $=22$
Ind $=23$
Ind $=24$
Ind $=25$
Ind. $=26$
Ind. $=30$
Ind. $=31$
Ind. $=32$
Ind. $=33$

Gen. Store Inst. (cont.)
Ind. $=34$
Ind. $=35$
Ind. $=36$
Ind. $=40$
Ind. $=42$
Ind. $=43$
Ind. $=44$
Ind. $=45$
Ind. $=46$
Ind. $=47$
Ind. $=50$

$\begin{aligned} & (179) \text { Ind } \\ & =0 \end{aligned}$		IA	GB		Gen. Store Inst. (cont.)
	0	RJ	GS12	GS42	To Sll
	1	RA	RA3	GC	Advance current relative address by four
	2	RJ	GS12	GS6	To S2
	3	RJ	GS12	GS27	To S6
	4	TV	TT5	TT3	Callword of variable defined by equation to " v " of temp 3
	5	TP	TT3	TT2	Generated inst. to store result to temp 2
	6	RJ	SI	SIl	Store inst. in temp 2 in routine image
(180) Ind (181) Ind	7	MJ	0	EG	
	10	RJ	GS12	GS45	To S12
	11	MJ	${ }^{0}$	GB1	
	12	RJ	GS12	GS42	To S11
	13	RA	RA3	GC1	Advance current relative address by three
	14	RJ	GS12	GS32	To S7
	15	RJ	GS12	GT41	To S38
$\begin{aligned} & \text { (182) Ind } \\ & =3 \\ & 183 \text { Ind } \\ & =15 \end{aligned}$	16	MJ	0	EG	
	17	RJ	GS12	GS45	To S12
	20	MJ	0	GB13	
	21	RA	RA3	GC3	Advance current relative address by one
	22	TU	TT4	TT3	" A " or " Q " address from register indicator to " u " of temp 3
	23	MJ	0	GB4	
$\begin{aligned} & \text { (184) Ind } \\ & =45 \end{aligned}$	24	RA	RA3	GC2	Advance current relative address by two
	25	RJ	GS12	GS6	To S2
$\begin{aligned} & \text { (185) Ind } \\ & =12 \end{aligned}$	26	MJ	0	GB4	
	27	RA	RA3	GC3	Advance current relative address by one
	30 31	TV	TT5 GS12	TT3	To S32
	32	MJ	0	EG	
		CA	GB33		

Equation Generation Subroutines
Address of next word in Expanded List to "u" of TP
Adyance address in Expanded List by 1 in "u"
Next word in Expanded List to temp 6 Mask for op. code to Q
Indicator from op. code of temp 6 to op. code of A
Exit
[TU A 30000] \rightarrow temp 2
Callword from "u" of temp 5 to "u" of temp 2
Current relative address to " v " of temp 2
Store instruction in temp 2 in routine image
Common exit $\left[\begin{array}{lll}\text { TV A } & \text { A } & 000]\end{array} \rightarrow\right.$ temp 2

Callword from " v " of temp 5 to " u " of temp 2
[TV A 30000] \rightarrow temp 2
[TU A 30000] \rightarrow temp 2
$\left[\begin{array}{lll}\mathrm{TU} & \text { A } & 30000\end{array}\right] \rightarrow$ temp 2
Callword from "u" of temp 5 to "u" oi temp 2
Relative constant callword to " v " of temp 2
$\left[\begin{array}{lll}A T & Q & Q\end{array}\right] \rightarrow$ temp 2
Current relative address to "u" of temp 2
$\left[\begin{array}{lll}A T & Q & Q\end{array}\right] \rightarrow$ temp 2
Relative constant callword to " u " of temp 2
$\left[\begin{array}{lll}\mathrm{AT} & \mathrm{Q} & \mathrm{Q}\end{array}\right] \rightarrow$ temp 2
Relative constant callword to "u" of temp 2

(10)		IA	GS40	
	40	TP	II33	TT2
	41	MJ	0	GS10
(51)	42	TP	II7	TT2
	43	TU	TT6	TT
(32)	44	MJ	0	GV34
	45	TP	II7	TT2
	46	MJ	0	GS11
(13)	47	TP	II32	TT2
	50	SP	TT6	17
	51	TU	A	TT
(314)	52	MJ	0	GV34
	53	TP	II32	TT2
	54	SP	TT5	17
(15)	55	MJ	0	GS112
	56	TP	II7	TT2
	57	MJ	0	GS50
(516)	60	TP	II45	TT2
	61	MJ	0	GS11
(17)	62	TP	III	TT2
	63	MJ	0	GS50
(518)	64	TP	III	TT2
	65	MJ	0	GS11
(519)	66	TP	III	TT2
	67	MJ	0	GV32
(320)	70	TP	IT1	TT2
	71	MJ	0	GS43
(32)	72	TP	II5	TT2
	73	SP	TT5	17
	74	TU	A	TT2
(32)	75	MJ	0	GS25
	76	TP	II10	TT2
	77	TU	TT5	TT2
		CA	GS100	

```
\(\left[\begin{array}{lll}A T & Q & Q\end{array}\right] \rightarrow\) temp 2
\(\left[\begin{array}{lll}S P & A & 17\end{array}\right] \rightarrow\) temp 2
Callword from "u" of temp 6 to "u"
of temp 0
\(\left[\begin{array}{lll}\mathrm{SP} & \mathrm{A} & 17\end{array}\right] \rightarrow\) temp 2
\(\left[\begin{array}{lll}S A & 30000 & 0\end{array}\right] \rightarrow\) temp 2
Callword from " v " of temp 6 to " \(u\) " of \(A\)
" \(u\) " of A to "u" of temp 2
\(\left[\begin{array}{lll}\text { SA } & 30000 & 0\end{array}\right] \rightarrow\) temp 2
Callword from "v" of temp 5 to " \(u\) " of A
\(\left[\begin{array}{lll}\mathrm{SP} & \mathrm{A} & 17\end{array}\right]\) temp 2
\(\left[\begin{array}{lll}\mathrm{TN} & Q & Q\end{array}\right] \rightarrow\) temp 2
\(\left[\begin{array}{lll}\mathrm{TP} & 30000 & \text { A }\end{array}\right] \rightarrow \operatorname{temp} 2\)
\(\left[\begin{array}{lll}\mathrm{TP} & 30000 & \mathrm{~A}\end{array}\right] \rightarrow\) temp 2
\(\left[\begin{array}{lll}\mathrm{TP} & 30000 & \mathrm{~A}\end{array}\right] \rightarrow\) temp 2
\(\left[\begin{array}{lll}\mathrm{TP} & 30000 & \mathrm{~A}\end{array}\right] \rightarrow\) temp 2
\(\left[\begin{array}{lll}T V & \text { A } 30000]\end{array} \rightarrow\right.\) temp 2
Callword from "v" of temp 5 to "u" of \(A\)
"u" of A to "u" of temp 2
\(\left[\begin{array}{lll}\mathrm{SA} & 30000 & 17\end{array}\right] \rightarrow\) temp 2
Callword from "u" of temp 5 to "u"
of temp 2
```

		IA	GS100	
	100	MJ	0	GS11
(23)	101	TP	II5	TT2
(524)	102	MJ	0	GS7
	103	TP	II4	TT2
	104	TV	RA3	TT2
(525)	105	MJ	0	GS111
	106	TP	II4	TT2
	107	TU	TT6	TT2
	110	MJ	0	GS10
	111	SP	TT6	17
	112	TU	A	TT2
(526	113	MJ	0	GS11
	114	TP	II32	TT2
	115	MJ	0	GS77
		CA	GS116	

```
[IV A 30000] \(\rightarrow\) temp 2
\(\left[\begin{array}{lll}\text { IU } & \text { A } & 30000\end{array}\right]\) temp 2
Current relative address to "v" of
temp 2
\(\left[\begin{array}{ccc}\text { TU A } 30000] ~\end{array}\right.\) temp 2
Callword from "u" of temp 6 to " \(u\) " of
temp 2
Callword from " \(v\) " of temp 6 to " \(u\) " of \(A\)
" \(u\) " of \(A\) to " \(u\) " of temp 2
\(\left[\begin{array}{lll}\mathrm{SA} & 30000 & 0\end{array}\right] \rightarrow\) temp 2
```

(324)		IA	GT		Generator Subroutines (cont.)
	0	TP	II5	TT2	[TV A 30000] \rightarrow temp 2
	1	MJ	0	GS24	
(28)	2	TP	TT3	TT2	$\xrightarrow{[\mathrm{F}} \underset{\text { temp } 2}{30000} 30000] \text { from temp } 3$
	3	RJ	GT13	GT5	To S29
	4	MJ	0	GS11	
(s2) (330)	5	TV	TT5	TT1	Callword from " v " of temp 5 to " v " of temp 1
	6	TP	TT1	A	Callword from " v " of temp 1 to " v " of A
	7	TJ	GC34	GTI1	Is callword partial result symbol? $\text { (i.e., } 30-\infty)$
	10	MJ	0	GT12	No
	11	RJ	TR	TR2	Yes; pertinent temporary storage callword to "v" of A
	12	TV	A	TT2	Operand or temp callword to " v " of temp 2
	13	MJ	0	[30000]	Exit
331	14	TP	TT3	TT2	[F-30000 30000] from temp 3 ${ }^{\text {c }}$ temp 2
	15	MJ	0	GS11	
532	16	TP	TT3 GT27	$\begin{aligned} & \text { TT2 } \\ & \text { GT21 } \end{aligned}$	[F_30000 30000] from temp 3 \rightarrow temp 2
	20	MJ	0	GS11	
$\begin{aligned} & (33) \\ & (344) \end{aligned}$	21	TU	TT5	TT	Callword from "u" of temp 5 to "u" of temp 0
	22	TP	TT	A	Callword from "u" of temp 0 to " u " of A
	23	TJ	GC35	GT25	Is callword partial result symbol? $(\text { i.e. }, 30-\infty)$
	24	MJ	0	GT26	No
	25	RJ	TR	TR1	Yes, pertinent temporary storage callword to "u" of A
	26	TV	A	TT2	0 perand or temp callword to " u " of temp 2
(33)	$\frac{27}{3}$	MJ	0	[30000]	Exit
	30	TP	TT3	TT2	$\left[\mathrm{F}_{-} 30000\right.$ 30000] from temp 3 \rightarrow temp 2
	31	TU	TT4	TT2	"u" of register indicator to "u" of temp 2
336	32	MJ	0	GS11	
	33	TP	TT3	TT2	[F_ 30000 30000] from temp 3 \rightarrow temp 2
	34	RJ	GT13	GT5	
(33)	35	MJ	0	GT31	
	36	TP	TT3	TT2	$\xrightarrow{[F-30000} 30000] \text { from temp } 3$
	37	TV	TT4	TT2	" v " of register indicator to " v " of temp 2
		CA	GT40		

(33)		IA	GT40	
	40	MJ	0	GT17
	41	TU	TT5	Ti3
S39	42	TV	TT5	TT3
	43	RJ	SI	SIll
	44	TP	II	TT2
(30)	45	MJ	0	GS11
	46	TU	TT5	TT3
(34)	47	MJ	0	GT43
	50	TV	TT4	TT3
(32)	51	MJ	0	GT46
	52	TU	TT4	TT3
(34)	53	MJ	0	GT42
	54	TP	TT3	TT2
(34)	55	RJ	GT13	GT5
	56	RJ	GT27	GT21
	57	MJ	0	GS11
	60	TU	TT5	TT3
	61	RJ	GTı3	GT5
	62	TV	A	TT3
(45)	63	MJ	0	GT43
	64	TV	TT5	TT3
	65	RJ	GT27	GT21
	66	TU	A	TT3
(34)	67	MJ	0	GT43
	70	TP	TT3	TT2
	71	TV	TT4	TT2
(347)	72	MJ	0	GSIl
	73	TP	II6	TT2
	74	TU	RA3	TT2
	75	MJ	0	GV4
		CA	GI76	

Callword from " u " of temp 5 to " u " of temp 3
Callword from " v " of temp 5 to " v " of temp 3
Inst. in temp 3 to relative constant image
$\left[\begin{array}{lll}00 & 30000 & 30000\end{array}\right] \rightarrow$ temp 2
Callword from "u" of temp 5 to ${ }^{*}{ }^{u}$ " of temp 3
" v " of register indicator to " v " of temp 3
"u" of register indicator to "u" of temp 3
$\left[\begin{array}{lll}F & 30000 & 30000\end{array}\right]$ from temp 3
\rightarrow temp 2
To S29
To S33
Callword from "u" of temp 5 to " u " of temp 3
To S29
Callword of variable, constant or temp to "v" of temp 3

Callword from " v " of temp 5 to " v " of temp 3
To S33
Callword of variable, constant or temp to "u" of temp 3
[F_ 3000030000] from temp 3
\rightarrow temp 2
" v " of register indicator to " v " of temp 2
$\left[\begin{array}{lll}\text { RA } & 30000 & 30000\end{array}\right] \rightarrow$ temp 2
Current relative address to "u" of temp 2

(349)		IA	GU		Generator Subroutine (Int. Power)
	0	RA	RA3	GC3	Advance current rel. address by 1 in " u " and " v "
	1	TP	II36	TT2	[FD 30000 Q] \rightarrow temp 2
	2	TU	TT6	TT2	Callword from "u" of temp 6 to "u" of temp 2
(550)	3	MJ	0	GS11	
	4	TP	II35	TT2	$\left[\begin{array}{llll}\mathrm{FM} & \mathrm{Q} & 30000\end{array}\right] \rightarrow$ temp 2
	5	TV	RA6	TT2	Current reusable temp callword to "v" of temp 2
	6	RS	RA6	GC3	Decrease current reusable temp callword by one
	7	MJ	0	GSII	
(35)	10	TP	II22	TT2	$\left[\begin{array}{lll}\text { FM } & 30000 & 30000\end{array}\right] \rightarrow$ temp 2
	11	TU	RA6	TT2	Current reusable temp callword to "u" of temp 2
	12	TV	RA6	TT2	Current reusable temp callword to "v" oî temp 2
	13	MJ	0	GS11	
(55)	14	TP	IIl	TT3	$[\mathrm{TP} 30000 \mathrm{~A}] \rightarrow$ temp 3
	15	TU	TT5	TT3	Callword from "u" of temp 5 to "u" of temp 3
	16	RJ	GK34	GK30	Callword of available reusable temp to " v " of temp 3
	17	MJ	0	GT43	
(53)	20	TP	IIl	TT3	$\left[\begin{array}{llll}\operatorname{TP} & 30000 & \mathrm{~A}\end{array}\right] \rightarrow$ temp 3
	21	RJ	GK34	GK30	Callword of available reusable temp to "v" of temp 3
	22	TP	TT3	TT2	Instruction from temp 3 to temp 2
	23	MJ	0	GS11	
(554)	24	TP	II10	TT2	$\left[\begin{array}{llll}\text { SA } & 30000 & 17\end{array}\right] \rightarrow$ temp 2
	25	TU	RA4	TT2	Relative constant callword to "u" of temp 2
	26	MJ	0	GS11	
(555)	27	TU	TT5		Callword from "u" of temp 5 to "u" of temp 0
	30	SP	TT	25	
	31	LT	0	TT3	Callword from "u" of temp 0 to " v " of temp 3
	32	RJ	SI	SIll	Inst. in temp 3 to relative constant image
	33	MJ	0	[30000]	Exit
(55)	34	TP	II22	TT2	[FM 30000 30000] \rightarrow temp 2
	35	RJ	GT27	GT21	To S33
	36	SP	TT2	25	
	37	LT	0	A	
		CA	GD40		

		IA	GJ40	
	40	TV	A	TT2
557	41	MJ	0	GS11
	42	TP	II27	TT2
	43	TP	GC12	Q
	44	QT	TT6	A
	45	SS	GC13	17
	46	TU	A	TT2
	47	TV	RA3	TT2
	50	RA	TT2	GC11
(358) (55)	51	MJ	0	GS11
	52	TP	II22	TT2
	53	MJ	0	GS11
	54	TP	GC47	Q
	55	QS	II32	TT2
	56	MJ	0	GS11
		CA	G057	

Callword from " u " of temp 2 to " v " of temp 2
[$\mathrm{RP} \quad 30000 \quad 30000$] \rightarrow temp 2
Mask for rightmost "two" octal digits of " v " \rightarrow Q
Exponent from temp 6 to ${ }^{n} v^{n}$ of A Exponent less two to "u" of A jn to "u" of repeat instruction in temp 2
Current relative address to "v" of RP inst. in temp 2
Advance " v " of RP inst. in temp 2 by one
[FM 30000 30000] \rightarrow temp 2 To(3)
Mask for op. code and " v " to Q [$32-00000]$ to op. code and " v " of temp 2

(R1)		IA	GV		Generator Subroutines (Subscript Operator) $\left[\begin{array}{lll}\text { MA } & 30000 & 30000\end{array} \rightarrow\right.$ temp 2
	0	TP	II25	TT2	
	1	RS	GV2	GC6	${ }_{\text {Decrease }}$ " u " of next instruction by one
	2	TP	[30000]	TT6	Next subscript word from Expanded List to temp 6
	3	TO	TT6	TT2	Callword of multiplier from " v " of temp 6 to " v " of temp 2
(R3)	4	TV	TT6	TT1	Callword of subscript from " v " of temp 6 to " v " of temp 1
	5	RJ	GT13	GT6	To S30
	6	MJ	0	GSIl	[MP 30000 30000] \rightarrow temp 2
(R2)	7	TP	II24	TT2	
	10	MJ	0	GV1	
(R4)	11	TP	II32	TT2	$\left[\begin{array}{lll}S A & 30000 & 0\end{array}\right] \rightarrow$ temp 2 Decrease by one in "u" Preset address of next subscript word in Expanded List
	12	RS	GV2	GC6	
	13	TU	A	GV14	
	14	TP	[30000]	TT6	Next subscript word from Expanded List to temp 6
	15	SP	TT6	17	
	16	TU	A	TT	Callword of subscript from " V " of temp 6 to "u" of temp 0
	17	RJ	GT27	GT22	To S34
	20	TP	TT2	TT3	Generated Instruction to temp 3
	21	MJ	0	[30000]	
(R5)	22	TP	II15	TT2	$\left[\begin{array}{ccc}\mathrm{TJ} & 30000 & 30000\end{array}\right] \rightarrow$ temp 2 Current relative address to ${ }^{\mathbf{V}} \mathrm{v}^{\prime \prime}$ of temp 2 Advance " v " of temp 2
	23	TV	RA3	TT2	
	24	RA	TT2	GC11	
	25	TU	TT5	TT2	Advance "v" of temp 2 Callword from "u" of temp 5 to "u" of temp 2
	26	MJ	0	GS11	$\left[\begin{array}{lll}\text { DV } & 30000 & \text { Q }]\end{array} \rightarrow\right.$ temp 2
(16)	27	TP	II26	TT2	
(R7)	30	MJ	0	GV25	$\left[\begin{array}{lll}T P & 30000 & A\end{array}\right] \rightarrow$ temp 2 Callword from "v" of temp 5 to " u " of A Callword from " u " of A to " u " of temp 0
	31	SP	TT5	17	
	33	TU	A	TT	
	34	RJ	GT27	GT22	To S34
	35	MJ	0	GS11	
(34)	36	TP	II7	TT2	$\left[\begin{array}{lll}\mathrm{SP} & \mathrm{A} & 17\end{array}\right] \rightarrow$ temp 2
	37	MJ	${ }_{\text {GV40 }}$	GV32	

\(\left.$$
\begin{array}{lllll} & \text { TA } & \text { SI } & \begin{array}{l}\text { Store inst. in Routine Image or Relative } \\
\text { Constant Image }\end{array}
$$

Exit

Inst.in temp 2 to current address in

Routine Buffer\end{array}\right]\)| Advance current address in routine |
| :--- |
| buffer by one |
| Are there 1708 words in routine buffers |
| Exit if no. |
| Yes; reset current address in routine |
| buffer to initial address |
| Transfer 1708 generated Inst. from |
| routine buffer to current address in |
| routine image on drum |

$\left(\begin{array}{c}\mathrm{YI} \\ (\mathrm{Y} 2) \\)\end{array}\right.$		IA	TR		Obtain Redundancy or Reusable Temp Callword for Partial Result
	0	MJ	0	[30000]	Exit
	1	LT	25	A	Partial result symbol to "v" of A
	2	RP	[30000]	TR12	Is partial result symbol in Redundant Partial Result List?
	3	EJ	RL	TR4	Yes; to TR4. No; to TR12
	4	SP	Q	17	$\mathrm{jn}-\mathrm{r} \rightarrow{ }^{\text {n }} \mathrm{u}^{\text {n }}$ of A
	5	AT	Q	Q	
	6	TP	RA2	A	$j n \rightarrow{ }^{n} u^{\prime \prime} \mathcal{E}^{n} \mathrm{v}^{\prime \prime}$ of A
	7	SS	Q	0	
	10	SA	RA5	0	Callword of redundancy temp for partial result to " u " and " $\mathrm{v}^{\text {" }}$ of A
	11	MJ	0	TR	To exit
	12	RS	RA6	GC3	Decrease current reusable temp callword by one
	13	SA	GC3	0	Callword of reusable temp for partial result to " u " and " v " of A
	14	MJ	0	TR	To exit

	IA	GC		Generator Constants (Fixed)
0	0	4	4	
1	0	3	3	
2	0	2	2	
3	0	1	1	
4	0	5	5	
5	0	6	6	
6	0	1	0	
7	0	0	7	
10	77	0	0	
11	0	0	1	
12	0	0	77	
13	0	0	2	
14	02	0	0	
15	0	26000	0	
16	0	RI	FL	Parameter to write generated routine from drum to tape
17	0	0	0	
20	0	0	RB7	
21	0	0	GK	To set switch A
22	0	0	ZZ24	
23	0	00777	00777	
24	TP	TT2	RB	Initial address in routine buffer in " v "
25	TP	TT2	RB170	
26	0	0	170	
27	TP	RB	RI	Initial address in routine image on drum in " v "
30	TP	TT3	CI	Initial address in relative constant image in " v "
31	0	0	30000	
32	10	0	3	
33	0	0	EG	To set switch (A)and (B)
34	0	0	31000	
35	0	31000	0	
36	0	2	0	
37	0	3	0	
	CA	GC40		

	IA	GC40		
40	0	0	6	To switchB
41	0	0	GK3	
42	TP	TT2	RB171	
43	0	RB	FL	Parameter to write generated routine from core to tape
44	0	1000	1000	
45	0	20000	20000	
46	0	23000	0	
47	77	0	77777	
50	0	10000	10000	Initial relative constant callword
51	0	57777	5777	Initial redundancy temp callword less l
52	0	67777	67777	Initial reusable temp callword less 1
53	0	776	776	
	CA	GC54		

	IA	II	
0	00	30000	30000
1	11	30000	A
2	12	30000	Q
3	13	30000	Q
4	15	A	30000
5	16	A	30000
6	21	30000	30000
7	31	A	17
10	32	30000	17
11	34	30000	30000
12	35	30000	A
13	36	30000	A
14	37	50051	50051
15	42	30000	30000
16	45	0	0
17	56	0	30000
20	64	30000	30000
21	65	30000	30000
22	66	30000	30000
23	67	30000	30000
24	71	A	30000
25	72	30000	30000
26	73	30000	Q
27	75	30000	30000
30	11	30000	50051
31	13	A	A
32	32	30000	0
33	35	Q	Q
34	66	A	A
35	66	Q	30000
36	67	30000	Q
37	73	30000	A
	CA	II40	
	IA	II40	
40	64	Q	30000
41	11	Q	A
42	11	A	30000
43	10	2	0
44	12	A	A
45	13	Q	Q
46	11	30000	30000
47	45	0	01000
50	45	0	30000
	CA	II51	

Dummy Instructions

> Callword of "Square Root" Library Routine (SQRT) in "u" and "v"

Callword of "Square Root" Library Routine (SQRT) in " v "

	IA	T0		Alarm Text
0	40	T01	3	Parameter for alarm text
1	65	30506	63050	S E N T E N
2	26	30016	65151	
3	01	46515	03222	\triangle L $\quad 0 \quad \mathrm{~N} \quad \mathrm{G}$
	CA	T04		
	IA	LG		Limiting Values
0	TP	TT3	CII00	Maximum address in relative constant image +1
1	0	1002	1002	Maximum number of lines in object program body (including jump to exit) $+1$
	CA	LG2		
Explanation of Relative (Running) Address List				
RAO				jn for " Q " List search in " u "
1				jn for " A " List search in " u "
2				jn for Redundant Partial Result List
3				Current relative object program address in " u " and " v "
4	-			Current relative constant callword in "u" and "v"
5				Initial redundancy temp callword less 1 in " u " and " v "
6				Current reusable temporary storage callword in "u" and "v"
7				Highest reusable temporary storage callword in "u" and "v"
10				Initial address in Expanded List +2 in "u"

Explanation of Working Temporaries (TT)

TT0	0	[30	0	Temp $0-o p$. code and "v" always
1	0	0	[30000]	Temp 1 - op. code and "u" always
2	0	0	0	zero Temp 2 - usually generated instruction to be stored
3	0	0	0	Temp 3 - usually relative constant to be stored
4	0	0	0	Temp 4-register indicator
5	0	0	0	Temp 5 - operator word from Expanded List
6	0	0	0	Temp 6 - indicator word from Expanded List
7	0	0	0	Temp 7 - index counter
10	0	0	0	Temp $10-310$ " line counter

V. ALLOCATION PHASE

v. ALLOCATION PHASE

1. Segmentor

a. Segmentation Setup

This Setup Routine for Segmentation prints out the information that the Allocation Phase (including the Segmentor, the Allocator, and the Initialization Generator) is about to begin.

The routine reads the nine blocks of Segmentation from the UNICODE Master Tape and then jumps into the phase.

Flow Chart for Set-Up Segmentation

Segmentation Set-Up Regions

RE	ZS7230
RE	ZZ7230
RE	SA674
RE	SL1100
RE	TH21
RE	UP421

Loading address for segmentation setup
Operating address of segmentation setup
Loading and operating address of segmentation phase
11 = number of blocks for segmentation phase

Set-Up for Segmentor

b. Segmentation

Phase $I_{\text {. }}$
Phase I prepares two directories using Op File I of the generated routines on Uniservo 5 and 0p File I of the library routines on Uniservo 2. First, all items of 0 p File I on the generated routine tape are read into H.S.S. and then transferred to the MD. Directory I is constructed by making an entry for each item placed on the MD. The first word of this entry contains the call word for this item in the \underline{u} position; the second contains the locating $M D$ address for this item in the y position.

When 0 p File I of the generated routine tape has been completely read into H.S.S., List 1 (a listing of all library routines required for the problem prepared during translation) is read into H.S.S. (List 1 is stored following 0 p File I of the generated routine tape.) Next 0 p File I of the library tape is read from tape and checked for the occurrence of the items of List 1. When an item of List 1 is found in the library 0 p File I, the 0 p File for this item is placed on the MD and an entry is made in Directory 1.

Directory 2 consists of only two words. The first word holds the MD address of the first statement 0p File; the second contains information relating to the MD address of the last statement 0p File. This two word directory is prepared concurrently with Directory 1.

Phase II.

Phase II uses Directories 1 and 2 to divide the problem into efficient running segments producing 0p File IIa and IIb on tape for each segment.

Using the first word of Directory 2 (location of 0 p File I for the first statement) as the initial point, 0p File I for each statement is processed in sequence. A submtally of the total number of lines of coding required for each current statement and its necessary cross references is maintained. This in turn updates a master tally for the segment which contains the accumulated total number of lines needed for all statements and their required cross reference routines. After processing each complete statement, the master tally is checked to determine if it is within the prescribed limits ($4096 \mathrm{~m}-\mathrm{N}$; where N is the length of the Control Section and m the number of core banks available). If it has exceeded the set limits, the sub-tally is subtracted from the master tally and this becomes the length of the segment. If a single statement and its necessary cross references exceeds ($4096 \mathrm{~m}-\mathrm{N}$) the routine gives an alarm. The last statement processed which exceeds the set limit becomes the first entry in the following segment.

Vary loops are treated differently in order to avoid unnecessary jumping between segments. All statements within the range of a Vary are counted together in the sub-tally as one large statement, including other Vary statements that might be nested within the first loop. If the master tally then exceeds ($4096 \mathrm{~m}-\mathrm{N}$), the routines check whether the sub-tally exceeds $(4096 \mathrm{~m}-\mathrm{N})$. If not, the routine ends a segment right before the Vary statement, starting the next segment with a Vary loop. If the Vary loop in itself exceeds ($4096 \mathrm{~m}-\mathrm{N}$), the segmentation goes backward within the sentences of the Vary loop until the limit $(4096 \mathrm{~m}-\mathrm{N})$ is reached again. If there is no Vary
within the Vary, it forms a segment right there. If there are other Vary sentences nested within the large Vary loop, it goes further back beyond the next Vary statement and forms the segment so that the new segment would start with a Vary Statement.

Processing continues entering each item in turn into 0p File IIa using the length $(4096 \mathrm{~m}-\mathrm{N})$ as a limit for each segment. Whenever cross references to other statements (open jumps) are recognized, these call words are entered into 0 p File IIb. Thus, Op File IIb is a listing of jump cross reference call words for each segment. When sufficient statements for one segment have been processed and their call words entered into 0p File IIa and IIb (as needed), these files are written on tape ready for use by the allocator. The process is repeated, building 0 p File IIa and IIb for each segment using the second word of Directory 2 to indicate when the last statement in 0p File I has been processed.

Segmentation, Phase I

Segmentation, Phase I

Segmentation, Phase I

Segmentation, Phase II

RE ZA77000
RE B0632
RE BR537
RE ST653
RE GK1000
RE TN20
RE UP421
RE TH21
RE TI3274
RE DI3464
RE SD4156
RE FD40101
RE FA4260
RE FP7660
RE 0P45215
RE LI4160
RE VV2764
RE TE1300
RE PP1373
RE HG674
RE HH677
RE HB723
RE ML747
RE BB756
RE BC772
RE DD1000
RE BD1003
RE DA1012
RE DB1024
RE DC1035
RE DF1055
RE DG1060
RE DH1070
RE EEI 105
RE EAll13
RE EBII20
RE EC1131
RE ED1135
RE FFil45
RE FBl170
RE FC1210
RE MM1223
RE TTI241
RE MB1242
RE CC1260
RE WM1347
RE FTI352
RE HT1360
RE VC2472
RE BE76777
RE EF45213
RE DE5161
RE LF3274

Entrance Phase I

IA HG

0

1

IA HH
0 RP 15014 HH2
1 TP CC23 VV
2 RP 17777 HH4
3 TP CC23 40101
4 RA HH3 MBl
5 IJ MB HH2
6 RP 11702 HH1O
$7 \quad$ TP CC23 70076
10 TP CC25 VV
11 TP CC25 VV1
12 TV CC31 EB
13 TV CC32 EBl
14 TV CC33 MMII
15
16

21
MJ 0 HH
MJ 0 BQ6

CA HG3

TP CC23 VV $\}$

Come from HG

Clear core from 2764-7777

Clear drum from 40101-76277

Set $K=0 p$
Set $b=0 p$

Set addresses of first directory

Set address of List 1

TV CC51 BB12
MJ 0 HB
CA HH24

IA HB
$\left.\begin{array}{ll}0 & \text { TP CC TH3 } \\ 1 & \text { RJ TH2 TH }\end{array}\right\}$
$\left.\begin{array}{ll}2 & \text { TP TI24 A } \\ 3 & \text { EJ CC11 HB5 } \\ 4 & \text { MJ } 0 \text { BR12 }\end{array}\right\}$

Come from HH23

Read 1 block Uniservo 5

Identification of \triangle FILE $(\triangle \operatorname{TAPE} \triangle)$ Alarm

Come from HB3 or MB14, read next block

Identification of $(\Delta \Delta \Delta$ OPD $)$ FILE Δ l
Alarm
Read next block

Identification of (END \triangle OF) \triangle ENTRY resp. after change ident. of SUBRTN v changed by MB11 to TT, u changed by MB13
Not finished yet, go to 5

Fill constants 5-17 inclusive

```
Do setting for 5 or 7 tapes depend-
    ing MJI test
\(\mathrm{TN}=000\) (5 tapes)
\(\mathrm{TN}=030\) ( 7 tapes)
```

Set by HH15 to ML, after all Op Files
1 read in (A) switch

CA HB24

IA BB
(5) $\left.\begin{array}{ll}0 & \text { TP CC24 A } \\ 1 & \text { TJ VV2 DD } \\ 2 & \text { EJ VV2 DD }\end{array}\right\}$

3 TP VV2 VV3
$4 \quad$ SP VV3 17

5 TP A VV5
6 AT CC47 VV4
7 TU VV4 BB10
10 TP 30000 A
(B) 13 MJ 030000

Come from HB14

Is 0p File I longer than l block?
equal?
Smaller?
Store j (length of 0p File 1 item within block) in v of VV3 and u of VV5

TI $0+j \rightarrow V V 4$ in u
Set NI
Place first "CW + \# of addresses" of next 0p File item \rightarrow VV6

Is there another 0 p File I following?
Set by HH22 to BCO, later by MB3 to HBll. No.
Set by HH16 to EEO later by MB10 to EDO. Yes.

CA BB14

IA DA

0	TP CC61 TH3
1	RJ TH2 TH
2	TP CC15 Q
3	QS 5 DB
4	QT 5 A
5	LA A 71
6	TP A VV14
7	RA DB2 VV14
10	RS VV14 CC62
11	MJ 0 DC
	CA DA12

IA DB
$\left.\begin{array}{ll}0 & \text { RP } 20000 \text { DB2 } \\ 1 & \text { EJ LIl DB10 }\end{array}\right\}$
2 TP A LI
3 RA DB CC53
4 RA VV14 CC62
5 RA DB2 CC62
6 TJ CC60 DB10
$7 \quad$ MJ 0 MM14

10 MJ 030000
CA DB1I

Come from MM7, fixed libr. prelim. settings

Read 1 block of Tape 1 into buffer

Set RP for comparison with List 1

Set right addr. for first addition to List 1 and index List 1

Set addr. for next item \rightarrow List 1
Set index for \# of addresses in List 1

Come from DG5 with RJ. Fixed libr.
Set by DA3 Already in List 1 ?
Yes, do nothing.
Set by DA7 No.. place CW in List 1.
Adv. u in RP command.
Adv. index for List 1 elements.
Adv. addr. in List 1 for next CW.
Have we exceeded region?
Alarm (too many libr. rout. referenced)
$\left.\begin{array}{ll} & \text { IA DC } \\ 0 & \text { TN CC14 Q } \\ 1 & \text { QT TI A } \\ 2 & \text { EJ LI DH } \\ 3 & \text { TP CC14 Q } \\ 4 & \text { TU DC1 DC5 } \\ 5 & \text { QT 30000 A } \\ 6 & \text { LA A 17 } \\ 7 & \text { AT DC1 DC1 } \\ 10 & \text { TU DC1 DC11 } \\ 11 & \text { TP 30000 A } \\ 12 & \text { EJ CC12 DC14 } \\ 13 & \text { MJ 0 DC } \\ 14 & \text { RA DC2 CC53 } \\ 15 & \text { TU CC33 DC1 } \\ 16 & \text { IJ VV14 DC } \\ 17 & \text { MJ 0 MB2 } \\ & \text { CA DC20 }\end{array}\right\}$

Come from DAll.
Mask 77777770 to Q.
CW of Op File 1 fixed libr. $\longrightarrow u$ of A.
Equal CW in List 1? Yes, go to further handl.
No

Set next addr. for comparison.

Is next word "747474747474"?

No, go back in loop.
Yes, do settings for next CW in List 1.
Reset DC 1 to first CW in 0 p File 1.
Are we thru with List $1 ?$ No, go back in loop.
Yes, go to rout. for handl. normal libr. Tape, or changed by ML5 to TT, skip normal libr. Tape.

IA DD

0
$1 \quad \mathrm{TU}$ CC36 BC 4
2 MJ 0 BC2
CA DD3

IA DF
$0 \quad$ RJ EB7 EB
1 TP CC14 Q

2 RA DG4 CC53
3 TP CC13 Q

5 RJ DB10 DB
6 IJ VV15 DG2
7 MJ 0 DF
CA DG10

Come from BBl or BB2
Form words in 0p File 1 minus 170
Set RP command BC4

Come from DH14 or DG7, fixed libr.
Place CW and drum addr. \rightarrow Direct 1 and adv. counters. Restore mask in Q .

Back to handl. next List 1 word.

Come from DH13, fixed libr.
Set addr. of Op File CW in DG4
(after equality).
Adv. by 1.
Adv. by 1.

Put cross reference \rightarrow A.

Go to handl. cross reference.
Are all cross ref. handled?
No, back in loop.
Yes, go to handl. CW.

IA DH
$1 \quad \mathrm{TU} \mathrm{DC} 1 \mathrm{DH} 3$
2 TP CC14 Q
3 TP 30000 VV6
4 QT VV6 VV15
5 TV VV1 DH11
6 SP VV15 17
7

Set RP command.
Set addr. DH3.
Mask
Save CW + \# of lines in Op File item in VV6.
Save \# of lines in Op File item in VV15.
Place next drum addr. for Op File item in v of DHIl

Set addr. DH7

Place Op File item \rightarrow drum.

Adv. drum addr.
Subtr. 3 from \# of lines to get index for cross ref.
Ind. neg; skip hdl. cross ref., pos.go to hdl. cross ref.

CA DH15

IA EA
(C1) $0 \quad \mathrm{SP} \mathrm{VV} 17$
1 TU A SD
2 TV CC41 EE5
3 TV CC45 EE4
4 MJ 0 EB
CA EA5

Come from EE5
$K \longrightarrow$ 1st word Direct. II drum addr. of first statem. $C W$ in 0p File $I \rightarrow u$ of $S D$
(C) \rightarrow (C2)
(D) \rightarrow (D2
\rightarrow C2

IA ED
(B2) $\left.\begin{array}{ll}0 & \text { TP CC15 A } \\ 1 & \text { QS } 5 \mathrm{ED} 4\end{array}\right\}$
$\left.\begin{array}{ll}2 & \text { TU VV6 VV7 } \\ 3 & \text { TP VV7 A }\end{array}\right\}$
$\left.\begin{array}{ll}4 & \text { RP } 20000 \text { ED } \\ 5 & \text { EJ LI EE }\end{array}\right\}$

6 TV VV6 VV2

$7 \quad \mathrm{MJ} \quad 0 \mathrm{FCl} 1$

CA ED10

IA EE

(B1) $\left.\begin{array}{ll}0 & \text { TP CC16 Q } \\ 1 & \text { QT VV6 A } \\ 2 & \text { EJ CC17 EE5 } \\ 3 & \text { EJ CC20 EE5 }\end{array}\right\}$
(D) $4 \quad \mathrm{MJ} \mathrm{O} 30000$
(C) $5 \quad \mathrm{MJ} \mathrm{O} 30000$

CA EE6

Come from BBl3

Fill u of RP

$$
\mathrm{CW} \longrightarrow \mathrm{~A}
$$

Is CW in List $1 ?$
v of j^{*} th word \rightarrow temp l
$\rightarrow 10$

Come from BB13

Is first $C W$ in $0 p$ File item 26--- Or

Set by HH20 to EB, later by EA3 to EC and by EC2 to EB
Set by HH20 to EA, later by EA4 to EB

		IA FC	Come from FF5
(9)	0	SP VV2 17	
	1	TP A VV13	RP 3 (temp 1)
	2	TP CC15 Q	$\mathrm{TP} \quad \mathrm{TI}+\mathrm{j} \quad[$ drum addr. $]$
	3	QS VV13 FC6	
	4	TV VV1 FC7	
	5	TU VV4 FC7	
	6	RP 30000 FCl0	Bring 0p File I item to drum
	7	TP 3000030000	
	10	RA VV1 VV2	
(10)	11	RA VV2 VV3	Come from FC10 or FB5 or ED7
	12	MJ $0 \mathrm{HBl2}$	$\rightarrow 3$
		CA FCl3	

IA FF
(E2)
$\left.\begin{array}{rl}0 & \text { TP VV2 A } \\ 1 & \text { AT VV3 VV10 } \\ 2 & \text { TP CC24 A } \\ 3 & \text { TJ VV10 FF6 } \\ 4 & \text { EJ VV10 FF6 }\end{array}\right\}$

Come from EB7

Temp $1+\mathrm{j} \longrightarrow$ VV10

Temp $1+\mathrm{j} \geq 120 \longrightarrow$ FF6

No $\rightarrow 9$
Case file exceeds block

Library 0p File \rightarrow drum
$G+(120-j) \longrightarrow G$
Temp 1 - (120-j) \rightarrow temp 1

$$
\mathrm{j}=0
$$

		IA MM
	0	TV CC66 DAIl
(A1)	1	RJ TH2 TH
	2	TP TI A
	3	EJ CC7 MM5
	4	MJ 0 BR12
(4)	5	RJ TH2 TH
	6	TP TIl A
	7	EJ CC6 DA
	10	RP 30170 MM12
	11	TP TI 30000
	12	RA MM11 CC24
	13	TJ CC65 MM5
	14	TU HT WM
	15	MJ 0 WM
		CA MM16
		IA TT
(A2)		MJ 0 HG2
		CA TT1

Come from HB23
Entry for only variable library, change exit
Read next block on Tape 5

Is first word List 1 ?

Jump to alarm: LIST 1 LABEL INCORRECT.
Read next block of Tape 5
Is it END OF ENTRY?
Exit to DA handl. of fixed libr.

Set by HH14 to LI. Read whole List 1 to LI on drum

Does it exceed region?

Go to alarm: TOO MANY LIBR. ROUT. REFERENCED.

Come from MLl (with no List l) rsp HB13 with List 1

Exit out of Phase I, go to Phase II

	IA WM	
0	TP 30000 UP3	
1	RJ OP2 UP	
2	MJ 0 HGl	
	CA WM3	
	IA FT	
0	0 FT1 0	
1	0 FT2 4	Alarm, the problem is too long.
2	663330015254	
3	512546304701	
4	346501665151	
5	014651503222	
	CA FT6	
	IA HT	
0	0 HTl 0	Alarm, too many library routines referenced in the problem.
1	0 HT 211	
2	665151014724	
3	507301463425	
4	542454730154	
5	516766345030	
6	650154303130	
7	543050263027	
10	013450016633	
11	300152545125	
12	463047227777	
	CA HT13	

IA CC
$0 \quad 5000105 \mathrm{TI}$
1010132305001
2016624523001
3010101515201
$4 \quad 31 \quad 3446300104$
$5 \quad 305027015131$
$6 \quad 013050665473$
$7 \quad 463465660104$
$10 \quad 656725546650$
11013134463001
$12 \quad 747474747474$
130077770
$14 \quad 0 \quad 0 \quad 77777$
15077770
160770000
170270000
200260000
21002
22020
23000
$2400 \quad 170$
25000 P
265000102 TI
271050

30	1020
31	$00 \mathrm{FD1}$
32	00 FD2
33	0 TI LI
34	006
35	007
36	030170 ML
37	00 EE
40	00 EA
41	00 EB
42	00 FB
43	00 TT
44	00 ED
45	00 EC
46	00 FF
47	0 TI 0
50	01700
51	00 BC
52	0077
53	010
54	005
55	TP TI BE
56	TV VV EF
57	030
60	TP A DE
61	50101 TI

62001
63 RP 30000 DH12
$64 \quad 003$
65 TP TI DE
$66 \quad 00 \mathrm{MB} 2$ CA CC67

RE VV2764
RE MB1242
RE CF2627
RE LM2641
RE FA4260
RE ZA77000
RE BQ632
RE BR537
RE ST653
RE GK1000
RE TN20
RE OP421
RE TH21
RE TI3274
RE DI3464
RE SD4156
RE FD 40101
RE FP 7660
RE OP45215
RE LI4160
RE TE1300

Temporaries Phase I

Op File IIa

Segment table

Tape Handler
Tape Image
Drum Image
Directory II
Directory I
Op File IIb
Op File I
List I
Temporaries Phase II

RE BB1373	RE EZ2163
RE CC1520	RE LL2165
RE CD1536	RE FF2173
RE CE1567	RE FG2266
RE PT1600	RE GG2273
RE DD1602	RE GH2325
RE EE1617	RE GI2360
RE EF1657	RE GJ2404
RE EG1672	RE GL2407
RE EH1724	RE HH2414
RE EI1754	RE RC2464
RE EJ1766	RE FC2472
RE EK2001	RE WN2567
RE EL2004	RE BU2572
RE EM2017	RE EU2606
RE EN2031	RE FU2614
RE E02064	RE FB7660
RE EP2067	RE WS0
RE EQ2106	RE SE SN1012
RE ER2117	RE ES21564

31	TP FC20 TE7	Set γ to fixed 0p File IIb addr.
32	TP FC7 FP	Clear first word of Op File ITb area
33	RP 13400 BB35	
34	TP FC7 FA	Clear 0p File IIa area
35	TU BB42 BB37	Come from BB34 or EE34
36	TP FC45 A	Set u of repeat command BB41
37	SA 3000017	
40	TU A BB41 \quad]	
41	RP 30000 BB43	
42	TP 30000 DI $\}$	Transfer next statement 0p File item to drum
43	TP DI TE10	Record lst word of statement 0 p File in Temp 1
44	TV DII TE1	\# of lines in this statement rout.
45	TV DII TE4 $\}$	$\longrightarrow t \text { and } t_{2}$
46	TV TE5 BB47	a address to NI
47	TU TE10 30000	Statement call word $\longrightarrow 0$ p File IIa
50	TV TE5 BB52	α address to BB52
51	RA BB52 FC5	$a+1$
52	TV DII 30000	\# of lines in routine $\rightarrow \alpha+1$
53	RJ CE1 CE $\}$	
54	RA TE2 FC13	Advance α and K by 2 and check exceeded region
55	MJ 0 BB56	Free but needed
56	TP FC3 Q	
57	QT TE10 A	Is CW 26---?
60	EJ FC46 DD	

113	RA TE1 DIl	Add \# of lines in this routine to
114	TV TE6 BBI16	
115	RA BB116 FC5	Enter \# of lines in this routine in the address following the CW in 0 p
116	TP DII 30000	File IIa
117	SP DI 0	Is $77000>$ CW? If no, then 77
120	TJ FC3 BB6i	\rightarrow (4)go to set index for handl. cross ref.
121	RF CFIl CF	Go to handle 77__case
122	MJ 0 BB66	\rightarrow (6)(has no cross ref., therefore no index needed)
123	TP FC7 7	Come from BB13
124	MJ 0 BB20	Setting of 00007 in case no single valued variables
	CA BB125	

	IA CC	Come from BB64
0	SP TE11 17	
1	TU A CC2	Put CW at addr. given by TEll in NI
2	TP 30000 TE20	Save found CW in TE20
3	TP FC3 Q	Mask
4	QT TE20 A	
5	EJ FC53 CC14	27--?
6	EJ FC46 CC14	26---?
7	TP FC54 Q	4-m-?
10	QT TE20 A	
11	EJ FC55 HH	
12	RJ CD13 CD	None of the three cases for Op File IIa
13	MJ 0 BB64	26-m- or 27-m
14	RJ CD30 CD14	Case for 0p File ITb
15	MJ 0 BB64	
	CA CC16	

26 RJ CD26 CD27 Exit possible for Vary
27 RA TE11 FC5

30 MJ 030000 Exit of RJ
CA CD31

0p File IIb

	IA CE	Come from CF or CF2	
0	RA TE5 FC6		$\begin{aligned} & 0 \mathrm{p} \mathrm{~F} \mathrm{IIa} \\ & \mathrm{FA}=4260 \end{aligned}$
1 2	TJ FC64 30000 MJ 0 EW	Adv. next addr. for op file IIa by 2 and check whether region exceeded	$\begin{aligned} & \text { FC64 }=S M \\ &=7660 \\ & \text { Space } \text { for } \\ & 3400 \end{aligned}$
3	000	Free	0p F ITb
4	RA TE7 FC5	Come from CD25	$\mathrm{FP}=7660$
5	TJ FC65 30000	Adv. next addr. for $0 p$ File IIb by 1 and check whether region exceeded	$\begin{aligned} & \text { FC65 }=\mathrm{SN} \\ &=10000 \\ & \text { space for } \\ & 120 \end{aligned}$
6	MJ 0 EW		
7	000	Free	
	CA CE10		

	IA	PT		(patch)
0	TJ	TE1	EH10	Come from EH3
1	MJ	0	EQ2	
	CA	PT2		

IA DD
$\left.\begin{array}{ll}0 & \text { TP FC12 Q } \\ 1 & \text { QT TE10 A }\end{array}\right\}$

Come from BB57 after detected 26---CW

Mask out \# of lines

Is it 4 ? 0 r 5 ? Go NI

Store (after check) library rout. in Op File IIa

Store (after check) last (jump out) CW in 0p File IIb

Set switch
Chance for jumping once in Vary start (orig. set to jump, reset by EF14)

Exit to 6
Save CW of last statem in Vary loop Save addr. in Op F IIa of first statem CW in Vary loop Done once in Vary loop

	IA EE	Come from BB67
0	MJ 0 EEl	Switch for Vary set by DD7 to EF (Vary), restored by EE30
1	RA TE TE1	Come from EE or EFil form $\mathrm{T}+\mathrm{t} \longrightarrow \mathrm{T}$
2	SP TE 0	
3	TJ TE21 EE35	is $\mathrm{M}>\mathrm{T}$?
4	RS TE TE1	$\mathrm{T}-\mathrm{t} \rightarrow \mathrm{T}$
5	ZJ EE6 EG2	Is $T=0$? (i.e. are we at beginning of segment?)
6	TP TE21 A	
7	TJ TE1 EE14	Is $\mathrm{t}>\mathrm{M}$?
10	SP TE13 17	Case $t<M$ and next T would be $>M$ TEl3 was filled when bef. at EE3 we had gone to EE17
11	TU A EE12	Record latest statem. CW into first word Op File IIb (for IP command)
12	TP 30000 FB	
13	MJ 0 EI	Go and make segment with settings before
14	TP FC61 A	Come from EE7 are we in Vary loop?
15	EJ EE EK	Yes; go to handl. Vary case
16	MJ 0 EG5	No; go to alarm (statem. too big)
17	TV FC62 EE	Come from EE3, case M $>$ T Restore switch to Non-Vary case Reset RJ to beginning position for Vary loop
20	TV FC50 DD10	
21	TP TE5 TE13	Save values of this $\alpha \rightarrow$ Temp $4=\mathrm{TE} 13$ case, for the case we overshoot with TE12 $=$ next statem. second word in Op File IIa $\mathrm{T} 2+\mathrm{t} 2 \rightarrow \mathrm{~T} 2$
22	TP TE7 TE14	
23	TP TE12 FAl	
24	RA TE3 TE4	

	IA EF	Case we are inside Vary loop Come from EEO after having been in DD
0	RA TE24 TE1	$\mathrm{t}_{4}+\mathrm{t}=\mathrm{t}_{4}$
1	RA TE25 TE4	$\mathrm{t}_{5}+\mathrm{t}_{2}=\mathrm{t}_{5}$
2	TP FCll Q	Mask $0777770 \rightarrow Q$
3	QT TE31 TE26	
4	QT TE10 A	Are we at end of Vary loop?
5	EJ TE26 EF7	Yes
6	MJ 0 EE25 J	No (skip saving α and γ since in Vary only first import.)
7	TP TE24 TE1	$\mathrm{t}_{4} \rightarrow \mathrm{t}$
10	TP TE25 TE4	$\mathrm{t}_{5} \rightarrow \mathrm{t}_{2}$
11 12	$\left.\begin{array}{lll}\text { RP } & 10002 \text { EE1 } \\ \text { TP } & \text { FC7 TE24 }\end{array}\right\}$	Clear t_{4} and t_{5}

$\left.\begin{array}{ll}30 & \text { RA TE5 FC6 } \\ 31 & \text { MJ } 0 \text { EG22 }\end{array}\right\}$

Patch, come from EM7 adv. α by 2
(Patch for replaced instruct. EG21)
CA EG32

IA EH

2 TP TE21 A

RS TE 30000

TU A EH20

17 TP FC3 Q
RA TE30 FC5

RS TE1 TE27

TJ TE1 EHIO
SP TE5 17

TU A EH6

TP 30000 FP

MJ 0 ET2

RA TE1 TE27

MJ 0 EG12

TV TE5 EH14

RA EH14 FC5
$\left.\begin{array}{l}\text { SP TE5 } 17 \\ \text { TU A EH20 } \\ \text { TP FC3 Q } \\ \text { QT } 30000 \text { A } \\ \text { EJ FC46 EQ }\end{array}\right\}$

EJ FC53 EH24

Come from EE15 or EG26. Case $t>M$ and we are not at beg. of segm.

Set $t_{3}=1$. Index for Vary within Vary

Come from EK2 or EH $t-t_{1}=t$

Is $t>M$?

Case $\mathrm{t}<\mathrm{M}$
Record statem. CW into first CW of Op File ITb (for IP command.)

Go to D, exit to write on tape
$t+t_{1}=t$ restore t since it is still too big and we have to make beginning segment bigger
Go to (34)
Come from EG20 or EH27 We finally made
$T-(\alpha+1) \rightarrow T . \quad$ first part too big and have to go back to last statement and form segm. resp. back to last Vary within Vary
$C W$ at $\alpha=26-m ?$

Vary beginning, OK, go and form segment

CW at $\alpha=27-\infty-$? Statem. CW, go to check whether Vary inside Vary

23	MJ 0 Em3	Other CW (for inst. libr. rout.) go farther back and try again
24	TP TE30 A	
25	ZJ ES EQ1	$\begin{aligned} \text { Is } t_{3}=0 ? & \neq 0 \text { Vary in Vary } \\ & =0 \text { not so } \end{aligned}$
26	RS TE5 FC6	Reduce α by 2
27	$\text { MJ } 0 \text { EV }$	Jump to try with reduced length after hdl. 26,27 case that go out
	CA EH30	
	IA EI	Come from EEl3 or EWI
0	RJ ET3 GIl3	Set addr. BB42
1	MJ 0 EI6	Jump to restoring Vary settings
2	TP TE5 TE13	Come from EH7; save a
3	RJ ET3 ET	Set addr BB42
4	TP TE12 FAl	Save 77 count
5	TP TE7 TE14	Save γ
6	TP FC7 TE30	
7	TV FC62 EE	Restore Vary settings
10	TV FC50 DD10	
11	MJ 0 FF	Jump to write segment on tape
	CA EII2	

	IA EJ	Come from EG4 resetting to Vary in beginning of segm.
0	TP FCIT TE5	
1	TP TE7 TE32	Save TE7= γ in TE32 and set counters back to segment start
2	TP FC20 TE7	
3	TP FC7 TE12	
4	MJ 0 EJ11	Jump to clearing TE22, t_{1}, t_{3} and exit
5	TP TE13 TE5	Come from EK
6	TP TE7 TE32	Save TE7 $=\gamma$ in TE32 and set counters back to Vary start
7	TP TE14 TE7	
10	TP FA1 TE12	
11	TP FC7 TE22	Clear TE22
12	MJ 0 EG7	Jump to clearing t_{1} and t_{3} and to exit from RJ
	CA EJI3	
	IA EK	Come from EEl5 resetting to Vary not in beginning of segment.
0	RJ EGIl EJ5	Do resetting of counters
1	TP TE40 TE22	Reset TE22
2	MJ 0 EHl	
	CA EK3	

	IA EL	Come from LLl or LL3
0	TP FC3 Q	
1	SP TE5 17	Is CW at hand a 77-m?
2	TU A EL3	
3	QT 30000 A	
4	EJ FC3 EL6	
5	MJ 030000	Not 77-m- skip changing TE12 and TE22 (set to ER or to ELl2) by EM by EM3
6	000	Adv. resp. reduce TE22
7	TV TE5 ELII	Adv. resp. reduce TEl2 by \# of instructions
10	RA ELIl FC5	
11	000	Used : $:$!
12	000	Jump back to rout.
	CA ELI3	

	IA EM	Come from EXI
0	TV FC74 EL5	Set "ER" in v of EL5
1	RP 30002 LL	Entrance for going forward
2	TP EM6 ELll	
3	TV ER2 EL5	Come from EH23 Set "EL12" in v of EL5
4	RP 30002 LL2	Entrance for going backward
5	TP Emio ELll	
6	RA TE12 30000 \}	
7	MJ 0 EG30	Const. for EL1l, ELl2 in forward case
10	$\text { RS TE12 } 30000 \text { ? }$	Const. for ELll, ELI2 in backward
11	MJ 0 EH26	case
	CA Emi2	
	IA LL	
0	TP LL4 EL6	Come from EMl
1	MJ 0 EL	Forward
2	TP LL5 EL6	Come from EM4
3	MJ 0 EL	Backward
4	RJ LM14 LM	Const. for forward
5	RJ LM20 LM15	Const. for backward
	CA LL6	

	IA LM	Come from EL6
0	TP FC5 A	Entrance for forward
1	SA TE5 17	
2	TU A LM3	Is \# of inst. > 17776?
3	TP 30000 TE34	
4	SP MB1 1	
5	TJ TE34 LM11	
6	SP MBI 0	
7	TJ TE34 LM12 $\}$	Is \# of inst. > 7777?
10	MJ 0 LM13	
11	RA TE22 FC5	
12	RA TE22 FC5	Adv. resp. reduce TE22
13	RA TE22 FC5 J	
14	MJ 030000	Exit, used in RJ from EL6 for forward case
15	RP 20003 LM17	Entrance for backward
16	RA LM11 BB76	Change RA to RS in LMIl-13
17	RJ LM14 LM	Handle TE22 for $77 \ldots$ when going backward
20	RP 2000330000	
21	RS LM11 BB76 $\}$	Exit, used in RJ from EL6 for backward case
	CA LM22	

	IA EN
0	TP TE16 A
1	EJ TE5 EH4
2	SP TE16 17
3	TU A EN5
4	TP BB73 EN6
5	SP 300000
6	000
7	EJ FDl EN10
10	SN Q 17
11	SA EN6 0
12	SA EN7 0
13	TU A EN14
14	SP 3000017
15	RJ EN15 EN16
16	TU A EN24
17	TU EN24 EN21
20	TP FC45 A
21	SA 3000017
22	TU A EN23
23	RP 30000 EN25
24	TP 30000 DI

Come from EQ10
Are we finished with all CW's in Op File IIa?

Exit

Search Dir. I for CW given at new α
Set by EN3
Set by EN4. RP ... BB75 exit to alarm

Set u addr. in EN14

Set by EN13
Set u of EN24. RJ for use in addr. ETl

Set u of EN23
Set by EN17

Set by EN22
Transfer Op File I item to drum image Set by EN16

25	TP FC3 Q	
26	QT DI A	Is CW 26---?
27	EJ FC46 E0	Go to handle IIb 26---
30	EJ FC53 EP	Is CW 27---? Go to handle IIb 27---
31	RA TE16 FC6	Come from EN30 or EGl or EP2. Adv. new α addr. by 2
32	MJ 0 EN	Go back in loop
	CA EN33	
	IA E0	Come from EN27 CW 26--
0	RA TE7 FC5	Adv. Op File IIb address
1	TJ FC65 EG	Did we exceed region? No, go via patch EG-EGl to EN31
2	MJ 0 EY	Yes; jump to make segment
	CA E03	

IA EQ
0 RS TE30 FC5

1 RJ EQ1 EQ2
$\left.\begin{array}{ll}2 & \text { TP FC20 A } \\ 3 & \text { EJ TE32 EH4 }\end{array}\right\}$
$4 \quad$ TJ TE7 EQ7
$5 \quad$ TP FC17 TE16
6 MJ 0 EQ10
7 TP TE13 TE16
10 MJ 0 EN
CA EQ11
IA ER

0 EJ FC46 ER3
1
2

3
4
MJ 0 EL7
CA ER5
IA ES
$\left.\begin{array}{ll}0 & \text { TV TE5 ES2 } \\ 1 & \text { RA ES2 FC5 } \\ 2 & \text { RS TE3 } 30000 \\ 3 & \text { RJ ES3 ES4 } \\ 4 & \text { MJ } 0 \text { EH26 }\end{array}\right\}$

CA ES5

Come from EH21
Subtract indicator for Vary in Vary by 1

Inserted for RJ use by EY
Has anything been in 0 p File
IIb before we went back?
No, skip the part EQ (TE32 set by EJ1 or EJ6)

Is $\gamma>\operatorname{FC} 20$? ($0 \quad 0 \quad \mathrm{FP} 1$)
Case T was $=0$
Set new α in either case to starting
Case T was $\neq 0\} \begin{aligned} & \text { case } \\ & \text { addr. }\end{aligned}$
Go to handle case 0p File IIb

Come from EL5. Handle TE3 for going forward

Is CW 26---?
Is CW 27---?
Skip changing TE3 = T2 (v used as constant also; by EM3)

Change in ELll the TE12 \rightarrow TE3
Jump to change TE3 (but not TE22!)

Come from EH25

Handle TE3 for going backward Inserted for use in RJ by EV

IA ET
$\left.\begin{array}{ll}0 & \text { SP TE13 17 } \\ 1 & \text { RJ EN15 EN3 } \\ 2 & \text { TU A BB42 } \\ 3 & \text { MJ } 0 \begin{array}{ll}30000\end{array}\end{array}\right\}$

CA ET4
IA EV
$\left.\begin{array}{ll}0 & \text { SP TE5 17 } \\ 1 & \text { TU A EV3 } \\ 2 & \text { TP FC3 Q } \\ 3 & \text { QT 30000 A } \\ 4 & \text { EJ FC46 EV11 }\end{array}\right\}$
5 EJ FC53 EV7
6 MJ 0 EHL2
$\left.\begin{array}{ll}7 & \text { TP TE30 A } \\ 10 & \text { ZJ EV6 EV11 } \\ 11 & \text { RJ ES3 ES } \\ 12 & \text { MJ 0 EV6 }\end{array}\right\}$

CA EV13
IA EW
$\left.\begin{array}{ll}0 & \text { TP FC7 A } \\ 1 & \text { TJ TE EE10 }\end{array}\right\}$

2
MJ 0 EG2

CA EW3

IA EX
$\left.\begin{array}{ll}0 & \text { TP TE5 A } \\ 1 & \text { TJ FC64 EM }\end{array}\right\}$

0 RS TE5 FC6
1 RJ EQI EHI2
$\left.\begin{array}{ll}2 & \text { TP TE5 A } \\ 3 & \text { TJ TE16 EZ }\end{array}\right\}$
4 MJ 0 EYl
CA EY5
IA EZ
$0 \quad$ TP FC20 TE7

1
MJ 0 EQ5
CA EZ2

Come from EG21

Is 0 p File IIa exceeded?
No
Yes; go backward where segm. can be made

Come from E02 (after Op File IIb region exceeded)

Reduce a by 2
Go back to next possible break off point

Is α farther back than TE16?
Yes; break off
No; go back in loop

Come from EY3
Do setting for final Op File IIb (after it was exceeded) and jump to handling Op File IIb

SP TI2 0 DV FC21 TE16 TP A TE17

TP RC2 FF70
TU FC26 FF37
IJ TE16 FF36
MJ 0 FF43
RP 30170 FF40
TP 30000 TI
RJ TH2 TH
RA FF37 FC22
MJ 0 FF34
SP TE17 0
ZJ FF45 FF63 SP A 17

AT RC4 FF50
TU FF37 FF51
RP 30000 FF52
TP 30000 TI
SP TE17 17
SS FC22 0
SN A 0
AT RC5 FF57
RA FF60 TE17
RP 30000 FF61
TP FC35 TI

Set index how many more

Remainder saved for \# of words left over

Set beginning addr. FA2 (0p File IIa) in FF37 Are all complete blocks written?

Yes; go to handle last fractional block
Come from FF34
[FA2] in beginning set by FF33
Write next block
Adv. addr. Op File II
Go back in loop for next block
Come from FF35 after all whole blocks written. Are there words for partial block?

Set last words in partial block

Fill rest of block with Z's

IA GG
$\left.\begin{array}{ll}0 & \text { TP FC33 TI } \\ 1 & \text { TP FC34 TI1 } \\ 2 & \text { SP TE14 } 0 \\ 3 & \text { SS FC20 0 } \\ 4 & \text { AT FC5 TI2 } \\ 5 & \text { RP 10165 GG7 } \\ 6 & \text { TP FC35 TI3 }\end{array}\right\}$

7 RJ TH2 TH
10 SP TI2 0
11 DV FC21 TE16
12 TP A TE17
13 TU FC4 FF37
14 TP RC3 FF70
15 MJ 0 FF34
16 TP FCll Q
17 QT BB42 A
20 EJ SD1 GI22

21 MJ 0 GH

22 TP FC35 TI
23 TP FC35 TII
24

Come from switch FF70

Put TWO Δ B Δ SEGMT Δ in $T I$ and $T I$

Put \# of entries in TT2

Fill rest of first block with Z's

Write one block

Set counter for \# of biocks

Save remainder for addr. to fill with $\mathrm{Z}^{2} \mathrm{~s}$
Restore first addr. of 0 p File IIb in transfer command
Set switch E to E2 (MJ 0 GG16)
Jump to write rest of blocks
Come from switch FF70. Mask 077777
$0 \rightarrow Q$
Have all statem. CW's been processed?
Yes; go to handle segm. table for last segm. and finish up at GG22

Go back to beginning for next segm. after having handled segm. table

Write sentinel block
\(\left.\begin{array}{ll}25 \& RJ TH2 TH

26 \& RJ FG2 FG3

27 \& RJ TH2 TH

30 \& TP FC42 TH3\end{array}\right\}\)\begin{tabular}{l}
Write second sentinel block

31

MJ 0 BB2

CA GG32

Transfer parameter to read in

Phase III
\end{tabular}

	IA GH	Come from GG21. Form segment table
0	RJ GH GIl5	```Jump (only once) to set ST and do presettings```
1	SP TE22	
2	AT TE37 A	$A+2 x \text { \# of } 77 \text { CW's in Op File IIa }$
3	DV FC21 TE34	$\text { or } \frac{A+B}{170}$
4	ZJ GH5 GH6	Is there remainder? Must be done
5	RA TE34 FC5	$\left.\begin{array}{l}\text { Add } 1 \text { for remainder } \\ \text { of } \frac{A}{}+B\end{array}\right\}$separate be- cause of ZJ before
6	RA TE34 FC5	Of $\frac{170}{}$ before:
		Add 1 for sentinel block
7	SP TE22 1	
10	DV FC21 TE26	$\underline{2} \mathrm{\#}$ - of 77 CW 's in Op File IIa
		170
11	ZJ GH12 GH13	or $\frac{B}{170}$
12	RA TE26 FC5	Add 1 for remainder of $\frac{B}{170}$
13	RA TE34 TE26	Add both terms $=\#$ of blocks \rightarrow TE34
14	TP TE33 Q	Mask (event. shifted) $\rightarrow 0$
15	SP TE34 33	
16	QS A ST2	Mask the \# of blocks into segm. table
17	RA GH16 FC5	Adv. last instr. by 1 in v
20	IJ TE35 GH32	Go to Exit (handl. next segm) Ind 178 down?
21	TP FC73 TE35	Res. ind.
22	TV GI21 GH16	Set GH16 to STl in v
23	LQ TE33 33	Shift mask
24	RS GH15 FC72	Reduce shift count by 11
25	IJ TE36 GH32	Go to Exit Ind 3_{8} down?
26	TP GH32 A	Was this last segm.?
27	EJ FC71 GH32	Yes \rightarrow GH32

30	TU EU WN	No
3 I	MJ 0 WN	
32	MJ 0 BB23 alarm MORE THAN 63 SEGMENTS	

	IA GI	Come from BB17 (only once)
0	TP 12 A	Indicator for READ, LIST, BOTH in $\mathrm{u} \rightarrow \mathrm{A}$
1	EJ FC7 GI5	Zero?
2	EJ FC51 GI10	One? only LIST
3	EJ FCl3 GIll	Two? only READ
4	SP FC 0	Three assumed
5	AT FC67 ST	Add space for Tape Hdl + Contr $+1+$ Term buffer \longrightarrow ST
6	TV A 12	Set v part of 12
7	MJ 0 GL	After ST set, do preliminary settings
10	RS GI11 FC51	Case only LIST
11	SP FC2 0	
12	MJ 0 GI5	Case only READ
13	TP TE40 TE22	Come from EI set \# of 77 CW 's for forming segm.
14	MJ 0 ET	Go to setting BB42 (RJ exit of ET3 is already set to EII)
15	TP FC70 TE33	Come from GH (only once) put mask in TE33
16	TP FC73 TE35	Set ind. for first time 17 (20 rows)
17	TP FC25 TE36	Set ind. 3 (4 words per row)
20	RP $10020 \mathrm{GH1}$	
21	TP FC7 ST1	Clear rest of segm. table and jump to GH
22	RJ GH32 GH	Come from GG20
23	MJ 0 GG22	Case we have last segment
	CA GI24	

	IA GJ		Come from FF
0	TP ST A		
1	AT FC5 TE41	j	Set once for whole program N in TE41 to $\mathrm{FN}+1$ for $\mathrm{FN}+\mathrm{l}+\mathrm{T}_{2}$ (later formed)
2	MJ 030000		Used only once in RJ from FF
	CA GJ3		
	IA GL		Come from GI7
0	SP 725		
1	LT 0 A		
2	ST ST TE21	\}	Set TE21 segment length
3	RS TE21 FC6		
4	MJ 0 BBll	J	
	CA GL5		

IA HH
$\left.\begin{array}{ll}0 & \text { TU TE2 HH3 } \\ 1 & \text { RA HH3 FC10 } \\ 2 & \text { SP TE20 0 } \\ 3 & \text { RP 30000 HH7 } \\ 4 & \text { EJ FA2 HH5 } \\ 5 & \text { RA TE11 FC5 } \\ 6 & \text { MJ } 0 \text { BB64 }\end{array}\right\}$
$\left.\begin{array}{ll}7 & \text { TU BB73 HH10 } \\ 10 & \text { RP } 30000 \mathrm{HH} 12 \\ 11 & \text { EJ FDl HH14 } \\ 12 & \text { TU FU WN } \\ 13 & \text { MJ } 0 \text { WN }\end{array}\right\}$

14 SN Q 1
15 SA HH10 0
16 SA HH11 0
17 TU A HH2O
20 TP 30000 TE26
21 TV TE5 HH22
22 TP TE20 30000
23 RJ CEl CE

24 RA TE2 FC13

Come from CCll Case CW 4-m

Is this 4-m- CW already in Op File IIa?
No
Yes
Adv. to next cross ref.
See whether all handled?

Search
Found
Not found
Go to alarm
search 4--w in Directory I and store drum address (0 p FileI)
Found, put drum address (where CW placed in Op File IIa) \rightarrow TE26

Place CW in Op File IIa
Adv. by 2 in v and check exceeded region

Adv. by 2 in u

	IA RC			Constants for swi					
0	MJ 0 FFl								
1	MJ 0 FFi2								
2	MJ 0 GG								
3	MJ 0 GG16								
4	RP 30000 FF52								
5	RP 10000 FF60								
	CA RC6								
	IA WN			Alarm routine					
0	TP 30000 UP3								
1	RJ UP2 UP								
2	MJ 0 BBl								
	CA WN3								
	IA BU								
0	0 BUl 0			Alarm: ONE STATE REFERENCES IS TOO					
1	0 BU2 12								
2	51	50300	16566	0	N	E	Δ	S	T
3	24	66304	73050	A	T	E	M	E	N
4	66	01713	46633	T	Δ	W	I	T	H
5	01	24464	60154	Δ	A	L	L	Δ	R
6	30	31305	43050	E	F	E	R	E	N
7	26	30650	13465	C	E	S	Δ	I	S
10	01	66515	10146	Δ	T	0	0	Δ	L
11	24	54323	00131	A	R	G	E	Δ	F
12	51	54016	53032	0	R	Δ	S	E	G
13	47	30506	62277	M	E	N	T	.	
	CA	BU14							

IA EU

0	0 EU1	0	
1	0 EU2	4	
2	47	51543	00166
3	33	24500	11106
4	01	65303	24730
5	50	66652	27777
	CA	EU6	
	IA	FU	

$0 \quad 0$ FUl 0
$1 \quad 0$ FU2 11
$\begin{array}{llll}2 & 52 & 65306 & 72751\end{array}$
$3 \quad 01 \quad 5152305424$
$4 \quad 66 \quad 34515 \quad 00134$
$5 \quad 65 \quad 01543 \quad 03130$
$\begin{array}{llll}6 & 54 & 30502 & 63027\end{array}$
$\begin{array}{llll}7 & 01 & 25676 & 60127\end{array}$
$10 \quad 51 \quad 30650 \quad 15051$
$11 \quad 66 \quad 01245 \quad 25230$
$\begin{array}{llll}12 & 24 & 54227 & 77777\end{array}$
CA FUl3

Alarm: MORE THAN 63 SEGMENTS.

Alarm: PSEUDO OPERATION IS REFERENCED BUT DOES NOT APPEAR.

	IA FC	Constants
0	00344	$5+103_{10}+120_{10}$ for both
1	00175	$5+120_{10}$ for list alone
2	00151	$2+103_{10}$ for read alone
3	0770000	
4	0 FP 0	
5	001	
6	002	
7	000	
10	0200000	
11	0777770	
12	0077777	
13	020	
14	00 DI	
15	00 DII	
16	0 FDI 0	
17	00 FA 2	
20	00 FPl	
21	00170	
22	01700	
23 24	$\left.\begin{array}{l} \text { RJ DAll DA } \\ \text { MJ 0 TT } \end{array}\right\}$	Used for patch of Phase I, MLl
25	003	
26	0 FA2 0	
27	313446300101	
30	667151010101	

31	667151012401
32	653032476601
33	667151012501
34	653032476601
35	747474747474
36	3050270 15131
37	013050665473
40	7100103 TI
41	1030
42	5011100
43	0022
44	0024
45	0030000
46	0260000
47	00 DI2
50	00 DD 12
51	010
52	00 BB46
53	0270000
54	0700000
55	0400000
56	0230000
57	004
60	00 TE 31
61	MJ 0 EF
62	00 EE 1

63	00 So
64	00 SM
65	00 SN
66	005
67	00 GK
70	777000000000
71	MJ 0 GI23
72	0011
73	0017
74	0 TE3 ER
	CA FC75

Segment Phase II
\# of addresses (generated rout.) in segm. for $22,24,25,26,27,40$, 50, 77
t

T2
t2
a
β
γ
TEMP 1

TEMP 2
TEMP 3

TEMP 4
TEMP 5

INDEX 1
INDEX 2

R
WS

\# of addresses per sentence; set with TV in BB31
\# of entries in 0 p File IIa
\# of addr. for 26, 27 only; adv. in EE24 T2 $+\mathrm{t}_{2} \rightarrow \mathrm{~T}_{2}$
\# of addr. per sentence; set with TV together with TEl

Present statem. CW addr. of Op File IIa

Next statem. CW addr. of Op File IIa
Next statem. CW addr. of Op File ITb
Statem. CW (u) + \# of words in item (v) set with TP

Addr. of cross ref. CW; set by ...
\# of 77--- data words in this segm.; adv. by 1 with RA

Op File IIa addr. for this statem. CW
0 p File IIb addr. for last cross ref. of previous statem. CW

Index for \# of cross ref; set with TV \# of full blocks to be written and used by EN, EQ for storage
\# words in partial block
Holds CW to be placed, whose addr. is in TEIl

Segm. length for problem; fixed for whole problem

2. ALLOCATOR

2. Allocator

a. ALIOCATION Setup

The setup routine for the Allocator reads the Dimension List from magnetic tape and modifies it so that each array is represented by two words instead of the variable (up to six) word items of the original list. The modified Dimension List is then stored on the drum for use by the Allocator The Dimension List is modified at this time because the Allocator and later the Processor make extensive use of drum storage. Between these phases, the Initialization Generator must have more Dimension information than is availm able in the modified Dimension List so the original Dimension List is read again from tape and stored on drum preceding the operation of that phase.

After modifying the Dimension List, the setup routine adjusts the Dimension List counter (at location 00006) to reflect the length of the modified list. The counter for the original list is saved at location 00015. The tape on Uniservo 5 is then moved forward past the Constant Pool and Symbol List so that it is positioned properly for the Allocator to write Op File III, Preface, and Termination.

The seven blocks of the Allocator are then read from the UNICODE Master Tape and control is transferred into the Phase.

Allocation Set-Up Flow Chart

RE	DC22	Buffer load (in blocks)
RE	TH21	Tape handler
RE	DD40101	Modified Dimension List
RE	BR537	Compiler Inconsistency Routine
RE	217230	
RE	ZZ7270	
RE	ZR7354	
RE	ZX7362	
RE	ZT7403	(1) Temporary (holds number of blocks of Dimension List)
RE	WS674	Working area
RE	ZY2705	Buffer area (= WS 2011)
RE	LC674	Storage and execution address of Allocator
RE	MA700	$7=\#$ blocks Allocation phase?
RE	LA7064	$\mathrm{LA}=$ last word of buffer area.

Allocation Setup

		IA	ZI			
	0	TP	ZX	Q	7	
	1	QT	14	A		Is there a Dimension List?
	2	ZJ	Z I3	ZI24	J	
	3	LT	11	A		
	4	ST	ZXI	ZT	J	\# blocks Dimension List \rightarrow temp.
	5	TP	ZX2	TH3		
	6	RJ	TH2	TH	$\}$	Read one block and check label for DIMENS.
	7	TP	ZY	A	\}	
	10	EJ	ZX3	ZI12	J	
	11	MJ	0	BR12		Tape \#5 positioned incorrectly.
	12	SP	ZT	0	$\}$	Will Dimension List exceed buffer area?
	13	TJ	2X4	ZI16	J	
	14	RS	ZT	ZX4		Reduce block count by buffer length.
	15	TU	ZI13	ZR		Set to read full buffer of Dimension List.
(1)	16	RJ	ZZ63	ZZ		To build modified Dimension List.
	17	TP	ZX2	TH3	7	
	20	RJ	TH2	TH		
	21	TP	ZY	A	\}	Read one block and check label for E N D $\triangle 0$ F
	22	EJ	2X17	ZI25	J	
	23	MJ	0	BR12		Tape \#5 positioned incorrectly
(3)	24	TP	6	15		Large Dimension List counter \rightarrow 15.
(2)	25	SP	14	0		\# blocks in Constant Pool
	26	LT	3	A		

	IA	ZX		
0	07	70000	0	
1	0	0	2	
2	50	105	ZY	
3	27	34473	05065	D I M E N S
4	0	0	DC	
5	50	5	ZY	Read Parameter (except \# blocks.)
6	0	40000	0	
7	0	0	1	
10	0	0	5	
11	0	1	0	
12	QT	LA1	A	LA = last word of buffer area
13	0	0	77	
14	0	7777	0	
15	30	5	0	
16	50	MA1	LC	
17	30	50270	15131	E N D \triangle O F
20	0	ZY	0	
	CA	ZX21		

b. ALLOCATION PHASE

The Allocation Phase serves two purposes:
I) Builds 0p File III for each segment and writes on tape.

0p File III (2 word items)

2) Generates the necessary instructions to manipulate data between segments during the running program. These instructions are called:
a) The Preface, which transfers 77 xxx type data to their storage locations in H.S.S.
b) The Termination, which transfers updated 77xxx type data to their designated locations on MD.

The Preface and Termination instructions operate in H.S.S. during the interlude between 2 segments. After generation of these instructions for each segment, the Preface and Termination are written on magnetic tape.

Input: The Allocator receives as input (from Segmentation):

1) 0 p File II - call words of routines and data in segment.
2) 0 p File IIb - call words of end points of all one way jumps within the segment.

These files are on Uniservo tape by segment.
3) Dimension List with MD storage addresses for 77xxx data.

Output: The output of Allocation consists of:

1) Op File III by segments on tape.
2) Preface and Termination for each segment on drum.

Procedure: Read 0p Files IIa and IIb into H.S.S. one segment at a time. Then compare each call word in 0 p File IIb against the entire 0p File IIa for this segment to determine if the end of the jumps (which are actually the words in IIb) appear in the same segment. If equality is not met, the call word from IIb is entered in IIa, thus increasing the length of 0p File IIa. Each new entry into $I I a$ at this time is accompanied with the flag 14 in the operation position of the next word. Thus, each new entry in IIa is an entry of 2 words. Each time an entry is made in 0 p File IIa the call word from IIb is also placed in another list, called Directory 4, which will be used only during this phase. Each entry in Directory 4 is also a 2 word entry, consisting of call word in the first word and the segment number in the second word. An item in Directory 4 at this time looks like this:

	Op	u			v
1st word	00		Call		00000
2nd word	00	0	Segment number	00	00000

The above procedure is followed until all the call words in 0 p File IIb have been checked against Op File IIa for one segment.

Each call word in 0p File IIa is then checked to determine the type of routine or data to which it refers.

The determination of the type of routines used in the segment, along with the number of lines in the running routine (available in 0p File IIa), enables us at this time to assign actual operating addresses according to the High Speed Storage layout:

| CONTROL SECTION (fixed length all problems; includes Tape Handler) |
| :--- | :--- |
| SBUFFER AREAS for Input-Output Instructions (as required)
 STATEMENTS
 SUBROUTINES
 1) Library Routines
 2) Pseudo 0perations
 3) Defining Equations
 DATA AREA 1
 Multiple valued (77-m-type)
 DATA AREA 2
 Single-valued variables (fixed length for all segments)
 CONSTANT POOL
 (fixed length for all segments) |

Control being of fixed length and buffer area requirements for this problem being known, we can locate \underline{S} exactly. During Segmentation, a separate tally of statement lengths permits determination of \underline{R} exactly. D is determined by the accumulated tally of total statement and subroutine lengths plus two. (The plus two accounts for the locations required by the Processor to provide continuity between sequential segments.) With these starting points
$\underline{S}, \underline{R}$, and \underline{D}, assignment of memory locations in a forward direction can be made according to the category determined by the call word.

The number of lines of data, or the number of lines in the routine, is also used to fill in the u portion of the items in Op File IIa. At this time, 0 p File IIa is beginning to resemble the new 0 p File III which is actually an expanded and modified 0p File IIa.

After completion of the foregoing process for each segment, that segment's Op File III (Formerly 0p File $I I_{a}$) is written on the drum, and Directory 3 is constructed, containing one word for each segment, in the following format:

$$
\begin{array}{|c|c|c}
0 p & u & v \\
00 & \begin{array}{l}
\text { MD location of 1st } \\
\text { Word of 0p File III }
\end{array} & \begin{array}{l}
\text { \# of words in 0p File } \\
\text { III for this segment }
\end{array}
\end{array}
$$

Thus, the first word in Directory 3 refers to the first segment, the second word, the second segment, etc.

When 0 p File III for the last segment has been written on the drum, 0 p File III is in its final form for all items except those referring to jumps to other segments. But Directory 4 is actually a combined listing of these call words for all segments. So, we use the items of Directory 4 to search against 0p File III (by segment) and fill in Directory 4 with number of the segment in which the call word is found, and the operating address of the routine during execution. This continues until all the entries in Directory 4 have been processed. A complete Directory 4 item is of the form:

0p		u			v
1st word	00		Call	rd	00000
2nd word	14	0	Segment from	$\begin{aligned} & \text { Segment } \\ & \text { to } \end{aligned}$	H.S.S. running address in segment to

The second word of the above item in Directory 4 is filled into 0p File III (one segment at a time) in its appropriate place to complete Op File III. While each segment is in H.S.S. at this time, the instructions for data manipulation are generated and stored on the drum.

The instructions for data manipulation are prepared from 0p File III. Each multiple word data group has been assigned an area on MD and the starting address of the area for each variable is available in the Dimension List. Using Op File III and Dimension List information for each 77xxx type call word, the Repeated TP *s are generated. When this listing is complete, the W ${ }^{*}$ S of Repeat orders are determined and recorded. (Reverse direction for Preface; forward for Termination.) The $W^{*} s$ for the Preface are fixed H.S.S. operating locations (not relative) since they are generated at a point during compilation when the exact starting address of Data Area 1 (77 - - - type) is known. Since the length of the Preface is known when Termination w^{2} s are written, they too are assigned fixed addresses in the 120 -word buffer area within the Control Section.

The completed 0p File III and the Preface and Termination for each segment are stored on magnetic tape and will be used during the Processing Phase.

This phase is complete when 0p File III, Preface, and Termination for all segments of the problem have been written on tape.

Allocation Phase Flow Chart (cont.)

Box 1

Set up address for test word for use in Box 2

Transfer code word to GTH to read one block to IIb area

Allocation Phase Flow Chart (cont.)

Allocation Flow Chart (Cont.)

Allocation Flow Chart (Cont.)

Allocation Flow Chart (cont.)

Allocation Flow Chart (Cont.)

Allocation Flow Chart (Cont.)

Allocation Flow Charts (Cont)

RE RE	$\left.\begin{array}{l} \text { GT21 } \\ \text { UP421 } \end{array}\right\}$	
RE	BR537	Subroutines
RE	BQ632	
RE	CA674	
RE	CB763	
RE	CC1020	
RE	CD1056	
RE	CE1120	
RE	CF 1175	
RE	CG1237	
RE	CH1266	
RE	CII321	
RE	CJ1355	
RE	CK1407	Begin Data manipulation
RE	CL1435	Stores information for Preface and Term.
RE	CM1450	Build Preface and Term. in
RE	CN1505	buffer areas
RE	CP1522	Sets up "W" of RP-TP for exit of Term.
RE	BK1545	Preparation for writing onto tape
RE	CQ1557	Write 0p File III onto tape
RE	CR1645	Write Preface, this segment onto tape
RE	CS1707	Write Termination this seg. onto tape
RE	CT1742	Exit region
RE	ZZ1760	Storage and constants
RE	ZY2144	Error Printout
RE	ZW2174	Warning Printout
RE	C02213	Patch correction regions (27) 8 loc.
RE	FA3142	H.S.S. Address 0p. F. 2A-6 8
RE	2A3142	
RE	ZB2545	Fixed address of Directory 3
RE	ZC42102	Fixed drum address of 0p File III
RE	ZD2644	Fixed address of Directory 4
RE	LD2242	Limit of drum (77000) ${ }_{8}$
RE	TL2243	Limit of tape (4704) ${ }_{8}{ }_{8}$
RE	TI2355	Tape Image ${ }^{\text {a }}$
RE	CU6	For assigning loc. for CTl3 \& CTl6
RE	ZF7000	Fixed address for building Preface
RE	ZG7400	Fixed address for building Term.
RE	2X76000	H.S.S. dump of TI for checkout
RE	BS76017	Region for generating M.S.'s in checkout
RE	E 7230	Fixed address of LOC 2B
RE	CX2255	Patch correction allowing
RE	CZ2323	data arrays > 7777

		IA	CA		
	0	MJ	0	CO $\}$	Read in Tape label (1st Bk)
	1	RJ	GT2	GT	i.e. ' ${ }^{\text {FILE }} \triangle \triangle$ TW0 $\triangle \Delta \Delta^{\prime}$
	2	TP	TI24	A	
	3	EJ	ZZ43	CA5	
	4	MJ	0	BR 10	Test for proper label
	5	TP	TI25		of Tape \#3 (lst Bk)
	6	EJ	ZZ44	CA10	
	7	MJ	0	BR 10)	
	10	TP	23	CA66	Set connector A to Al
	11	TP	ZZ25	ZZ103	Segment \#1 ${ }^{\text {l }}$ K
	12	TP	ZZ31	ZZ107	$0 \rightarrow \mathrm{M}$ (word count Directory 4)
	13	TP	ZZ31	ZZ62	$\begin{aligned} & 0 \rightarrow \text { Temp } l(\# \text { lines rtne. for } \\ & \text { current } C / W) \end{aligned}$
	14	TP	ZZ16	ZZ106	MDAF3 \longrightarrow G (fixed drum address Op File III)
	15	TP	Z217	Z272	Set Dir. 4 E Dir. 3 to
	16	TP	ZZ20	2271 $\}$	fixed address
	17	TP	ZZ31	ZZ105	$0 \rightarrow C \quad\left(C_{u}=\right.$ count of segments)
(1)	20	TP	ZZ52	GT3	Read in next block
	21	RJ	GT2	GT	into TI
	22	TP	TI	A	First word \longrightarrow A
	23	EJ	2745	CA32	Test for 'TWO \triangle A ${ }^{\text {' }} \rightarrow$ CONN 38
	24	EJ	ZZ46	CA51	Test for 'TWO Δ B \triangle ' \longrightarrow CONN 40
	25	EJ	Z251	CA27	Test for 'ZZZZZZ'
	26	MJ	0	BR10	
	27	TP	TI24	A	2lst word to A
	30	EJ	ZZ51	CA65	Test for 'ZZZZZZ' \longrightarrow CONN 42
	31	MJ	0	BR 10	
(38)	32	TP	TI2	ZZ110	Length this segment IIa ${ }_{\text {L }}$
	33	TP	TI4	ZZ113	Start to build D for this segment
	34	TP	TI4	ZA2	5 th \& 6th words saved
	35	TP	TI5	ZA3	for Op File III
	36	TP	TI5	ZZ112	$\rightarrow R=$ next address to assign to rtnes.
	37	TV	ZZ21	ZZ102	Set up LOC2A address in code word for GTH
	40	SP TU	$\begin{aligned} & \text { ZZ21 } \\ & \text { A } \end{aligned}$	$\left.\begin{array}{l}17 \\ \text { CA44 }\end{array}\right\}$	Set up "test word" address
(39)	42	TP	ZZ102	GT3	Read in next block into Ila area
	43	RJ	GT2	GT	
	44	TP	[30000]	A	Test first word for END \triangle OF
	45	EJ	ZZ47	CA20	(CA20 = 1)
(43)	46	RA	ZZ102	ZZ30	GENCOD $+120 \rightarrow$ EENCOD
	47	RA	CA44	2727	Test word address $+120 \rightarrow$ Test word address
	50	MJ	0	CA42	Jump to read next block (CONN 39)
(40)	51	RA	Z2102	ZZ30	GENCOD $+120 \rightarrow$ GENCOD
	52	TP	TI2	2Z111	Length IIb this segment \rightarrow l
	53	TV	ZZ22	ZZ102	TV LOC2B GENCOD

(41)	54	SP	ZZ22	17 ,
	55	TU	A	CA60 3
	56	TP	ZZ102	GT3
	57	RJ	GT2	GT
	60	TP	30000	A
	61	EJ	ZZ47	CA66 ${ }^{\text {S }}$
	62	RA	ZZ102	ZZ30
	63	RA	CA60	ZZ27
(42)	64	MJ	0	CA56
	65	TP	ZZ1	CA66
	66	[30	0	$0]$
		CA	CA67	
(A1)		IA	CB	
	0	TP	ZZ21	ZZ76
	1	TP	ZZ22	Z277
	2	SP	ZZ77	0 0,
	3	AT	$2 \mathrm{Z111}$	ZZ101
	4	MJ	0	CB5
(1.5)	5	RA	Z2105	ZZ25
	6	SP	ZZ22	17
	7	TU	A	CB17
	10	TU	A	CB33
	11	TU	A	CB12
	12	SP	[30000]	0)
	13	ZJ	CB17	CB14
	14	TP	A	2A4
	15	TP	A	ZA5
	16	MJ	0	CC33
	17	TP	[30000]	ZA4
	20	MJ	0	CB27
	21	TP	Z241	ZA5
	22	SP	ZZ103	6
	23	TP	A	30000
	24	RA	Z272	ZZ32
	25	RA	ZZ107	ZZ26
	26	MJ	0	CC33
	27	SP	Z272	0
	30	TV	A	CB33
	31	SA	2Z26	0
	32	TV	A	CB23
	33	TP	30000	30000
	34	MJ	0	CB21
		CA	CB35	

Set up address for test of END \triangle OF for Op File IIb

Read l block into IIb area
Test word for END \triangle OF
\longrightarrow CONN A
GENCOD $+120 \rightarrow$ GENCOD
Test word address $+120 \longrightarrow$ Test word address
Jump to read next block
Either MJ CONN Al or CONN A2

Set up AJ \& BI this segment $\mathrm{LOC} 2 \mathrm{~A} \rightarrow \mathrm{AJ} ; \mathrm{LOC} 2 \mathrm{~B} \longrightarrow \mathrm{BI}$

Form test address to indicate end of 0 p File IIb list
$\mathrm{C}+\mathrm{l} \longrightarrow \mathrm{C}$ (seg. counter) $\mathrm{LOC} 2 \mathrm{~B} \rightarrow \mathrm{~A}_{\mathrm{u}}$
Set commands with first address of Op File IIb

Is first word of 0 p File $\mathrm{IIb}=0$?
Zeroize 5 th and 6th words of 0 p File IIa

Jump to (3)
Record first call word of 0 p File IIb into 5 th word of Op File IIa and first word of Directory 4 Flag \rightarrow next word of Op File IIa Insert segment \# in second word of Directory 4
Dir. $4+2 \longrightarrow$ Dir. 4 (next loc.)
$\mathrm{M}+\mathrm{l} \longrightarrow \mathrm{M}$ (count of items in
Directory 4)
Jump to (3)
Dir. $4 \rightarrow V$

		IA	CC		
(2)	0	SP	2Z110	177	
	1	SA	ZZ135		Set n of RP to L; $\mathrm{j}=2$.
	2	TU	A	CC6	
	3	SP	Z277	17	
	4	TU	A	CC5	Pick up "u" portion of BI in A
	5	SP	[30000]	0	
	6	RP	[30000]	CC10	Test Op File IIa for CW from
	7	EJ	ZA4	CC33 $\}$	Op File IIb
	10	TP	A	ZZ115	Hold A_{R} in WSl
	11	SP	ZZ21	0	LOC2A \rightarrow A $\}$ Setup CC15
	12	SA	ZZ110	0	$\mathrm{A}+\mathrm{L} \rightarrow \mathrm{A}\} \quad$ Setup CC15
	13	TV	A	CC15	,
	14	TV	ZZ72	CCl6	
	15	TP	$2 \mathrm{Z115}$	[30000]	WSI \longrightarrow i.e. store $C W$ in $B I$ at $0 p$ F. $2 \mathrm{~A}+\mathrm{L}$ and in Directory 4
	16	TP	22115	[30000]	
	17	SP	CC15	0	
	20	SA	ZZ26	0 ,	Setup CC22
	21	TV	A	CC22	
	22	TP	ZZ41	[30000]	Insert flag at 0p.F. $2 \mathrm{~A}+\mathrm{L}+\mathrm{l}$
	23	SP	CCl6	0	
	24	SA	ZZ26	0	Set up CC27
	25	TV	A	CC27	
	26	SP	22103		
	27	TP	A	[30000]	Insert K x 2^{21} (seg. \#) in Directory 4
	30	RA	ZZ72	Z232	Dir. $4+2 \rightarrow$ Dir. 4 (next loc. available)
	31	RA	Z2110	ZZ32	$\mathrm{L}+2 \rightarrow \mathrm{~L}$ (length +2)
	32	RA	ZZ107	Z226	$M+1 \rightarrow M$ (count of items in Directory 4)
(3)	33	RA	Z277	ZZ26	$\begin{aligned} & \mathrm{BI}+\mathrm{l} \longrightarrow \text { BI (address next } 0 \mathrm{p} \\ & \text { File IIb item) } \end{aligned}$
	34	EJ	Z2101	CD	Test for completion of BI test
	35	MJ	0	CC	Jump to CONN 2
		CA	CC36		
		IA	CD		
	0	RA	ZZ112	ZZ26	Set R to address following IP command
	1	TP	ZZ2	Q	Set up mask V
	2	QT		Z2114	Mask '(S)' from location (12) 8
	3	RA	ZZ113	2Z114	$D+S \rightarrow D$
	4 5	SP	Z276	$\left.\begin{array}{l}0 \\ 77100\end{array}\right\}$	
(4)	5	${ }_{\text {AT }}$	Z2110	27100	end of expanded IIa list
	6 7	SP TU	$\begin{aligned} & \mathrm{ZZ76} \\ & \mathrm{~A} \end{aligned}$	$\left.\begin{array}{l} 17 \\ \text { CD16 } \end{array}\right\}$	CW address $\rightarrow \mathrm{A}_{u}$
	10	SA	ZZ25	0	1 in u
	11	TU	A	ZZ115	(CW address) $+\mathrm{l} \longrightarrow \mathrm{CSS}^{\text {(}}$)
	12	TU	A	CD15	
	13	LT	25	A	Shift (CW address) + 1 to A_{v}

	14	TV	A	CD20	
	15	TV	[30000]	ZZ62	\# lines in rtne in Temp l
	16	SP	[30000]	0	$\mathrm{CW} \rightarrow \mathrm{A}$
	17	LQ	ZZ62	17	Shift ${ }_{\#}$ lines to u position
	20	TU	ZZ62	[30000]	\# lines $\rightarrow u$ of second word of item
	21	LT	14	A	
	22	EJ	ZZ124	CD25	Test "26" CW
	23	EJ	ZZ125	CD25	Test "27" CW
	24	MJ	0	CE	Jump to (5)
	25	SP	ZZ115	0 -	
	26	TU	A	CD27	
	27	SP	[30000]		
	30	TP	ZZ5	Q	Test for flag "14"
	31	QT	A	A	
	32	EJ	2241	CE16	Jump $\rightarrow 6$
(8)	33	SP	27115	0	$\left(\mathrm{CW}\right.$ address) $+\mathrm{l} \longrightarrow \mathrm{A}_{\mathrm{u}}$
	34	LT	25	A	(CW address) $+\mathrm{l} \longrightarrow \mathrm{A}_{\mathrm{v}}$
	35	TV	A	CD36 $\}$	
	36	TV	Z2114	[30000]	Send S to v portion of 2 nd word of item
	37	LQ	ZZ62	25	
	40	RA	Z2114	ZZ62	
	41	MJ		CE 16	Jump to (6)
		CA	CD42		
		IA	CE		
(5)	0	EJ	ZZ126	CF	Test 77 type $\mathrm{CW} \rightarrow$ (9)
	1	MJ	0	CE 10	Assume $25,24,22,5$ or 4
	2	0	0	170	
	3	0	0	0	
	4	0	0	0	
	5	0	0	0	
	6	0	0	0	
	7	0	0	0	
	10	SP	ZZ115	0	(CW address) $+1 \rightarrow A_{u}$
	11	LT	25	A	(CW address) $+\mathrm{l} \longrightarrow \mathrm{A}_{\mathrm{v}}$
	12	TV	A	CE13 $\}$	
	13	TV	ZZ112	[30000] $\}$	$\mathrm{R} \rightarrow \mathrm{v}$ portion
	14	LQ	ZZ62	25	\# lines shifted in Temp l
	15	RA	ZZ112	ZZ62	$\mathrm{R}+$ \# lines $\rightarrow \mathrm{R}$
(6)	16	RA	Z276	2732	Address of CW address +2
	17	EJ	ZZ100	CE21	Jump to (7) when end of 0p File IIa reached.
	20	MJ	0	CD6	Jump (4) ${ }^{\text {(}}$
(7)	21	TP	Z2103	FA	Seg. $\# \rightarrow 0 \mathrm{p}$ File III
	22	RA	22110	ZZ32	$\mathrm{L}+2 \rightarrow \mathrm{~L}$
	23	SA	ZZ35	0	$\mathrm{A}=\mathrm{L} ; \mathrm{A}+4 \rightarrow \mathrm{~A}$
	24	SA	2Z106	0	Add G (next open M.D. address for Op File III
	25	TJ	LD	CE27	Test limit of drum
	26	MJ	0	ZWl	\longrightarrow Error print E jump to BQ6 (rewind tape, etc.)
	27	SP	ZZ110	17	$\mathrm{L} \rightarrow \mathrm{A}_{\mathrm{u}}$

	30	TP	A	ZA1	$\mathrm{A}_{u} \rightarrow$ \# words Op File III
	31	SA	Z234	0	Add 4 in u
	32	SA	Z237	0	Add 3 in j
	33	TU	A	CE 35	
	34	TV	ZZ106	CE36	
	35	RP	[30000]	CE37 $\}$	Transfer $\mathrm{L}+4$ words of
	36	TP	FA	[30000]	Op File III to MD at G
	37	TV	Z271	CE42	
	40	TV	Z271	CE44	
	41	SP	Z2106	17	$\mathrm{G} \rightarrow \mathrm{~A}_{\mathrm{u}}$
	42	TU	A	[30000]	$\mathrm{A}_{\mathrm{u}} \longrightarrow$ Directory 3
	43	MJ	0	CE52	$\#$ lines in 0 p File III $\rightarrow \mathrm{A}_{V}$
	44	TV	A	[30000]	$A_{V} \longrightarrow$ Directory 3
	45	RA	Z271	ZZ26	
	46	RA	ZZ103	ZZ25	
	47	RA	ZZ106	ZZ110	
	50	AT	2235	ZZ106	
	51	MJ	0	CA20	Jump to (1) ; read in next seg.
	52	SP	FAl	0	
	53	LT	25	A	
	54	MJ	0	CE44	
		CA	CE 55		
		IA	CF		
(9)	0	SP	ZZ115	0	(CW address) $+1 \longrightarrow A_{u}$
	1	LT	25	A	
	2	TV	A	CF3 $\}$	$\mathrm{D} \rightarrow$ (CW address) +1
	3	TV	ZZ113	[30000]	
	4	LQ	ZZ62	25 \}	\# lines + D \rightarrow D
	5	RA	ZZ113	ZZ62	
	6	MJ	0	CE 16	Jump to 6
(A2)	7	SP	ZZ107	0	$\mathrm{M} \rightarrow \mathrm{A}$
	10	ZJ	CF13	CFll	
	11	TP	2231	ZZ120	$0 \rightarrow$ Index 1
	12	MJ	0	CH24	Jump to (16)
(10) \rightarrow	13	TP	Z225	ZZ104	${ }_{u} u \rightarrow P_{u}$
	14	ST	ZZ26	Z2121	$\stackrel{M}{M}-1 \rightarrow$ Index 200 dir. 4 to fixed address
(11) \rightarrow	15	TP	ZZ17	ZZ72	Set Dir. 4 to fixed address
	16 17	SP ST	ZZ107	$\left.\begin{array}{l} 0 \\ Z Z 120 \end{array}\right\}$	$\mathrm{M}-\mathrm{l} \rightarrow$ Index l
	20	SP	ZZ20	17	Item address of Directory $3 \rightarrow A_{u}$
	21	SA	Z2104	0	Add P
	22	SS	ZZ25	0	Subtract l_{u} Transfer u-portion
	23	TU	A	CF25	of $\mathrm{p}^{\text {th }}$ word in Directory 3
	24	TU	A	CF26	to transfer command
	25	TU	[30000]	CF34	
	26	SP	[30000]	17	Transfer v-portion of $\mathrm{p}^{\text {th }}$ word
	27	MJ	0	CF35	in Directory 3 to n of RP command
	30	SA	Z234	0	+4 in u
	31	SA	Z237	0	+3 in j
	32	TU	A	CF33	

	33	RP	[30000]	CG	Transfer 0p File III for
	34	TP	[30000]	FA $\}$	this seg. from M.D. to H.S.S.
	35	TU	A	CG12	Set up j n at CGl2
	36	RA	CG12	ZZ36	
	37	TU	CF26	CF40\}	Set up j n at CF33
	40	SP	30000	17 \}	
	41	MJ	$\begin{aligned} & 0 \\ & \mathrm{CF} 42 \end{aligned}$	CF30	
		IA	CG		
(12)	0	TP	ZZ5	Q	Mask 0p \longrightarrow Q
	1	SP	Z272	17	Dir. $4 \rightarrow \mathrm{~A}_{\mathbf{u}}$
	2	TU	A	CGIl	
	3	SA	ZZ25	0	
	4	TU	A	CG5	tion of word
	5	SP	[30000]	0	given by address
	6	QT	A	A	\int at Dir. $4+1$
	7	EJ	ZZ41	CH	Test 0p portion for 'l4' flag
	10	MJ	0	CGll	Set j of RP to 2
	11	SP	30000	0	Obtain CW given by address in Dir. 4
	12	RP	30000	CH $\}$	Test this segment 0p File III
	13	EJ	ZA4	CG14	for this CW
	14	SP	CG12	0	$\mathrm{jn} \rightarrow \mathrm{A}_{\mathbf{u}}$
	15	LQ	Q	17	$\mathrm{jn}-\mathrm{r} \rightarrow Q_{U}$
	16	SS	Q	0	$\mathrm{jn}-(\mathrm{jn}-\mathrm{r})=+\mathrm{r} \longrightarrow \mathrm{A}_{\mathrm{u}}$
	17	SA	ZZ7	0	Add fixed address of 0p File III
	20	TU	A	CG23	
	21	TU	A	CH10	
	22	TP	ZZ5	Q)	
	23	SP	[30000]	0	Test for flagged CW in segment P
	24	QT	A	A	
	25	EJ	ZZ41	CH	Jump to (13)
	26	MJ	0	CH5	Jump to (15)
		CA	CG27		
		IA	CH		
(13)	0	IJ	ZZ120	CH3	Test that all Directory 4 checked against this segment
(14)	1	RA	2Z104	ZZ25	$\mathrm{P}+\mathrm{l}_{\mathrm{u}} \longrightarrow \mathrm{P}$
	2	MJ	0	CF15	Jump to \rightarrow (11)
	3	RA	2272	ZZ32	Dir. $4+2 \rightarrow$ Dir. 4
	4	MJ	0	CG	Jump to \rightarrow (12
(15)	5	SP	2272	0 0	
	6	SA	ZZ26	0	Set v-portion CH_{10} to address
	7	TV	A	CH10	given by Dir. $4+1$
	10	TV	[30000]	[30000]	Record running address for this CW at Dir. $4+1$
	11	TV	CH10	CH13	
	12	TP	223		Mask \rightarrow Q ${ }^{\text {Pecord }} \mathrm{P}$ in Dir 4 (segment to)
	13	QS	ZZ104	[30000]	Record P x 2^{15} in Dir. 4 (segment to)
	14	TV	CH13	CH16	
	15	TP	ZZ5		Mask $0 p\}$ address given by ad-
	16	QS	Z241	[30000]	d dress at Dir. $4+1$

	17	IJ	ZZ121	CH	Test index 2 that all items Directory 4 processed
	20	MJ	0	CH21	
	21	TP	ZZ17	Z272	Set Dir. 4 to fixed address
	22	TP	Z2107	ZZ161\}	Set Index l_{A} to M
	23	MJ	0	CH24	
(16)	24	TP	ZZ25	ZZ104	$l_{u} \rightarrow P$, set to l^{\prime}
	25	TP	ZZ10	ZZ63	
	26	TP	ZZ133	ZZ64	
	27	TP	ZZ134	2265	Set Temps 1, 3, 4, 5 E 6 to Dummy instructions
	30	TP	ZZ133	2766	
	31	TP	ZZ134	2267	
	32	MJ	0	CI	Jump to \rightarrow (17)
		CA	CH33		
(17)		IA	CI		
	0	SP	ZZ20	17	$\mathrm{LOCD} 3 \rightarrow \mathrm{~A}_{\mathrm{u}}$
	1	SA	ZZ104	0	$A+P \rightarrow A$; Transfer u-portion of P^{th} word of Directory 3 to
	2	SS	ZZ25	0	
	3	TU	A	CI5	
	4	TU	A	CI6	command in CIl6 and set n
	5	TU	[30000]	CI16	
	6	SP	[30000]	17	$\mathrm{A}_{u}=$ \# words in 0p File III this seg.
	7	TU	A	CK7	Set \# words for 77-- data search
	10	TU	A	ZZ117	Save \# words in working Temp
	11	TU	A	CJ5	
	12	SA	ZZ34	0	+ 4
	13	SA	ZZ37	0	$+\mathrm{j}=3$
	14	TU	A	CI15	Build 0p File III image
	15	RP	[30000]	CI32	
	16	TP	[30000]	FA	
(18)	17	TP	2231	ZZ103	$0 \rightarrow K$ Index l_{A} set initially to M
	20	IJ	ZZ161	CI22	
	21	MJ	0	CJ	$\text { Dir. } 4 \rightarrow A_{u}$
	22	SP	Z272	17	
	23	TU	A	CJ4	Set address of Directory 4 item plus one
	24	SA	ZZ25	0	
	25	TU	A	CI30 $\}$	Set address of word 2 of Directory 4 item
	26	TU	A	CJ24	
	27	TP	ZZ4		Mask 'segment from' number into K (26-21)
	30	QT	[30000]	ZZ103	
	31	MJ	0	CJ	$\begin{aligned} & \text { Jump to } \\ & +j=2 \end{aligned}$
	32	RA	CJ5	Z236	
	33	MJ	0	CII7	
		CA	CI34		

(19)		IA	CJ		
	0	SP	ZZ104	6	$\mathrm{P} \rightarrow \mathrm{A}$
	1	EJ	ZZ103	CJ3	If $\mathrm{P}=\mathrm{K}$, go to (20) (00P00 $=00 \mathrm{~K} 00$)
	2	MJ	0	CJ27	
(20)	3	TP	C022	ZZ162	Reset value to 171 for region CM Jump call word to A Locate this call word in Op File III for segment P Alarm 6
	4	SP	[30000]	0	
	5	RP	[30000]	CJ7 $\}$	
	6	EJ	ZA4	CJ10	
	7	MJ	0	BR6	
	10	SP	CJ5	0	$\begin{array}{ll} j n \rightarrow\left(A_{R}\right)_{u} \\ j n-r \rightarrow Q_{u} \end{array}$
	11	LQ	Q	17	
	12	SS	Q	0	
	13	SA	ZZ7	0	$r \rightarrow\left(A_{R}\right) u$ Finds address of 2 nd word 0 p File III item
	14	TU	A	CJ16	Test if CW flagged in this segment.
	15	TP	Z25	Q	
	16	SP	[30000]		
	17	QT	A		
	20	EJ	Z241	CJ22	
	21	MJ	0	BR6	Alarm 6
	22	LQ	CJ16	Q25	
	23	TV	Q	CJ24	Replace 0p File III word by second word of Directory 4 item.
	24	TP	[30000]	30000	
	25	RA	Z272	ZZ32	$\text { Dir. } 4+2 \rightarrow \text { Dir. } 4$
	26	MJ	0	CI17	
	27	RA	FA5	ZZ26	Add 1 to H.S.S. of first "IP"
	30	RA	ZZ161	ZZ26	Add 1 to index l_{A} Jump to (21)
	31	MJ	0	CK	
		CA	CJ32		
(21)		IA	CK		
	0	TP	ZZ11	2Z74	Initialize Alpha and Beta (next address in Preface or Term.)
	1	TP	ZZ12	ZZ75 $\}$	
	2	RA	CK7	Z236	
	3	SP	FA2	0	
	4	AT	12	ZZ113	Set "D" for Preface area and Temp $D=\#$ words $=(S+R+2)+\mathrm{L}()_{R}$
	5	TP	A	ZZ141	
(22)	6	SP	Z2153	0	$\left.\xrightarrow{76777 \rightarrow A_{u}}\right\} \quad \begin{aligned} & \text { search for } \\ & \text { data } C W \end{aligned}$
	7	RP	[30000]	CK24	
	10	TJ	[FA4]	CK11	
	11	SN	Q	17	$\left.\begin{array}{l}-\mathrm{jn}+\mathrm{r} \rightarrow \mathrm{A}_{\mathrm{u}} \\ \mathrm{r} \underset{\mathrm{jn}}{\rightarrow} \mathrm{WS}_{\mathrm{l}}\end{array}\right\} \quad$calculate $\#$ repeats
	12	SA	CK7	0	
	13	TU	A	ZZ115	
	14	RS	CK7	ZZ115	Set to continue search
	15	RA	CK10	ZZ115	
	16	TU	A	CL	
	17	TU	A	CK22	Test if above TJ command reacted on a "14" in the 0p code
	20	RS	CK22	ZZ25	
	21	SP	ZZ41	0	
	22	TJ	30000	CK6	
	23	MJ	0	CL	

(29) $\begin{array}{lllll}24 & \text { TU } & \text { ZZ7 } & \text { CK10 } & \text { Reset (TJ FA4 CK11) on exit } \\ 25 & \text { MJ } & 0 & \text { CP } \\ & \text { CA } & \text { CK26 }\end{array}$

Stores Information Necessary In Building Termination and Preface

(28)

	IA	CL		
0	SP	[30000]	0	2nd word of 77-- data item \rightarrow A
1	MJ	0	CX2	
2	TV	A	ZZ137	H.S.S. address \longrightarrow Temp B_{V}
3	RS	CL	ZZ25	
4	TU	CL	CL5	
5	SP	[30000]	0	$\mathrm{CW} \rightarrow \mathrm{A}_{\mathbf{u}}$
6	TP	ZZ6	Q	$L(00777)_{u} \rightarrow Q$
7	QT	A	A $\}$	Mask and multiply by 2
10	LA	A	1 ,	
11	AT	ZZ143	ZZ140	MD address of array \rightarrow Temp $\mathrm{C}_{\mathbf{u}}$
12	MJ	0	CM	
	CA	CL13		
	IA	CM		
0	TU	ZZ136	ZZ64	Set up RP command for Preface
1	RA	Z264	Z237 $\}$	
2	TU	Z264	ZZ66	Set up RP command for Term. Set data H.S.S. address for Preface
3	TV	ZZ137	Z265	
4	SP	ZZ140	0	
5	TU	A	CM6	Set up address of array on MD
6	TU	[30000]	ZZ65	
7	TU	A	CM10	Set up address of array on MD for Term.
10	SP	[30000]		
11	LT	25	A	
12	TV	A	2267	
13	SP	ZZ137	17	Set data H.S.S. address for Term.
14	TU	A	ZZ67	
15	SP	Z274	0	Calculate \# words in Preface
16	SS	2Z11	0	
17	TJ	ZZ162	CM23	Test \# words < 170
20	RA	ZZ162	ZZ146	Increment by 170
21	MJ	0	CM22	
22	TP	C021	ZZ147	
23	RJ	CM23	CM31	1 shot switch
24	TV	Z2113	ZZ64	$\left.\begin{array}{l} \mathrm{D}+2 \rightarrow \mathrm{D} \\ \mathrm{TE}+2 \rightarrow \mathrm{TE} \end{array}\right\} \quad \begin{aligned} & \mathrm{W} \\ & \text { of } \\ & \mathrm{RP} \end{aligned}$
25	RA	ZZ113	ZZ32	
26	RA	ZZ147	ZZ32	
27	TV	ZZ147	Z266	
30	MJ	0	CN	
31	SP	ZZ37	0	Send (30000) ${ }_{v}$ to first Preface RP_{W} command
32	LT	25		
33	TV	A	Z264	
34	MJ	0	CM26	
	CA	CM35		

	IA	CN		
0	TV	Z274	CN6	
1	RA	2274	ZZ26	
2	TV	Z274	CN7	Set up transfer commands (i.e., fill in v-addresses)
3	TV	Z275	CN10	
4	RA	2275	ZZ26	
5	TV	2275	CN11	
6	TP	Z264	[30000]	
7	TP	ZZ65	[30000]	Transfer RP - TP setup
10	TP	Z266	[30000]	to proper location in buffer
11	TP	ZZ67	[30000]	area
12	RA	ZZ74	ZZ26 $\}$	Update available locations
13	RA	Z275	ZZ26	in buffer area
14	MJ	0	CK6	Jump to continue searching list
	CA	CN15		

Setup "W" of RP - Commands for Exit of Termination

Write 0p File III Onto Tape \#5

		IA	CQ		
	0	RP	10170	CQ2 $\}$	Fill TI with ${ }^{*}$ s
	2	TP	ZZ51	TI	
(30)	2	RA	ZZ157	ZZ26	Test for exceeding tape length
	3	TJ	TL	CQ5 $\}$	
	4	RJ	ZY	ZY1	
(31)	5	TP	ZZ154	TI $\}$	F I L E $\Delta 3$
	6	TP	ZZ155	TI1	S E G $\Delta \Delta \Delta$
	7	RP	30004	C011	Read first 4 words
	10	TP	ZA	TI2	of 0 p File III image \longrightarrow Tape image
	11	SP	ZZ74		(ALPHA-LOCPRE) $=$ \# words
	12	SS	ZZ11	17	
	13	TP	A	TI6	Calculate \# words in Preface
	14	LT	25	ZZ142	\rightarrow save in (TEMPL) ${ }_{V}$
	15	TP	ZZ53	GT3	Write first block on tape
	16	RJ	GT2	GT $\}$	
	17	LQ	ZZ117	25	
	20	TP	ZZ2		Calculate \# words in Op File III
	21	QT	ZZ117	A	this seg.
	22	DV	ZZ30	ZZ121	Record \# full blocks required into Index 2
	23	LT	10017	ZZ112	Shift remainder $\longrightarrow \mathrm{R}_{\mathrm{u}}$
	24	TU	ZZ7	CQ33	LOC 0p File (3)
	25	IJ	ZZ121	CQ27	Have all full blocks been written?
	26	MJ	0	CQ37	\longrightarrow Jump \longrightarrow (34
	27	RA	ZZ157	ZZ26	
	30	TJ	TL	CQ32	Test for exceeding tape length
	31	RJ	ZY	ZY1	
	32	RP	30170	CQ34	Transfer 120 words from File III
	33	TP	[30000]	TI \}	image into TI
	34	RJ	GT2	GI	Write l full block on tape
	35	RA	CQ33	ZZ27	Advance 0p File III image address
	36	MJ	0	CQ25	\rightarrow Jump \longrightarrow (33
	37	MJ	0	CQ62	
	40	TJ	TL	CQ42	Test for exceeding length
	41	RJ	ZY	ZY1 $\}$	of tape
	42	RP	10170	CQ44 $\}$	Fill TI with ${ }^{\prime}$'s
	43	TP	ZZ51	TI $\}$	
	44	TU	ZZ112	CQ47	Set N of RP command
	45	RA	CQ47	Z237	3 in j
	46	TU	CQ33	CQ50	Set "u" of transfer command
	47	RP	[30000]	CQ51	Transfer partial block to TI
	50	TP	[30000]	TI	
	51	RJ	GT2	GT	Write partial block
	52	RA	ZZ157	ZZ26	
	53	TJ	TL	CQ55	Test exceeding length of tape
	54	RJ	Z 1	ZY1	
	55	RP	10170	CQ57	Fill with Z's
	56	TP	ZZ51	TI $\}$	

57	TP	ZZ47	TI	E N D 0 F
60	RJ	GT2	GT	
61	MJ	0	CR	
62	TP	ZZ112	A	
63	ZJ	CQ64	CQ52	
64	RA	ZZ157	ZZ26	Handles special case where 65
	MJ	0	mod 170 words are written.	
	CA	CQ66		

Write Preface for This Seg. Onto Tape \#5

	IA	CR		
0	RP	10170	CR2 $\}$	Fill TI with Z's
1	TP	Z251	TI $\}$	
2	SP	ZZ142	0	\# words in Preface $\rightarrow A_{u}$
3	ZJ	CR 36	CT $\}$	\# full blocks
4	TP	Q	Z2122	\longrightarrow Index 1 ; TEMPT
5	LT	10017	ZZ112	\# words in partial block
6	SP	ZZ11	17 \}	Set up u of transfer command
7	TU	A	CR16	
10	IJ	Z2120	CR12	Have all full blocks been written?
11	MJ	0	CR40	
12	RA	ZZ157	ZZ26	
13	TJ	TL	CR15 $\}$	Test for exceeding length
14	RJ	ZY	2Y1	of tape
15	RP	30170	CR17	Transfer 1 full block
16	TP	[30000]	TI $\}$	into TI
17	RJ	GT2	GT	Write l full block onto tape \#5
20	RA	CR16	ZZ27	Advance u-address by (120) 10
21	MJ	0	CR10	
22	RA	ZZ157	ZZ26	
23	TJ	TL	CR25	Test exceeding block length
24	RJ	ZY	ZY1	
25	RP	10170	CR27 $\}$	Fill TI with Z's
26	TP	ZZ51	TI	
27	TU	ZZ112	CR32	Set up RP command to
30	RA	CR32	ZZ37	\# of words in partial block
31	TU	CR16	CR33	Set up TP command
32	RP	[30000]	CR34 $\}$	Read partial block into TI
33	TP	[30000]	TI	
34	RJ	GT2	GT	Write 1 block onto tape \#5
35	MJ	0	CS	
36	DV	ZZ30	ZZ120	
37	MJ	0	CR4	
40	TP	ZZ112	A	
41	2J	CR22	CS	
	CA	CR42		

Write Termination For This Seg. Onto Tape \#5

		IA	CS		
	0	TP	ZZ122	ZZ120	Set up Index $1=\#$ full blocks to be written
	1	SP	ZZ12	17 \}	Set up "u" of TP command
	2	TU	A	CSIl	
	3	IJ	ZZ120	CS5	
	4	MJ	0	CS31	Jump to write partial block
	5	RA	ZZ157	ZZ26	
	6	TJ	TL	CS10	Test for exceeding length of tape
	7	RJ	ZY	ZY1	
(33)	10	RP	30170	CS12	Read 1 block into TI
	11	TP	[30000]	TI $\}$	
	12	RJ	GT2	GT	Write I block onto tape \#5
	13	RA	CSIl	ZZ27	Increase address of TP command
	14	MJ	0	CS3	
	15	RA	ZZ157	ZZ26	
	16	TJ	TL	CS20	Test for exceeding length of
	17	RJ	ZY	ZY1	block
	20	RP	10170	CS22	Fill TI with ${ }^{*}$'s
	21	TP	ZZ51	TI $\}$	
	22	TU	ZZ112	CS25	
	23	RA	CS25	ZZ37	Setup RP - TP commands
	24	TU	CS11	CS26	
	25	RP	[30000]	CS27	Read partial block into TI
	26	TP	[30000]	TI	
	27	RJ	GT2	GT	Write 1 block
	30	MJ	0	CT	
	31	TP	ZZ112		Test for 0 mod 170 entries
	32	ZJ	CS15	CT	
		CA	CS33		
		IA	CT		
	0	RA	ZZ104	ZZ25	Advance P by 1
	1	SP	Z2105	0	\} $\mathrm{C}+\mathrm{l} \longrightarrow \mathrm{A}$
	2	SA	ZZ25	0	
	3	EJ	ZZ104	C06	Then \rightarrow CT5
	4	MJ	0	C04	Then jump to (17)
	5	SP	ZZ157	0	
	6	SS	ZZ160	25	
	7	TP	A	CT14	
	10	RA	CT15	CT14	
	11	TP	CT15	GT3	
	12	RJ	GT2	GT	
	13	MJ	0	77010	Exit allocation phase
	14	0	0	0	Parameter for repositioning tape
	15	40	5	0	
		CA	CT16		

		IA	C0		
	0	RA	ZZ52	20	
	1	RA	ZZ102	20	Add TN to code word
	2	TP	ZZ52	GT3	for tape handler
	3	MJ	0	CAI	
	4	TP	C021	ZZ147	Reset initialization value
	5	MJ	0	CI $\}$	for termination, then \longrightarrow (17)
(34)	6	RA	ZZ157	ZZ26	
	7	TJ	TL	C011	
	10	RJ	ZY	ZY1	
	11	RP	10170	C013	
	12	TP	ZZ51	TI $\}$	Write double block of $\mathrm{Z}^{2} \mathrm{~s}$
	13	RJ	GT2	GT	
	14	TV	C020	C011	
	15	MJ	0	C06	
	16	RJ	GT2	GT	
	17	MJ	0	CT5	
	20	0	0	C016	
	21	0	0	610	
	22	0	0	171	Mask for counting blocks written on tape
		CA	C023		
		IA	ZW		
	0	MJ	0	BQ6	
	1	TP	ZW16	UP3	
	2	RJ	UP2	UP	
	3	MJ	0	ZW	
	4	52	54512	54630	$\begin{array}{lllllll}P & \mathrm{R} & \mathbf{O} & \mathrm{B} & \mathrm{L} & \mathrm{E}\end{array}$
	5	47	01665	15101	M Δ T 0 O 0
	6	46	51503	22201	$\begin{array}{lllll}\mathrm{L} & 0 & \mathrm{~N} & \mathrm{G} & . \Delta\end{array}$
	7	01	27546	74701	$\Delta \mathrm{D}$ R $\quad \mathrm{U}$ U M Δ
	10	65	66515	42432	S T $\mathrm{T} \quad 0 \mathrm{O}$
	11	30	01307	22630	E \triangle E X C E
	12	30	27302	70125	E D E D \quad D B
	13	73	01244	64651	Y $\quad \triangle$ A L L L
	14	26	24663	45150	C A T T I 0 N
	15	01	31344	63022	$\triangle \mathrm{F}$ I L E
	16	0	ZW4	12	
		CA	ZW17		

		IA	CX		
	0	TU	A	ZZ136	Exit to main program
	1	MJ	0	CL2 $\}$	
	2	TJ	CZ	CX	Test \# lines > 7777
	3	TP	A	CZ6	Save information
	4	RS	CL	ZZ25	
	5	TU	CL	CX6	
	6	SP	30000	0	
	7	TP	ZZ6	Q	Compute address which
	10	QT	A	A	contains address where S.S.
	11	LA	A	1	data is stored on drum
	12	AT	ZZ143	ZZ140	
	13	TV	CZ6	ZZ137	Core address of beginning of array
	14	TU	CZ3	ZZ136	\# words set to 7777
	15	RJ	CN14	CM	Build Preface and Term.
	16	RS	CZ6	CZ3	Reduce number of words by 7777
	17	TJ	CZ	CX27	1 core < \# lines ≤ 2 cores
	20	TJ	CZ2	CX22	2 core < \# lines ≤ 3 cores
	21	MJ	0	CX22	
(25)	22	TU	CZ3	ZZ136	
	23	RA	ZZ137	CZ4	
	24	RJ	CX35	CX36	Update MD address
	25	RJ	CN14	CM	Process Preface and Term.
	26	RS	CZ6	CZ3	
(26)	27 30	TU	CZ6	ZZ136	Update H.S.S. address
	30 31	LQ RA	CZ6 ZZ137	25	
	32	RJ	CX35	CX36	Dpdate MD address
	33	TP	CX45	CN14	Reset Exit in main program
	34	MJ	0	CM	
	35	MJ	0	30000	
	36	TU	Z2140	Cx37	Routine for updating MD address
	37 40	TU	30000	CX44	
	41	TU	CX44	CZ3140	
	42	MJ	0	CX35	
	43	0	CX44	0	
	44	0	0	0	
	45	MJ	0	CK6	
		CA	CX46		

IA CZ

0	0	10000	0	
1	0	17777	0	
2	0	27776	0	
3	0	7777	0	
4	0	0	7777	
5	0	17776	0	
6	0	0	0	Temp
	CA	CZ7		

ENDBUF	61	0	0	0	
TEMP1	62	0	0	0	
2	63	0	0	0	
3	64	0	0	0	
4	65	0	0	0	
5	66	0	0	0	
6	67	0	0	0	
7	70	0	0	0	
	71	0	0	0	Dir. 3-next open address of Directory 3
	72	0	0	0	Dir. 4-next open address of Directory 4
	73	0	0	0	Not used
ALPHA	74	0	0	0	Next open address in Preface
BETA	75	0	0	0	Next open address in Termination
AJ	76	0	0	0	Address next 0p File IIa item.
BI	77	0	0	0	Address next 0p File IIb item.
AJTEST	100	0	0	0	
BITEST	101	0	0	0	
GENCOD	102	50	00103	[30000]	
K	103	0	0	0	
P	104	0	0	0	
C	105	0	0	0	
G	106	0	0	0	
M	107	0	0	0	Count of Directory 4 items
L	110	0	0	0	
1	111	0	0	0	
R	112	0	0	0	Next address to assign to routines
D	113	0	0	0	Next address to assign data
S	114	0	0	0	
WS 1	115	0	0	0	
WS2	116	0	0	0	
WS3	117	0	0	0	
INDEXI	120	0	0	0	
Index2	121	0	0	0	
TEMPT	122	0	0	0	
	123	0	0	3	
	124	0	0	26	
	125	0	0	27	
	126	0	0	77	
	127	0	0	25	
	130	0	0	24	
	131	0	0	22	
	132	0	0	5	
	133	75	0	0	
	134	11	0	0	
	135	0	20002	0	
TEMPA	136	0	0	0	
TEMPB	137	0	0	0	

TEMPC	140	0	0	0	
TEMPD	141	0	0	0	
TEMPE	142	0	0	0	
	143	0	40101	0	
	144	0	0	165	
	145	0	0	167	
	146	0	0	170	
TE	147	0	0	610	
CT13	150	0	0	CU13	
CT16	151	0	0	CD16	
	152	0	0	CM31	For resetting 1 shot switch
	153	0	76777	0	
	154	31	34463	00106	F I L E E \quad ¢
	155	01	01653	03201	$\triangle \triangle$ S G \triangle
	156	0	0	TL	
IEMPBKCTRI	157	0	0	0	
TEMPBKCTR	160	0	0	0	\# blocks already written
INDEXIA	161	0	0	0	
	162	0	0	170	
	163	0	0	166	
		CA	ZZ164		

3. INITIALIZATION GENERATOR

3. Initialization Generator

Initialization Generation Setup

The Setup Routine for Initialization Generation reads the original Dimension List and the Constant Pool from magnetic tape and stores them on the drum. These lists do not overlay the modified Dimension List that was built by the Allocator Setup Routine since it will be used by the Processing Phase later.

The counters at locations 00006 and 00015 are interchanged so that 00006 becomes the Dimension List counter for this phase.

After reading the Dimension List and Constant Pool the tape is repositioned to the beginning of 0 p File III. The 14 blocks of the Initialization Generation Phase are then read from the UNICODE master tape and control is transferred to it.

Initialization Generation Set-Up Flow Chart

Regions for Initialization Generation Setup			
RE	ZZ7230	(37)	
RE	ZW7267	(15)	
RE	ZX7304	(14)	
RE	ZT7320	(3)	
RE	TH21	Tape handler	
RE	BR537	Compiler Inconsistency Routine	
RE	DL42102	(6000) Dimension List	
RE	CL50102	(1000) Constant Pool	
RE	ZY700	Buffer	
RE	TG2000	Loading and entry address for IG	
RE	ILl600	l68= \# blocks of Initialization	
		Generation phase	

Initialization Generation Setup Routine

		IA	ZZ		
	0	SP	14	0	
	1	LT	3	ZT	Save \# blocks of Constant Pool
	2	SP	A	0	
	3	LT	6	ZT1	Save \# blocks of Dimension List
	4	SP	A	0	
	5	LT	6	ZT2	Save \# blocks of Symbol List
	6	SP	ZT	0	
	7	SA	ZT1	0	
	10	SA	ZT2	25	Calculate and move \# blocks backward
	11	AT	ZX7	TH3	to beginning of Dimension List
	12	RJ	TH2	TH	(if any)
	13	TP	15	Q	
	14	TP	6	$15\}$	Interchange contents of 6 and 15
	15	TP	Q	6	
	16	SP	[ZT1]	0	Is there a Dimension list
	17	ZJ	ZZ20	[ZW] $\}$	(Constant Pool)?
	20	TP	ZX2	TH3	Read label block to H.S.S.
	21	RJ	TH2	TH $\}$	
	22	SP	[ZT1]	0	
	23	SS	ZX	25	Set up code word to read Dimension
	24	AT	ZX3	TH3	List (Constant Pool)
	25	TP	ZY	A $\}$	Check label
	26	EJ	[ZXI 0$]$	ZZ30	
	27	MJ	0	BR12	
(1)	30	RJ	TH2	TH	```Read Dimension List (Constant Pool) to H.S.S.```
	31	TP	ZX4	TH3	Move past end label
	32	RJ	TH2	TH $\}$	
	33	TU	[6] $]$	ZZ35	Set up transfer
	34	RA	Z235	ZX1	
	35	RP	30000	[ZW]	Transfer Dimension List (Constant
	36	TP	ZY	[DL]	Pool) to storage area
		CA	ZZ37		

		IA	ZW		
(2)	0 1	TU	ZZ6	$\begin{aligned} & \text { ZZ16 } \\ & \text { ZZ22 } \end{aligned}$	
	2	TV	ZX12	ZZ17	Set for reading Constant Pool
	3	TU	ZX12	ZZ26	
	4	TU	ZX13	ZZ33	
	5	TV	ZX13	ZZ36	
	6	RJ	ZZ35	ZZ16	Go to read Constant Pool and transfer
(3)	7	SP	ZT2	25	Move forward past Symbol List
	10	AT	ZX5	TH3	
	11	RJ	TH2	TH	
	12	TP	ZX6	TH3	Read Initialization Generation
	13	RJ	TH2	TH	to H.S.S.
	14	MJ	0	IG	Jump into Phase
		CA	ZW15		
		IA	ZX		
	0	0	0	2	
	1	0	10000	0	
	2	50	105	ZY	Read one block of Uniservo 5
	3	50	5	ZY	General Read for Uniservo 5
	4	30	105	0	Move one block forward
	5	30	5	0	General move forward
	6	50	ILl	IG	IL = (\# of blocks of Initialization Generation) X 100
	7	40	5	0	General move backward - tape 5
	10	27	34473	05065	D I I M E $\quad \mathrm{N}$ S
	11	26	51506	56624	C $\quad 0 \quad \mathrm{~N} \quad \mathrm{~S}$ T A
	12	0	2X11	ZW7	
	13	0	10	CL	
		CA	ZX14		

Initialization

It is convenient to divide this write-up into two sections. The first describes the initialization phase proper, and the second explains the actual generation. The distinction between the two should be kept in mind at all times.

Running Initialization

There are two classes of operation that may be considered;
(1) functions always performed, and (2) functions whose operation depends upon the circumstances of the particular object program compiled. We may tabulate these two classes as follows:

Functions always performed	Functions sometimes performed
1) Rewind program tape 2) Clear 1 core bank to zero 3) Load GTH coding 4) Load Control coding 5) Load Constant Pool and finally, transfer control to Control coding, to pull in Segment 1	1) Read in and translate "DATA IN$D E X^{\prime \prime}$ from either paper or magnetic tape. 2) Determine which data tapes are required by the program, and check that these are mounted in Uniservos. 3) Load values for a certain class of subscripted variables to their appropriate drum area.

All coding, constants, etc., necessary for all parts of Initialization are written on the Object program tape preceding Segment 1 of the generated coding. See Page 1617, Layout of Object Program Tape.

The coding is entered to H.S.S., and control transferred there at appropriate points, by means of the Object Program Loader Routine, which is part of the UNICODE Service Library (Sect. II, l, c, (2).) The loader performs items 1 and 2 in the list above of "functions always performed". From this point onward, the loader merely loads data, and transfers control to such data as indicated. In other words, computer operations are entireiy guided by what is present on Object Program Magnetic Tape \#1.

In all problems, the first operation at this point is to load the Generalized Tape Handler into the operating locations it will occupy throughout running of the Object Program. After this, the procedure will vary, depending on the program under consideration. We may discuss the case where all possibilities are included, for the sake of completeness, and reference to the diagram on page 1617 should make clear which portions are variable.

From this point initialization may be divided into three sections.
The first two are optional; the third invariant.

Section 1.

This coding is required in one form or another, if, in the compiled program, there are any input subscripted variables. These are defined as subscripted variables either referenced by Read sentences, or appearing only on the right-hand side of equations. This coding causes a "DATA INDEX" to be read in, either from paper tape, or from magnetic tape on Uniservo 2, translates it to the form required by the running program, and then performs certain checking operations.

Because Read sentences specify only variables to be read in, and not the Uniserve on which they are to be found, as in the original UNICODE program, the DATA INDEX is necessary to supply this information. It informs the
computer of the tape on which a given variable is written, its position relative to other data, and its identifying tape label. This permits data to be referenced in the program by one symbol, and labelled on tape by a different name.

After the index has been set up, the next operation scans the index, checking that all variables required by input operations at various stages of running are present. While this is being done, a list is built of the Uniservo numbers containing the data required, and the next operation in sequence rewinds all these servos, and checks that they do, in fact, hold data tapes. Note that checking does not go so far as to check the contents of these data tapes. This would be excessively time-consuming, and if a tape is found at a later stage which does not contain data that the index says it should, the machine will stop, and a correct tape may then be substituted.

A further operation of this section is to build a list of all input variables (see previous definition) not specifically referenced by Read sentences. This list, called List B, is for use by Section 2 of Initialization. Its format is shown on page 1618.

When all these operations are satisfactorily completed, control is returned to the loader, which pulls in more tape from Uniservo 1 , and acts according to the data thereon. This will probably be Section 2 of initialization, described below.

Section 2.

This section is needed whenever the "automatic data read-in" facility is utilized. It accepts as input LIST B, produced by the preceding section of Initialization, which contains the XS3 representations of the variables required, the number of values of each required (the modulus), and the drum addresses pertaining. The conditions under which subscripted variables are "automatically" read in are:

1) The variable should appear only on the right=hand side of equations.
2) The variable is not referenced by any Read sentence.

The number of values specified by the relevant Dimension statement are read in. If there are less than this on tape, the computer will indicate this and stop. On continuing, the remaining values are filled in with zeros.

The basic reading is performed by a subroutine essentially identical to the Read library subroutine. The annotated coding and flow charts for this Subroutine begin on page 106 of this manual, and should be consulted for further information.

At the conclusion of operations, control is returned to the UNICODE Loader to pull in more tape and perform the remaining functions of Initialization.

Section 3.

This includes all the remaining operations of Initialization, which are always performed, whatever the nature of the program compiled. They are a series of loading operations, followed by a transfer to an IP command which causes UNICODE Control to take over and initiate the running of Segment 1.

The material loaded is listed below in the order of loading.

1) UNICODE Control
2) Segment table
3) IP order
4) Constant Pool

Initialization Generation.
The generation of Initialization takes place after the Allocation phase. The generation itself is relatively simple. First, the leading sentinels and the GTH are written on tape. Then some tests are made on the contents of the Dimension List to determine which, if any, variables are input variables. Depending on the results, values for the I/0 fixed locations and such variable coding as may be necessary are written on tape, together with LIST A. Finally, Control is written, followed by the table of Segment lengths and the Constant Pool. The Constant Pool is preceded by an IP order, designed, when operative, to pull in Segment 1 and start running.

* Indicates those sections which may be absent

Layout of Object Program Tape

List A format (built by Initialization Generation)
This list is derived from the Dimension List and includes all subscripted variables that are to be read in for a program.

List B format (built by Initialization, Section 1)
This list is derived from List A and includes all variables to be automatically read.

RE GI2000
RE IG2000
RE IA2354
RE ID3460
RE ON4274
RE TG4461
RE WB5300
RE FL5470
RE DL42102
RE CL50102
RE ST653
RE TN20
RE GH2l
RE UP421
RE BR537
RE RB640 $\}$
RE HD115
RE LG400
RE FXI000
RE LIll04
RE IN2000
RE LN614
RE DD1750
RE LC165
RE LT21
RE ZA77000

Loading address
Coding for Initialization Generation
Stored coding for Section 1 of
Initialization
Stored coding for Section 2 of Initialization
Stored coding for Control Section
Stored coding for Tape Handler
Output buffer
List A
Dimension List
Constant Pool
Segment Table
Indicator word for number of Uniservos
Tape handler for compilation Uniprint Routine
Compiler Inconsistency Routine
$\mathrm{HD}+73=$ operating address of Object Program Tape Handler
Length of Tape Handler
Fixed I/0 locations
Length of Section 1
Initial operating address of Section 1 Length of Section 2
Initial operating address of Section 2
Length of Control Section
Length of Segment Table
Service Routine

Initialization Generation

		IA GI		
IG	0	TP $1 \mathrm{IG304}$ RJ IG250	$\left.\begin{array}{l}\text { A } \\ \text { IG246 }\end{array}\right\}$	Rewind appropriate servo (3 or 6)
	2	TP IG327	WB	```Set lst word (loading address + W.C. for 3 bkts.)```
	3	RP 10023	IG5 \}	Fill in rest of lst bkt. with Z---Z
	4	TP IG251	WB1 $\}$	Fill in rest of lst bkt. with $\mathrm{Z}-\mathrm{-L}$
	5	RP 30004	IG7 $\}$	UNICODE \triangle OBJECT \triangle PROGRAM \triangle
	6	TP IG252	WB24	
	7	RP 10044	IG11 $\}$	Fill in 2nd and 3rd bkts. with Z--Z
	10	TP IG251	WB30 $\}$	Fill in 2 nd and 3rd bkts. with $2--2$
	11	TP IG330	IG230	Set index to length of (stored) GTH
	12	TP IG331	IG232	Set "Load Add. Temp" store (no word count)
	13	TU IG332	IG221	Initialize to start of (stored) GTH
	14	TP IG265	IG231	Set block index to 738
	15	TV IG307	IG221	Initialize to WB74
	16	RJ IG220	IG217	Go write GTH
	17	RJ IG242	IG233	Conclude any unfinished block
	20	TP IG302	IG353	```Set indicator for "no index" (large twe no.)```
	21	TV IG126	IG145	Assume no "Automatic Read"
	22	TP IG273	WB	First CW is 77000
	23	TP IG262	WB1 $\}$	Set index to \# of 77-m. type CW's
	24	TV 6	WB1 $\}$	Set index to \# of 77-m type CW's
	25	TV IG310	IG107	Initialize List A building to start at FLl
	26	TP IG262	FL	Zeroize List A item counter
	27	TP IG263	IG112	$l \rightarrow$ List A line counter
	30	TU 6	IG34	Set up RP
	31	IJ WBl	IG33	
	32	MJ 0	IG113	Exit to next section
	33	TP WB	A	CW for extraction \rightarrow A
	34	$\mathrm{RP}[0]$	BRI	Alarm if not present
	35	EJ DL	IG36	
	36	SN Q	17	
	37	SA IG34	0	
		CA GI40		
IG		IA GI40		
	40	SA IG35	0	
	41	TU A	IG42	
	42	TP [30000]	Q	" X " and mod. line \rightarrow Q
	43	QT IG303	A	Inspect all " X "
	44	ZJ IG70	IG45	Auto-read required?
	45	TV IG311	IG145	Yes. So note (\rightarrow IG146)
	46	QT IG301	WB2	Extract modulus from u-field
	47	TJ IG300	IG62	Test with 2,501 10
	50	TU IG42	IG52	Too large an array.
	51	RS IG52	IG275	
	52	$\mathrm{TP}[30000]$	IG314	Go back 2 lines for XS3 rep.

	130	TU IG274	WB	And set word count \rightarrow l
	131	RJ IG250	IG245	Now write block
	132	IJ IG353	IG155	Index wanted?
	133	TP IG337	IG230	Yes, set in length of Init. (1)
	134	TP IG340	IG232	Set "Loading Add. Temp" store. (no word count)
	135	TU IG341	IG221	Initialize to where Init. (1) stored.
	136	RJ IG220	IG214	Go write tape
	137	TP IGl12	IG230	Now, add List A. Set index
		CA GI140		
		IA GI140		
IG	140	TU IG101	IG221	Pick it up from FL
	141	RJ IG220	IG217	Go write tape
	142	RJ IG242	IG233	Conclude any unfinished block
	143	TP IG340	WB	Set "transfer" word
	144	RJ IG250	IG243	And fill in rest of block
	145	MJ 0	[30000]	Automatic read wanted? (if not IGl55)
	146	TP IG342	IG230	Yes. Set index to length of Init. (2)
	147	TP IG343	IG232	Set "Loading Add. Temp" store
	150	TU IG344	IG221	Initialize to where Init. (2) is stored.
	151	RJ IG220	IG214	Go write
	152	RJ IG242	IG233	Conclude any unfinished block
	153	TP IG343	WB	Set "transfer" word
	154	RJ IG250	IG243	And fill in rest of block
	155	TP IG345	IG230	Set index to length of Control (Excluding Seg. Tab)
	156	TP IG346	IG232	Set "Loading Add. Temp" store
	157	TU IG347	IG221	Initialize to where Control is stored.
	160	RJ IG220	IG214	Go write
	161	TP IG350	IG230	Set index for length of segment table
	162	TU IG351	IG221	Initialize to where ST is stored.
	163	RJ IG220	IG217	Go write ST
	164	RJ IG242	IG233	Conclude any unfinished block.
	165	TP 10	Q $\}$	Using v mask, note initial address of CP
	166	QT IG272	A $\}$	Using v mask, note initial address of CP
	167	ST IG263	WB	Subtract 1 to leave room for IP
	170	TP A	IG232	Set "Loading Address Temp" store
	171	TP A	IG353	Save it for "transfer" word
	172	TU IG274	WB	Set W.C. $\rightarrow 1$ (as at least IP)
	173	LQ 10	Q25 $\}$	
	174	QT IG271	IG230	length of CP
	175	TU IG352	IG221	Initialize to where CP stored.
	176	TP IG306	WB1	Basic IP
	177	TV 12	WB1	
		CA GI200		
IG		IA GI200		
	200	RA WBl	IG263	Increment by 1 to complete IP
	201	TP IG266	IG231	Set block index to 165
	202	TV IG65	IG221	Initialize to WB2

	203	RJ IG220	IG217	Go write
	204	RJ IG242	IG233	
	205	TP IG353	WB	Set "transfer"
	206	RP 30004	IG210	END \triangle OF Δ INIT
	207	TP IG256	WB1	
	210	RP 10163	IG212	Fill with Z---Z
	211	TP IG251	WB5 $\}$	
	212	RJ IG250	IG245	
	213	MJ 0	ZA10	End. Back to Service Routine.
	214	TP IG267	IG231	Set index $\rightarrow 166$
	215	TV IG4	IG221	Initialize to WBl
	216	TP IG232	WB	Write lst word ([W.C.] l.a.)
	217	IJ IG230	IG221	Jump on main index
	220	MJ 0	[30000]	Exit
	221	TP [30000]	[30000]	
	222	RA WB	IG274	Count 1 word.
	223	RA IG22l	IG277	
	224	IJ IG231	IG217	Jump back on block index.
	225	RJ IG250	IG245	Block full-go write it. Increment "Ld. Add. Temp." by 167 (V)
	226	RA IG232	IG270	
	227	MJ 0	IG214	
	230	[0 0	0]	Main index
	231	[0 0	0]	Block index
Write (2)	232	[0 0	0]	"Loading address temp" store. If block index $=166_{8}$, no partial block to finish
	233	SP IG231		
	234	EJ IG267	IG242	
	235	TV IG22l	IG236	
	236	TP IG251	[30000] $\}$	Fill with Z---Z
	237	RA IG236	IG263	
		CA GI240		
		IA GI240		
IG	240	IJ IG231	IG236	Go write
	241	RJ IG250	IG245	
	242	MJ 0	[30000]	Exit
Write	243	RP 10167	IG245	Fill with Z---Z
(3)	244	TP IG251	WB1 $\}$	
	245	TP IG305	A	Go write on tape
	246	AT TN	GH3	
	247	RJ GH2	GH	
	250	MJ 0	[30000]	Exit
	251	7474747	47474	Z Z Z Z Z Z (xs3)
	252	6750342	65127	
	253	3001512	54430	E $\left.\begin{array}{llllll}\text { E } & 0 & \mathrm{~B} & \mathrm{~J} & \mathrm{E} \\ \mathrm{C} & \mathrm{T} & \triangle & \mathrm{P} & \mathrm{R} & 0\end{array}\right\}$ (XS3)
	254	2666015	25451	$\left.\begin{array}{llllll}\mathrm{C} & \mathrm{T} & \Delta & \mathrm{P} & \mathrm{R} & 0 \\ \mathrm{G} & \mathrm{R} & \mathrm{A} & \mathrm{M} & . & \Delta\end{array}\right\}$
	255	3254244	72201	
	256	3050270	15131	
	257	0134503	46634	
	260	2446346	52466	$\begin{array}{cccccc}\text { A } & \mathrm{L} & \mathrm{I} & \mathrm{Z} & \mathrm{A} & \mathrm{T} \\ \mathrm{I} & 0 & \mathrm{~N} & \Delta & \Delta & \Delta\end{array}$
	261	3451500	10101	
	262	00	0	I $\quad 0 \quad \mathrm{~N} \quad \triangle \Delta \Delta \Delta$
	263	00	1	
	264	00	63	${ }^{51}{ }_{10}$

342	0	0	LN	Length of section (2) of Init.
343	0	0	DD	Initial running address of Section
344	0	ID	0	Stored here
345	0	0	LC	$\left.\begin{array}{l}\text { Length of Control (excluding Seg. } \\ \text { Table) }\end{array}\right\}$
346	0	0	1	Initial running address
347	0	ON	0	Stored here
350	0	0	LT	Length of Segment Table $\}$
351	0	ST	0	Stored (formed) here $\}$
352	0	CL	0	Const. Pool stored here
353	[0	30000	$30000]$	Indicator
	CA	GI354		

Flow Chart, General Layout of Section 1 of Initialization

Flow Chart (cont.)
Section 1 of initialization, Part 1

Section 1 of Initialization

RE IA2354
RE IN2000
RE MR2027
RE TX2220
RE GN2257
RE BP2313
RE TP2320
RE ST2323
RE BM2337
RE MT2363
RE DP2366
RE YW2402
RE XW2414
RE YH2527
RE XH2534
RE CN2605
RE CL2707
RE LP2747
RE ZR3101
RE LA3104
RE LB7475
RE TL660
RE TM700
RE TB1
RE GT210
RE FX1000

RE PR77250
RE DA77300
RE LD1500
IA IA
IN
$\left.\begin{array}{rll}0 & \text { TV CN2 } & \text { MR132 } \\ 1 & \text { TV FX } & \text { ST1 } \\ 2 & \text { TP CN4 } & \text { ST12 } \\ 3 & \text { TP CL } & \text { ST13 } \\ 4 & \text { TP CN10 } & \text { FX1 } \\ 5 & \text { TV CN40 } & \text { MR152 } \\ 6 & \text { TV CN41 } & \text { MR107 } \\ 7 & \text { TP CN4 } & \text { TM3 } \\ 10 & \text { TP CN10 } & \text { TL } \\ 11 & \text { TP LP4 } & \text { MR150 } \\ 12 & \text { MJ 10000 } & \text { IN16 } \\ 13 & \text { EF 0 } & \text { BP4 } \\ 14 & \text { ER 0 } & \text { A } \\ 15 & \text { MJ 0 } & \text { MR1 } \\ 16 & \text { EF 0 } & \text { CN100 } \\ 17 & \text { TP CN77 } & \text { GT3 } \\ 20 & \text { RJ GT2 } & \text { GT } \\ 21 & \text { TP CN6l } & \text { A }\end{array}\right\}$

Loading Address
(27)
(171)
(37)
(34)
(5)
(3)
(14)
(24)
(3)
(14)
(12)
(113)
(5)
(51)
(102)
(40)
(132)
(3)

Operating address of program
(Total length $=11048$ words)

List A
List B
(12) Temporaries in Termination Buffer
(5)

Buffer
Tape Handler during Object Program
Fixed I/O locations.
Flex print Routine Object Program Loader Running address of Loader.
$\mathrm{N} \rightarrow \mathrm{N}_{1}$ (Enable 2nd pass)
Initialize $S T$
Zeroize vble. counter
Start FXl with [$0 \quad 20000$ 0 \quad]
$Q \longrightarrow Q_{1}$
$M \longrightarrow M_{2}^{1}$
1 Group counter
Initialize Tape List Index
Set EP (1)
P or M ?
P - Throw away 1 frame
\longrightarrow Main Routine
Mag. tape. Rewind \#2
Read 1 block forward
$\mathrm{Z}-\mathrm{-}-\mathrm{Z} \longrightarrow \mathrm{A}$

	46	QT TM2	A	Inspect lst two digits
	47	EJ CN54	MR 52	$=01$?
	50	TP TM2	0	No, result to Q, all finished
	51	MJ 0	MR 55	
	52	QS CN53	TM2	Yes, replace by 77
	53	LQ TM2	6	and shift left
	54	MJ 0	MR 45	
	55	RJ STll	ST	Now Q holds 77 format. Store (counting l vble)
	56	SP TX1	0	Separating symbol \rightarrow A
	57	EJ CL21	MR67	= ?
	60	RJ TX	TX3	No, get more information
	61	EJ CN55	MR 67	Is output Δ _ Δ ?
	62	TP TM1	Q	No, so = was not seen. Prepare to store previous, meanwhile preserving new information
	63	TP A	TM1	
	64	RJ STll	ST1	Store old name
	65	TP TMl	A ${ }^{\text {a }}$,	Now go investigate new information
	66	MJ 0	MR 40 \}	Now go investigate new information
	67	RJ TX	TX3	$=$ seen. Obtain synomyn
	70	TP A	Q $\}$	and store it
	71	RJ STIl	ST1	
	72	MJ 0	MR37	Then back to look for more.
	73	RJ GN	GN1	Obtain check \#
	74	EJ ST13	MR77	Correct?
	75	TP LP64	MR151	No. $\}$ Alarm
	76	RJ $\mathbb{R} 170$	MR152	$\}^{\text {Alarm }}$
	77	TP CL	ST13	Zeroize check counter
		CA IA127		
		IA IAl27		
MR	100	MJ 0	MR 37	
TAPE	101	RJ $\mathbb{N R 1 4 7}$	MR141	Act appropriately
	102	RA TM3	CN4	Up group count by l
	103	MJ 0	MR 16	and back for tape \#
END	104	MJ 10000	MR106	P. or M.?
	105	MJ 0	MR 107	P - jump.
	106	EF 0	CN100	M - rewind \# 2
	107	MJ 0	[30000]	
(2)	110	RJ MR147	MR141	Act appropriately
Z_{1}	111	TP LP40	$\text { PR } 3$ PR	Index OK. TAPES LISTED ARE \downarrow
(good)	113	TP CL	TM2	Zeroize index
	114	TV TL	TM2	Set it up.
	115	TU MR27	MR 120	Initialize
	116	IJ TM2	MR120	Jump on index
	117	MJ 0	MR124	All through-out
	120	TP [30000]	A	1 tape \# to A
	121	RJ DP13	DP	Print it
	122	RA MR120	CN50	Increment by l "u"
	123	MJ 0	MR116	Back for more
	124	PR 0	CL7	Period

	125	PR 0	CLII	Carriage return
	126	PR 0	CLlı	Carriage return
	127	MJ 0	YW	Exit (Normal)
(2)	130	TP MR 150	PR3 3	EP Box
(bad)	131	RJ PR2	PR ${ }^{\text {Pr }}$	
	132	RJ MR132	[30000]	(Initially MR 134)
	133	MJ 0	ZR	Exit (Get off machine)
	134	TP LP32	PR3 $\}$	HIT START T0 TRY AGAIN, ETC.
	135	RJ PR2	PR $\}$	Hit Start 10 IRY Again, EIC.
	136	SP CL	0	Clear A
	137	MS 0	MR 140	Stop
		CA IAl67		
		IA IA167		
MR	140	ZJ ZR	INI	(Non zero - get off machine exit)
	141	TP CN75	Q	\triangle TAPE $\triangle \longrightarrow \mathrm{Q}$
	142	RJ STIl	ST1	\longrightarrow index
	143	TP TM	Q	Tape \# \longrightarrow Q
	144	RJ STll	ST1	\longrightarrow index
	145	TP CL35	Q $\}$	leave room (cleared) for indicator
	146	RJ STll	ST1 $\}$	leave room (cleared) for indicator
	147	MJ 0	[30000]	
Error	150	[0 30000	$30000]$	EP parameter.
Btne.	151	[0 30000	$30000]$	REP parameter.
(IV)	152	MJ 0	[30000]	Entry. Initially MR 153
	153	TV CN41	MR 107	$\mathrm{M} \longrightarrow \mathrm{M}_{2}$
	154	TP LP16	MR150	Set EP (3)
	155	TP LP46	PR3	Prepare for Print-out
	156	RJ MR152	MR160	$\mathrm{Q} \longrightarrow \mathrm{Q}_{2}$
M	157	TP LP47	PR3	
	160	RJ PR2	PR	Go print
	161	SP TM3	0	Group count \rightarrow A
	162	PR 0	CL3	Shift down
	163	RJ DP13	DP	Print group count.
	164	PR 0	CL10	Space
	165	PR 0	CL2	Shift up
	166	TP MR151	PR $\}$	Specific diagnosis
	167	RJ PR2	PR	
	170	MJ 0	[30000]	Exit
		CA IA220		
		IA IA220		
TX	0	MJ 0	[30000]	Exit.
	1	$\left[\begin{array}{ll}0 & 30000\end{array}\right.$	$30000]$	Output line (for cut-off symbol)
	2	$\left[\begin{array}{cc}0 & 30000\end{array}\right.$	$30000]$	Input line (value for index setting)
	3	TP CN55	TX36	Entry. Fill word with $\Delta \ldots$
	4	TP TX2	TM2	Set index
	5	MJ 10000	TX10	P or M?
	6	RJ TPl	TP	P. Find start
	7	MJ 0	TX14	Go translate
	10	RJ MTI	MT	M. Find start
	11	MJ 0	TX21	
	12	MJ 10000	TX20	P or M?
	13	RJ BP2	BP	P - Find next frame.
	14	SA CN	17	
	15	TU A	TX16	Translate
	16	TP [30000]	A	
	17	MJ 0	TX21	

20	RJ BM	BMI	M - Find next character
21	RP 20006	TX23	Exit $\left\{\begin{array}{l}\text { FLEX } \Delta \text { cr tab. } ; \\ \text { XS3 i } \Delta=,\end{array}=\right.$
22	EJ CLl4	TX33	
23	LQ TX36	6	
24	TP CLl	Q	Mask \rightarrow Q
25	QS A	TX36	Insert new character
26	IJ TM2	TX12	
27	TP LP70	MR151 $\}$	Alarm
30	RJ MR170	MR152	
31	TP CN54	TM2	Reset index to large value
32	MJ 0	TX12	
33	TP A	TX1	
34	TP TX36	A	Output to A
35	MJ 0	TX	
36	[0 30000	30000]	Word assembly space
	CA IA257		
	IA IA257		
0	MJ 0	[30000]	Exit
1	TP CL	GN33	Zeroize working store
2	MJ 10000	GN7	P or M?
3	RJ TPl	TP	P. Get lst character
4	EJ CN32	TP	Throw away =
5	RP 20012	GN30	Check down digit list
6	EJ CL22	GN14	
7	RJ MTI	MT	Mag. Tape - Find lst character.
10	EJ CL21	MT	Throw away =
11	TJ CN56	GN13	Should be < 158
12	MJ 0	GN30	
13	ST CN37	Q	Subtract $3 \longrightarrow$ Q
14	SP GN33		Multiply previous by 10
15	SA GN33		
16	QA CL33	GN33	Add in new figure P or M ?
17	MJ 10000	GN23	
20	RJ BP2	BP	P - get next ch.
21	RP 20005	GN5 $\}$	Exit if Δ cr tab . , FLEX
22	EJ CL6	GN26	
23	RJ BM	BM1	M. Get next ch.
24	RP 20006	GN11 $\}$	Exit if $\Delta=\mathrm{i}$, . ; XS3
25	E J CLl4	GN26	
26	SP GN33	0	$\text { Result } \longrightarrow A$
27	MJ 0	GN	
30	TP LP74	MR151 $\}$	Alarm
31	RJ MR170	MR152	
32	MJ 0	GN17	
33	[0 30000	$30000]$	Erasable
	CA IA313		
	IA IA313		
0	EF 0	BP4	
1	ER 0	A	

	1	$\begin{array}{ll} \text { RP } & 20005 \\ \text { EJ } & \text { CL14 } \\ \text { CA } & \text { IA3366 } \end{array}$	[30000] BM1	(Discard i Δ, . ;
DP		IA IA366		
	0	DV CN72	Q	Quantity given in A. Divide by 10
	1	TP A		
	2	TN Q	A	Tens figure zero?
	4	AT CL34	DP5	No, form print order
	5	[0 0 30000	$30000]$	
	6	TP CL34	A	Dummy print again
	7	ST TM4	DP10	form print order for units
	10	$\left[\begin{array}{cc}0 & 30000\end{array}\right.$	30000]	
	11	PR 0	CL10	
	12	PR 0	CL10	Then 2 spaces
	13	MJ 0	[30000]	Exit
		CA IA402		
Initialization for XW				
YW		IA IA402		
	0	TV XW106	XW74	Enable restart after lst error pass
	1	TU FX	XW16 $\}$	
	2	TU FX1	XW15	Set up index-scanning
	3	TV XW107	XW53	Initialize error print-out section
	4	TP CN10	TL	Set Tape List index to 0200000
	5	TV XW110	XW1	Set normal exit (YH)
	6	TU XW106	XW2	Scan List A from LAl \}
	7	TP LA	TM1	Set index $\}$ LA
	10	TV XWill	XW50	Build List B from LBl
	11	TP CL	LB	and set index
		CA IA414		

First Run-Through Data List, and Preliminary Checking.

XW	0	IA IA414 IJ TM1	XW2	Jump on List A index
	1	MJ 0	[30000]	Exit when all completed
	2	TP[30000]	A	Examine one item.
	3	TP A	TM	Save it in temp
	4	TP CN53	Q	Op field mask \longrightarrow Q
	5	QT A	A	and examine 0p. field
	6	ZJ XW14	XW7	
	7	RJ XW52	XW47	Zero, . . a "mod. Ed.a" line build List B
	10	RA XW2	CN50	So
	11	TU A	XW12	extract
	12	TP [30000]	TM	next line (XS3 name)
	13	RJ XW52	XW50	and store it as well, in List B
	14	TP TM	A	Now, name to A
	15	RP[0] ${ }^{\text {c }}$	XW53	Scan index. (Alarm, if not present)
	16	EJ[30000]	XW17 $\}$	
	17	SN 0	17	
	20	SA XW15	0	
	21	SA XW16	0	
	22	TU A	XW27	Set up EJ for continued search
	23	LQ Q	17	
	24	TU Q	XW26	Set up RP
	25	TP CN75	A	[\triangle TAPE Δ to A
	26	$\mathrm{RP}[0]$	XW103	Continue to scan index, searching for
	27	EJ[30000]	XW30 $\}$	tape \#
	30	SN Q	17	
	31	SA XW26	0	
	32	SA XW27	0	
	33	TU A	XW34	
	34	SP [30000]	0	Tape \# \rightarrow A
	35	TP A	TM	and save it
	36	TU TL	XW37	
	37	$\begin{aligned} & \mathrm{RP}[0 \quad] \\ & \mathrm{CA} \mathrm{IA} 454 \end{aligned}$	XW41	
XW		IA IA454		
	40	EJ TLl	XW45	Scan referenced tape list
	41	TV TL	XW43	Not yet present - so insert it
	42	RA XW43	CN101	
	43	TP TM	[30000]	
	44	RA TL	CN47	Increment index
	45	RA XW2	CN50	Prepare to scan further down list
	46	MJ 0	XW	
	47	RA LB	CN4	
	50	TP TM	[30000]	
	51	RA XW50	CN4	
	52	MJ 0	[30000]	

	53	MJ	0	[30000]	Initially XW54. Error Routine.
	54	TP	LP110	PR3	Print: FOLLOWING VARIABLES NOT
	55	RJ	PR2	PR	INCLUDED IN INDEX.
	56	TV	XW112	XW1	Amend exit from main routine (to XW 73)
	57	RJ	XW53	XW60	
	60	TP	CN74	TM2	2nd and subsequent errors here. $5 \rightarrow$ index
	61	LQ	TM	6	Shift one character over
	62	QT	CLI	A	Extract it
	63	RP	20074	XW71	
	64	EJ	CN1	XW65	
	65	SN	Q	17	Compute and print Flex-code
	66	SA	XW63	71	
	67	PR	0		
	70	IJ	TM2	XW61	
	71	PR	0	CLll	Carriage return, when fully printed
	72	MJ	0	XW45	
	73	PR	0	CLIl	Extra CR
	74	RJ	XW74	[30000]	Error END. Initially XW76
	75	MJ	0	ZR	2nd time - get off machine
	76	TP	LP32	PR3	lst time: HIT START T0 TRY AGAIN
	77	RJ CA	PR2 IA514	PR	1st time: Hif Start to iry again
		IA	IA514		
XW	100	SP	CL	0	Clear A
	101	MS	0	XW102	Stop
	102	ZJ	ZR	YW1	If $A \neq 0$, get off machine; otherwise, try again
	103	TP	LP131	PR3	
	104	RJ	PR32	PR	Print: MACHINE ERROR
	105	MJ	0	ZR	G-0-M
	106	0	LA1	XW76	
	107	0	0	XW54	
	110	0	0	YH	Constants.
	111	0	0	LB1	
	112	0	0	XW73	
			IA527		

Initialization for XH
IA IA527

0	TP CL	TM3
1	TV TL	TM3
2	TV XH46	XH1
3	TU XW40	XH2
4	TV XH47	XH17
	CA IA534	

Set index
Set normal exit: BACK TO LOADER Start list at TLI Initialize error procedures

XS3 - Stored by Flex.

			IA605		
CN	0	0	0	CN	
	1	0	0	66	T
	2	0	0	MR134	
	3	0	0	51	0
	4	0	0	01	$\bar{\Delta}$
	5	0	0	33	H
	6	0	0	50	N
	7	0	0	47	M
	10	0	20000	0	
	11	0	0	46	L
	12	0	0	54	R
	13	0	0	32	G
	14	0	0	34	I
	15	0	0	52	P
	16	0	0	26	C
	17	0	0	70	V
	20	0	0	30	E
	21	0	0	74	Z
	22	0	0	27	D
	23	0	0	25	B
	24	0	0	65	S
	25	0	0	73	Y
	26	0	0	31	F
	27	0	0	72	X
	30	0	0	24	A
	31	0	0	71	W
	32	0	0	44	J
	33	0	0	14	9
	34	0	0	67	U
	35	0	0	53	Q
	36	0	0	45	K
	37	0	0	03	0
		CA	IA645		
CN		IA	IA645		
	40	0	0	MR153	
	41	0	0	MR130	
	42	0	0	22	-
	43	0	0	MR110	
	44	0	0	76	$=$
	45	0	0	01	cr $=>\Delta$
	46	0	0	21	,
	47	0	1	1	
	50	0	1	0	
	51	0	0	01	tab $=>\Delta$
	52	0	0	04	1
	53	77	0	0	
	54	01	0	0	

55	0101010	10101	
56	00	15	
57	00	167	
60	00	13	8
61	7474747	47474	2-----Z
62	00	10	5
63	0134505	26766	\triangle INPUT
64	00	07	4
65	3424254	63065	IABLES
66	00	11	6
67	0101013	05027	$\Delta \Delta \triangle E N D$
70	00	06	
71	0101662	45230	$\triangle \triangle$ TAPE
72	00	12	7
73	0126333	02645	\triangle CHECK
74	00	05	2
75	0166245	23001	\triangle TAPE \triangle
76	020150	150	Limit for index
77	50102	TB	GTH code for read l blk. forward(\#2)
100	0200200	20000	Rewind Uniservo 2
101	00	TLl	Constant
	CA IA707		

20	06	03010	43112	$\mathrm{N} \quad 0 \quad \mathrm{~T} \triangle \mathrm{~W}$ R	
21	14	01012	00604	$\begin{array}{lllllll}\text { I } & \mathrm{T} & \mathrm{T} & \mathrm{E} & \mathrm{N} & \triangle\end{array}$	BM Special
22	03	06040	13015	$0 \mathrm{~N} \triangle \mathrm{~T}$ A P	alarm
23	20	45450	00000	E Cr Cr	
24	0	LP17	5		
25	04	04040	40514	$\triangle \triangle \triangle \triangle H \quad \mathrm{I}$	
26	01	04240	13012	$\mathrm{T} \triangle \mathrm{S}$ T A R	
27	01	04010	30401	T $\triangle T \quad 0 \triangle T$	
30	12	25043	01330	R Y \triangle A G A	
31	14	06454	50000	I N Cr Cr	
32	0	LP25	5		
33	45	47140	62220	Cr \uparrow I N D E	
34	27	04033	60404	$\mathrm{X} \triangle 0 \mathrm{~K} \triangle \triangle$	
35	01	30152	02404	T A P E S S \triangle	
36	11	14240	12022	$\begin{array}{lllllll}\text { L } & \text { I } & \text { S } & \text { T } & \mathrm{E} & \mathrm{D}\end{array}$	
37	04	30122	00457	$\triangle A R E \triangle \downarrow$	
	CA	IA1007			

IA IA1007

LP 40	0	LP33	5			
41	45	47223	00130	$\mathrm{Cr} \uparrow$ D A T	A	
42	04	14062	22027	$\triangle \mathrm{I}$ N D E	X	
43	04	20121	20312	$\triangle \mathrm{E}$ R R 0	R	Error
44	24	45454	50000	S Cr Cr Cr-	-	print-out
45	13	12033	41504	$\begin{array}{llllll}\text { G } & \mathrm{R} & \mathbf{0} & \mathrm{U} & \mathrm{P}\end{array}$		headings
46	0	LP41	5			
47	0	LP45	1			
50	14	11112	01330	I L L E E G	A	
51	11	04013	01520	$\mathrm{L} \triangle \mathrm{T}$ A P	E	
52	04	06034	54500	$\triangle \mathrm{N} 0 \mathrm{Cr} \mathrm{Cr}$	-	(1)
53	0	LP50	3			
54	22	34151	11416	D U \quad P L I	C	
55	30	01200	40130	A T E \triangle T	A	(2)
56	15	20040	60345	P E \triangle N 0	Cr	
57	45	0	0	Cr		
60	0	LP54	4			
61	16	05201	63604	C H E C	\triangle	
62	14	06160	31212	I N C C	R	(3)
63	20	16014	54500	E C T Cr Cr	-	
64	0	LP61	3			
65	31	03122	20401	W 0 R \quad D $\quad \triangle$	T	
66	03	03041	10306	$0 \quad 0 \quad \triangle \mathrm{~L}$	N	(4)
67	13	45450	0	Cr Cr Cr		
70	0	LP65	3			
71	14	11112	01330	I L L L $\quad \mathrm{E}$ G	A	
72	11	04221	41314	L \triangle D I G	I	
73	01	45450	0	T Cr Cr		
74	0	LP71	3			
75	03	17201	22611	0 V ${ }_{0}$	L	
76	03	31454	50000	0 W Cr Cr-		
77	0	LP75	2			
	CA	IA1047				

RE	ID3460	Loading address
RE	DD1750	(46)
RE	IN2016	(12)
RE	DR2030	(67)
RE	BM2117	(30) Operating addresses of
RE	ST2147	(15) program
RE	PS2164	(65) (total length $=6148$
RE	SC2251	(10) words)
RE	MF2261	(7)
RE	TB2270	(12)
RE	EP2302	(17)
RE	GG2321	(170)
RE	CF2511	(53)
RE	BF1	Buffer
RE	GT210	Tape Handler during Object Program
RE	FX1000	Fixed I/0 locations
RE	TN660	(1)
RE	XX661	(5) Temporaries in Termination
RE	CC666	(27) Buffer
RE	IL2571	2500_{10} words of intermediate storage
RE	LB7475	List B
RE	PR77250	Flex print routine
RE	LD1500	Operating address of Object Program Loader

Automatic Data Read-in-Section 2 of Initialization

Dコ

0	TP LB	DD44	Set up List B index
1	TU DD35	DD5	Initialize reading of List B
2	TU DD36	DD13	finitialize reading of List B
3	IJ DD44	DD5	Count down on List index
4	MJ 0	LD1	All through - Exit - BACK TO LOADER
5	TP [30000]	Q	lst of line pair (mod, da) \rightarrow Q
6	TV Q	DD31	Set drum address
7	QT DD37	DD45	Extract modulus
10	AT DD40	DD30	and form drum loading RP
11	LQ DD45	25	Shift to "v" to form index
12	TV DD35	DD21	Initialize
13	TP [30000]	IN1	Name of variable wanted?
14	RJ IN	IN2	Position tape
15	MJ 0	DD13	EOD exit - should never come up
16	IJ DD45	DD20	OK - no count down on quantity req'd
17	MJ 0	DD30	
20	RJ IN	IN3	Obtain 1 word
21	TP Q	[30000]	Store temporarily in core
22	RA DD21	DD42	
23	MJ 0	DD16	
24	TV DD21	DD25	Here on inadequate data - fill with zero
25	TP DD41	[30000]	
26	RA DD25	DD42	
27	IJ DD45	DD25	
30	[0 30000	30000] $\}$	OK - transfer to drum
31	TP IL	[30000] $\}$	OK - transfer to drum
32	RA DD5	DD43	
33	RA DDI3	DD43	
34	MJ 0	DD3	Back for more
35	0 LBl	IL	
36	0 LB2	0	
37	$0 \quad 07777$	0	
	CA ID40		

IA ID40

$\begin{array}{lllll}\text { DD } & 40 & \text { RP } & 30000 & \text { DD32 }\end{array}$
$41 \quad 0 \quad 0 \quad 0$
$42 \quad 0 \quad 0 \quad 1$
$\begin{array}{llll}43 & 0 & 2 & 0\end{array}$
$\left.44 \begin{array}{ccc}{[0} & 30000 & 30000\end{array}\right]$
$45 \quad\left[\begin{array}{lll}0 & 30000 & 30000]\end{array}\right.$
Erasable. List B index CA ID46

The Read Permanent Library Subroutine is inserted from ID46 through ID350. Annotated coding for this subroutine can be found in Section II, 2, b, of this manual.

From ID351 on, the Excess-Three Decimal to Floating Point routine is inserted. This routine is flow charted and explained in Section III, 3, a, under Translation Subroutines.

Control Section for Object Program

During the execution of the Object Program the Control section is entered through F_{2} as a result of an Interpret (IP) command. The IP command is used in the Object Program to provide the required information for suitable transfer of control from one segment to another. The form of the $\mathbb{I P}$ command is:

14 OFFTT XXXXX
Where FF is the number of the segment containing the IP command, TT is the number of the segment to which control is to be transferred, and

XXXXX is the address in segment $T T$ receiving control.
Although there is no actual segment numbered 0 ; an IP command with FF $=0$ and $T T=1$ is built by Initialization Generation to provide the starting point for Segment 1. Thus, when MS2 is set, which provides a computer stop at the end of a segment, a stop will also occur at the end of the imaginary Segment 0 and preceding the read-in of Segment 1. There is, of course, no Termination coding for the imaginary Segment 0.

When control is entered it performs the following tasks:

1) Reads in and executes Termination (if any) for Segment FF.
2) Moves Object Program tape to Segment TT.
3) Reads Segment TT and its Preface (if any) to H.S.S.
4) Executes Preface (if any) for Segment TT.
5) Transfers control into Segment TT at XXXXX given in IP command.

The Move Tape subroutine is dependent on the Segment Table, built by the Segmentation Phase, to determine the correct block count in moving the Object Program tape from Segment FF to Segment TT. The Segment Table is always 1710 words in length, as follows:

TB0				
1	B (0)	B(16)	B(32)	B(48)
2	B (1)	B(17)	B(33)	B (49)
3	B (2)	B(18)	B(34)	B(50)
4	B (3)	B(19)	B(35)	B(51)
5	B (4)	B(20)	B(36)	B(52)
6	B (5)	B(21)	B (37)	B(53)
7	B (6)	B (22)	B(38)	B(54)
10	B (7)	B(23)	B(39)	B(55)
11	B (8)	B(24)	B (40)	B(56)
12	B (9)	B (25)	B (41)	B(57)
13	B(10)	B (26)	B (42)	B(58)
14	B(11)	B(27)	B (43)	B(59)
15	B(12)	B (28)	B (44)	B(60)
16	B(13)	B (29)	B (45)	B(61)
17	B(14)	B(30)	$B(46)$	B(62)
20	B(15)	B(31)	B (47)	B(63)

> XXXXX $=$ address to which all segments of the problem are read from tape.
> $B(K)$ denotes the total number of blocks on the Object Program tape required by Segment K. This includes the Label block, the Segment, the Preface, and the Termination blocks. $\mathrm{B}(0)=0$
> $\mathrm{~B}(\mathrm{~K})=0$ if $\mathrm{K}>$ the
> total number of segments in the problem.

The following conditions are assumed for FF and TT

$$
\begin{aligned}
& 0 \leq \mathrm{FF} \leq 63 \\
& 1 \leq T T \\
& \mathrm{FF} \leq 63 \\
& \mathrm{~F} \mathrm{TT}^{10}
\end{aligned}
$$

To move the tape from Segment FF to Segment TT, two cases must be
considered.
Case l: FF < TT
Case 2 : FF > TT
At the time the tape is to be moved from Segment FF to Segment TT, it is positioned exactly at the end of Segment FF. Hence the number of blocks the tape is to be moved to position it at the beginning of Segment TT is:

```
Case 1: \(B(F F+1)+B(F F+2)+\ldots .+B(T T-1)\)
Case \(2: B(T T)+B(T T+1)+\ldots . .+B(F F)\)
```

The tape is moved forward for Case l, backward for Case 2.

Segment Layout on Object Program Tape

Control Section for Object Program

Regions for UNICODE Control

RE	ON4274	Loading address during Initializa- tion Generation
RE	CT5	Operating address during Object Program
RE	MT77	Move tape routine
RE	KK142	
RE	KT161	
RE	TB166	Segment table
RE	GT210	Tape handler
RE	BU610	Termination buffer
RE	DA77300	Object Program Loader
RE	PR77250	Flex print routine

```
Object Program Control
```

		IA	ON		$\begin{aligned} & \text { Segment from }=F \\ & \text { Segment to }=T \end{aligned}$
		MJ	0	CT	F_{2} : Jump to control
		0	30000	30000	
		0	30000	30000	
		0	30000	30000	
	CT0	TP	0		
	1	SS	KK0	17	Set up address of IP command
	2	TU	A	CT3	
	3	TP	30000	Q	IP command \longrightarrow Q
	4	TV	Q	CT52	Set up exit from Control to segment T
	5	QT	KK13	A	$\mathrm{F} \cdot 2^{2 l} \rightarrow \mathrm{~A}$
	6	LT	17	KTl	$\mathrm{F} \longrightarrow \mathrm{KTl}$
	7	QT	KK14	A	$\mathrm{T} \cdot 2^{15} \longrightarrow \mathrm{~A}$
	10	LT	25	KT2	$\mathrm{T} \longrightarrow \mathrm{KT2}$
(1)	11	MS	20000	CT12	Selective stop at end of segment
	12	TP	KT0		Is there a Termination for segment F ?
	13	ZJ	CT14	CT17	
(2)	14	TP	KK15	GT3	Yes, so read block of Termination
	15	RJ	GT2	GT0	to buffer and execute. Returns
	16	MJ	0	BU0	at CT14 or CTI7
(3)	17	RJ	MT0	MT1	Move tape to segment T
	20	TP	KK15	GT3	Read label block of segment T
	21	RJ	G'2	GT0	
	22	TP	BU2	A	Is this segment T ?
	23	EJ	KT2	CT25	
	24	MJ	0	CT53	No, so go to print alarm
(5)	25	TP	BU4	A	Extract information from label
	26	AT	KK3	GT3	Set up parameter to read full blocks
	27	TV	TB0	GT3	of segment and Preface
	30	TP	BU3	KT0	Set KTO to number of blocks in Termination
	31	TP	BU6	CT50	Set entry for Preface
	32	TP	KK12	KT3	Set up partial block word count
	33	TU	BU5	KT3	
	34	TP	KK16		
	35	AT	KT3	CT44	Set up transfer of partial block
	36	TV	BU5	CT45	
	37	RJ	GT2	GT0	Read full blocks of segment and Preface
	40	TP	KT3		Is there a partial block?
	41	ZJ	CT42	CT46	
(6)	42	TP	KK15	GT3	Yes, so read it to buffer
	43	RJ	GT2	GT0	
	44	RP	30000	CT46	Transfer partial block to operating
	45	TP	BU0	30000	location

(7)	46 47	TP	KT0 CT50	A CT51	Is there a Preface for segment T
	50	RJ	30000	30000	Execute Preface
(8)	51	MS	10000	CT52	Selective stop before operation of segment
(9)	52	MJ	0	30000	Execute segment T
(4)	53	TP	CT60	PR3	Print alarm
	54	RJ	PR2	PR0	
	55	EF	0	CT57	Rewind Object Program tape (Uniservo 1)
	56	MS	0	DAO	Stop
	57	02	200	10000	
	60	0	CT61	11	Parameter
	61	45	47160	30715	$\begin{array}{cr}\text { Cr } & \uparrow \\ \mathrm{C} & 0\end{array} \mathrm{M}$
	62	14	11201	20403	$\begin{array}{lllllll}\mathrm{I} & \mathrm{L} & \mathrm{E} & \mathrm{R} & \triangle\end{array}$
	63	12	04073	01605	R \triangle M A C H
	64	14	06200	42012	$\mathrm{I} N \mathrm{~N}$ E \triangle E R
	65	12	03124	52503	R
	66	34	04073	02504	$\mathrm{U} \triangle \mathrm{M}$ A Y Y \triangle
	67	12	20240	13012	R E $\quad \mathrm{S}$ T T A A
	70	01	04151	20323	T \triangle P R $\quad 0 \quad \mathrm{~B}$
	71	11	20074	55700	L E M M Cr \downarrow
	MT0	MJ	0	30000	Exit
	1	TP	KT2	A	Entry
	2	ST	KTl	A	$\mathrm{T}-\mathrm{F} \longrightarrow \mathrm{A}$
	3	ZJ	MT4	CT53	If $\mathrm{T}=\mathrm{F}$, go to print alarm
	4	SJ	MT5	MT13	Is T > F?
	5	TN	A	A	No, so $\mathrm{F}-\mathrm{T} \longrightarrow \mathrm{A}$
	6	SA	КК0	17	$(\mathrm{F}-\mathrm{T}+\mathrm{l}) \cdot 2^{15} \longrightarrow \mathrm{~A}$
	7	AT	KK4	MT35	Set up repeat summation on Segment table
	10	SP	KT2	17	T $\cdot 215 \rightarrow$ A
	11	TP	KK2	KT4	Pick up move back dummy
	12	MJ	0	MT20	
(10)	13	SS	ККо	17	$\begin{aligned} & \mathrm{T}>\mathrm{F}, \text { so form }(\mathrm{T}-\mathrm{F}-1) \cdot 2^{15} \\ & \text { in } \mathrm{A} \end{aligned}$
	14	AT	KK4	MT35	Set up repeat summation
	15	TP	KTl	A	$\mathrm{F} \rightarrow \mathrm{A} \quad 15$
	16	SA	ККо	17	$(\mathrm{F}+1) \cdot 2^{15} \rightarrow \mathrm{~A}$
	17	TP	KK1	KT4	Pick up move forward dummy
(11)	20	AT	KK5	MT36	Set to pick up first term
	21	RP	30020	MT23	Segment table \longrightarrow buffer
	22	TP	TB1	BU100	Segment table \longrightarrow buffer
	23	TP	KK7	KT3	Set index
	24	TP	KK10	MT31	String out
	25	RP	20020	MT27	Position columns ${ }^{\text {a }}$ the block
	26	LQ	BU100	11	counts of
	27	TP	KK6	Q	the Seg-

30	RP	30020	MT32 J	Mask out columns ${ }^{\text {ment Table }}$
31	QT	BU100	BU0	to simpli-
32	RA	MT31	KKıl	fy the
33	IJ	KT3	MT25	4 columns strung out? summation
34	TP	KK12	A	
35	RP	20000	MT37	Add block counts to determine the number of blocks to move tape
36	SA	BU0	0 \}	
37	LA	A	25	
40	AT	KT4	GT3 \}	Add sum of blocks to parameter and move tape to segment T To exit.
41	RJ	GT2	GT0 $\}$	
42	MJ	0	MT0	
Kк0	0	0	1	
1	30	1	0	Move forward dummy
2	40	1	0	Move backward dummy
3	50	1	30000	Read forward dummy
4	RP	20000	MT37	Repeat summation dummies
5	SA	BU0	0 \}	
6	0	0	777	Segment table column mask
7	0	0	3	
10	QT	BU100	BU0	
11	0	0	20	
12	0	0	0	
13	0	7700	0	Segment "from" mask
14	0	77	0	Segment "to" mask
15	50	101	BU0	Parameter to read one block to buffer
16	RP	30000	CT46	Partial block repeat dummy
KT0	0	0	0	Number of blocks of termination ($=0$ for $F=0$)
1	0	0	0	$\mathrm{F}=$ segment number "from"
2	0	0	0	T = segment number "to"
3	0	0	0	
4	0	0	0	
	CA	ON165		

Object Program Tape Handlers

Since the 1103A and 1105 Tape Handlers which are put on the Object Program Tape by Initialization Generation are the same as those used in the Translation Phase, only their regional assignments are shown here. Flow charting, coding, and an explanation of them may be found in Section III, 3, aTranslation Subroutines.

Object Program Tape Handler Regions

		1103A	$\left\{\begin{array}{l} \text { Loading address } \\ \text { during Initial- } \\ \text { ization Gener }- \\ \text { ation } \end{array}\right\}$		1105	
	RE	TG4461			TG4461	
	[RE	TH210		RE	TH210	
	RE	WB244		RE	RW257	
	RE	WW256		RE	RF264	
	RE	RF270		RE	RB272	
	RE	IA300		RE	IA300	
	RE	RR301		RE	EX301	
	RE	RE321		RE	WB304	
	RE	Ra330		RE	WW316	Length
Length = 3708 words	RE	RB367	Operating ad-	RE	RR330	$=$
	RE	RW377	dresses during	RE	RE346	3658
	RE	MF404	Object Program	RE	MF411	words
	RE	MB415		RE	MB422	
	RE	PC417		RE	PC424	
	RE	WE440		RE	WE445	
	RE	CF451		RE	CC456	
	RE	CC464		RE	CE516	
	RE	CE524		RE	CF534	
	RE	CD547		RE	CD547	
	RE	VV557		RE	VV557	
	RE	CR565		RE	CR564	

VI. PROCESSING PHASE

VI PROCESS ING PHASE

The Processor uses as input the 0p File III for each segment together with the library and generated subroutines with their preludes. From this input the Processor assembles the required subroutines for each segment. As each subroutine is processed, the relatively coded addresses are changed to the proper machine coded operating addresses. Cross reference call words are replaced by the necessary machine coding to accomplish the cross reference, depending on whether the reference is "within a segment" or "from one segment to another". When all the routines for one segment have been processed, the segment together with its Preface and Termination is transferred to Uniservo tape. This tape, containing all the segments in sequence, is the Object Program tape. A more explicit description of the methods used in modifying the relative coding follows.

In the initial stage of the Processor the 0p File III for the segment to be processed is read from tape into High Speed Storage. When this transfer has been completed, the first subroutine is read from the Generated Routines Tape into the Tape Image in High Speed Storage. At this point the tape handling is temporarily suspended and the actual processing begun. The call word for the subroutine is checked against those listed in 0 p File III to determine if the subroutine is referenced in this particular segment. The word following the call word is then checked to see if it has a flag indicating a cross reference to another segment. If the call word is listed in the 0 p File III and is not flagged, the subroutine will be processed at this time. If the subroutine is not to be processed at this time, the next subroutine will be read into the Tape Image and the foregoing procedure repeated. When all the generated routines in the segment have been processed, the Fixed Library
and Standard Library routines are processed in like manner.
The first line to be processed in all cases is the entrance line of the subroutine. Following the modification of this line, each line subject to address modification is processed in order, beginning with the line indicated by the line count of the Tape Image. Each relative address is processed depending on the nature of the coding, to obtain the proper machine coded address.

All addresses within the range 01000 through 07777 are modified as addresses coded relative to 01000; hence, the corresponding absolute address is obtained by subtracting 01000 from the relative address and adding the High Speed Storage operating address for the subroutine in which the address appears. The High Speed Storage operating address for the routine is obtained from the word following the call word for the routine in 0 p File III for the segment. All other addresses to be modified are in the form of call words (see call word section).

Call words of the form 10xxx, 20xxx, 60xxx, and 70xxx are unique only within the routine in which they appear. The absolute addresses corresponding to such call words are obtained by adding the last three digits of the call word to the initial High Speed Storage operating address of the constant or temporary region associated with the call word. These initial addresses are calculated from information in the Prelude of the routine and provided as inputs to the Address Modification Subroutine.

Call words of the form 6lxxx, 63xxx, and 76 xxx are modified to obtain the corresponding absolute address, by adding the last two digits of the call word to the initial High Speed Storage operating address of the Pseudo Operation Input Region. The initial address for the Pseudo Operation Input

Region is that of the thirteenth word of the Termination Buffer, and is stored as a constant in this phase.

Absolute addresses corresponding to call words of the form $62 x x x$ and 75xxx are obtained by adding the last two digits of the call word to the iniثial High Speed Storage operating address of the Function Input Region. The initial address of this Function Input Region is that of the first word of the Termination Buffer and is also stored as a constant in this phase.

Call words of the form $64 \mathrm{xxx}_{\mathrm{t}} 65 \mathrm{xxx}$, or 66 xxx are modified to obtain the corresponding absolute address, by adding the last three digits of the call word to the initial High Speed Storage operating address for the nonsubscripted variables of the Object Program. This initial non-subscripted variable address is obtained from fixed location 00007.

Similarly, call words of the form $67 x x x$ are modified to obtain the corresponding absolute address by adding the last three digits of the call word to the initial High Speed Storage operating address of the Constant Pool for the Object Program. This initial Constant Pool address is obtained from fixed location 00010.

Call words of the form 71 xxx are used to reference absolute addresses in the range 01000 to 01777 and are modified to obtain the absolute address by subtracting 70000 from the call word.

Those call words which reference another routine are of the form $22 x x x$, $23 x x x, 24 x x x, 25 x x x, 26 x x x, 27 x x x, 4 x x x x, 5 x x x x$ and those which reference a subscripted variable data array are of the form 77 xxx . All such call words are considered to be cross-references of the routine, if they appear as addresses to be modified, and must be in Op File III for the segment. If they are not, ALARM 11. COMPILATION INCONSISTENCY (etc.), is typed on the

Flexowriter. With one exception, instructions containing call words of this type are modified by replacing the call word by the High Speed Storage running address of the referenced subroutine or data array. This running address is obtained from the word following the call word in 0p File IIT. The one exception in which this method of modifying a cross reference does not apply is that in which the cross reference is to another segment. Due to restrictions imposed in this system of coding, a reference to another segment occurs only as a one way unconditional jump and is modified by replacing the entire line of coding by an interpret instruction designed to furnish the Control Section with the information necessary to accomplish the desired cross references. This interpret instruction is obtained from the word following the call word in 0 p File III. It contains the segment number from which the jump is made, the segment number to which the jump is made, and the High Speed Storage running address in the latter segment. When a reference is made to a line of another subroutine other than the entrance line, the line to be modified contains the call word of the referenced subroutine.

When a reference is made to a line in another subroutine other than the first line, the instruction in which the reference is made contains the call word of the referenced routine. This instruction is followed by a special line of coding of the form $10-x x x x x-x x x x x$, called a "ten" line. This "ten" line contains the number of the referenced line relative to the first line of the referenced routine. This number will be in the same portion of the "ten" line, i.e., " u " or " v " address, as the call word in the referencing instruction. In processing a reference of this type, the call word is modified as previously mentioned, to obtain in the referencing instruction, the High Speed operating address of the first line of the referenced routine. After both
addresses of this instruction have been modified, the contents of the "ten" line, less the op. code, are added to the instruction to change the High Speed Storage address(es) from that of the first line of the referenced routine to that of the referenced line within the routine.

As the lines of a routine are modified, they are accumulated in the Tape Image and transferred in groups to locations in the Segment Image on drum, corresponding to their High Speed Storage locations during the running of the segment in the Object Program. When all the lines subject to address modification in the routine, i.e., instructions and relative constants, have been processed, the fixed (unmodifiable) constants for the routine are transferred to consecutive locations in the Segment Image, following the last modified line of the routine. Words of zeros, equal in number to the temporary storage locations required by the routine, follow these constants in the Segment Image.

Each generated subroutine and library routine required for the particum lar segment is processed in this manner. When all the required routines for a segment have been assembled and processed, the entire Segment Image load, including the proper Preface, Termination, and segment label block, is transferred to the output tape to form a segment of the final running program. The Generated Routines Tape is then rewound and the UNICODE System Tape and Standard Library Tapes are moved back to the beginning of the Fixed Library and Standard Library, respectively. The processing of the next segment is then begun.

Each succeeding segment is processed in exactly the same way until all the segments have been processed and written on the output tape. This tape, containing all the segments of the final running program, is then the Object

Program Tape.
In addition, during the execution of this phase, the Sentence Number List is built and stored on drum for use by the Program Listing Phase. (See Program Listing for format of this list.)

PROCESSOR SETUP BLOCK
Regional Assignments

RE	TH21
RE	UP421
RE	CK653
RE	PS7230

Tape Handier
Uniprint Routine
Processor
Processor Setup Block
Processor Setup Routine

	IA	PS	
0	TP	15	6
1	TP	PS26	TH3
2	RJ	TH2	TH
3	TP	5	Q
4	QJ	PS5	PS5
5	QJ	PS6	PS10
6	TP	PS27	TH3
7	RJ	TH2	TH
10	TP	PS13	UP3
11	RJ	UP2	UP
12	MJ	0	CK1
13	00	PS14	12
14	01	01010	10101
15	52	24656	50134
16	70	22010	10101
17	01	52545	12630
20	65	65345	03201
21	24	50270	12427
22	27	54306	56501
23	47	51273	43134
24	26	24663	45150
25	22	77777	77777
26	50	00601	CK
27	40	00102	0
	CA	PS30	

Modified Dimension List length to fixed location 00006.
Parameter to Tape Handler
Read Processor from Unicode System Tape to core.
Library indicators \rightarrow Q.
Ignore Fixed Library indicator.
Is Standard Library required?
Yes; parameter to Tape Handler. Move Library Tape backward one block. Parameter to Uniprint routine
Type: PASS IV. PROCESSING AND ADDRESS MOD IF ICATION.
Jump to Processor.
Parameter for typeout.

\triangle	\triangle	Δ	Δ	Δ	Δ
P	A	S	S	Δ	I

$\begin{array}{llllll}V & \dot{p} & \Delta & \Delta & \Delta & \Delta \\ \triangle & R & 0 & C & E\end{array}$
$\begin{array}{llllll}\mathrm{S} & \mathrm{S} & \mathrm{I} & \mathrm{N} & \mathrm{G} & \Delta\end{array}$
A N D $\triangle A \quad D$
$\begin{array}{llllll}\mathrm{D} & \mathrm{R} & \mathrm{E} & \mathrm{S} & \mathrm{S} & \Delta\end{array}$
$\begin{array}{llllll}\mathrm{M} & 0 & \mathrm{D} & \mathrm{I} & \mathrm{F} & \mathrm{I}\end{array}$
$\begin{array}{lllllll}\text { C } & \text { A } & \text { T } & \text { I } & 0 & \mathrm{~N}\end{array}$
. 7777777777
Parameter to read forward 6 blocks from Uniservo l
Parameter to move backward l block on Uniservo 2

Processor Flow Chart

$-\boldsymbol{D}_{(\overline{\mathbb{R}})}$ Address Modification Control $\overline{\text { Subroutine }}$
Input = Word to be modified in "Q" Register

Input = Address to be modified in " u " of " Q " register Output = Modified (absolute) address in "u" of "A" register

(LC) Subroutine to count blocks of Library (Fixed or Standard) Processed

(IR) Input Routine

(BC) Subroutine to calculate block count from line count Input = Number of lines in " v " of "A" Output = Number of blocks in "v" of "A"

RE	TN20	Servo Indicator RE
TH21	Tape handler	
RE	UP421	Uniprint
RE	BR537	
RE	CK653	
RE	CL701	
RE	CM715	
RE	CN740	
RE	CP753	
RE	CQ1004	
RE	CR1033	
RE	CS1065	
RE	CT1117	
RE	CU1134	
RE	CV1174	
RE	CW1226	
RE	CX1251	
RE	CY1310	
RE	CZ1350	
RE	DA1401	
RE	LC1424	
RE	PC1433	
RE	IR1444	
RE	NR1460	
RE	BC1521	
RE	FC1536	
RE	RC1570	
RE	TC1627	
RE	TL1660	
RE	T01667	
RE	LV1712	
RE	MR1724	
RE	MS1751	
RE	MT2001	
RE	MO2040	
RE	MC2056	
RE	MD2105	
RE	MI2131	
RE	TS2140	

RE	LL2240	List of library routine names
RE	TI3240	Tape image
RE	FA4200	File image
RE	DD40101	Modified dimension list
RE	ND42102	Sentence number list
RE	DI46202	Segment image on drum
RE	IL740	Number of lines in tape image
RE	FL3600	Number of lines in file image
RE	BL4540	$\begin{aligned} & \text { Number of lines in buffer, i.e., } \\ & \mathrm{BL}=\mathrm{IL}+\mathrm{FL} \end{aligned}$
RE	IB4	Number of blocks in tape image
RE	BB24	Number of blocks in buffer, i.e., tape image + file image
RE	PB4705	Limit number of blocks on object program tape
RE	II4200	Limit address for full image load, i.e., II = TI + IL
RE	FI610	
RE	PI624	
RE	ZA77000	Entrance to Unicode service routines
END		
NOTE:	The tape	image form the buffer for writing

		IA	СK	
	0	MJ	0	ZA10
	1	TP	5	Q
	2	QT	FC5	A
	3	ST	FC3	TS22
	4	QJ	CK6 ${ }^{\text {yes }}$	CK5 ${ }^{\text {no }}$
	5	TV	RC27 yes	CM22 ${ }^{\text {no }}$
(1)	6	QJ	CK10 yes	CK7 ${ }^{\text {no }}$
	7	TV	RC31	CN12
	10	LA	LV6	6
	11	AT	TC26	TC26
	12	LQ	LV7	6
	13	LQ	LV11	6
	14	TP	TS22	TS14
	15	TP	FC30	TS 13
	16	TP	12	Q
	17	QT	FC5	TS25
	20	RS	RC17	TS25
	21	SP	TN	0
	22	ZJ	CK23	CL
	23	RA	T06	FC31
	24	RP	20012	CL
	25	RA	TC17	TN
		CA	CK26	

Begin Processor
Exit \rightarrow Unicode Service Routine Library Indicator Word \longrightarrow Q
\# Library routines in problem $\rightarrow A v$
\# Library routines in problem \rightarrow "V"
of temp.
Fixed library required?
Set switch (A) \rightarrow (A2)
Standard library required?
Set switch (B) \rightarrow (B2)
\# blks in buffer \longrightarrow tape codeword position
Form codeword to write full buffer load on object program tape \# blks in tape image \longrightarrow codeword position
Limit \# blks object program tape \rightarrow codeword position
\# Library routines - $1 \longrightarrow$ library list index
Preset count blks. binary tape \longrightarrow Max. \# blks. initialization Segment image address $\longrightarrow \mathrm{Qv}$ Segment image address \longrightarrow "v" of temp
Drum add. for seg. - Run. add. seg. = Drum add. corres. to loc. zero Servo layout indicator
$(\mathrm{A})=$ zero $\Longrightarrow 5$ servos;
(A) \neq zero
$\Longrightarrow 7$ servos
Set Object program servo \# = 6 \longrightarrow printout

Setup tape codewords for 7 servo layout

IA CL

(2)	0	TP	TC14	TH3	
	1	RJ	TH2	TH	Read l blk. 0p. File III (servo 5) \rightarrow File image
	2	TP	FA		lst word 0p. File III image \rightarrow A
	3	EJ	TLl	CL6 ${ }^{\text {yes }}$	lst word $=$ File $\triangle 3$? Yes \Rightarrow entry label blk. for new segment
	4	EJ	TL	DA	lst word $=$ zzzzzz? $\mathrm{Yes} \Rightarrow$ End tape blk; End processing
	5	MJ	0	BR12	Alarm 10
(3)	6	RP	17777	CL10	
	7	TP	FC	DI	
	10	RP	17777	CL12	Zeroize 277758 word segment image on drum to allow for possible 3
	11	TP	FC	DI7777	core bank running segment.
	12	RP	17777		
	13	TP	FC	DII7776	
		CA	CL14		

\left.| | IA | | | |
| :--- | :--- | :--- | :--- | :--- |
| (5) | | | | |
| | 0 | TP | TC2 | TH3 |
| | 1 | RJ | TH2 | TH |$\right\}$

Move servo 1 backward to beginning of fixed library
Reset move backward codeword \rightarrow zero blks.
Set to count blks fixed library processed
Set current tape codeword to read [n] blks fixed library
Set current tape codeword to read l blk fixed library

Set current tape codeword to read full image load fixed library Set current tape codeword to move FW [n] blks Process fixed library routines

	IA	CP		
(6) 0	TP	TS23	TH3	Move backword library tape
1	RJ	TH2	TH	(servo 2) to library routines entry label.
2	TP	TC7	TS23	Reset move backward codeword \rightarrow zero blks
3	TP	RC23	LC4	Setup to count blks of library tape processed
4	TP	TC12	TS16	Set current codeword to read [N] blks library tape
5	TP	TC10	TS17	Set current codeword to read 1 blk. library tape
6	SP	LV7	0	
7	AT	TC12	TS20	Set current codeword to read full image load library tape
10	TP	TC6	TS21	Set current codeword to move [N] blks. library tape
(7) 11	TP	TC11	TH3	
12	RJ	LC	LCl_{1}	Read 2 blks library tape
13	TP	TI	A	lst word library routines entry label $\rightarrow A$
14	EJ	TL4	CP16	```Label = \triangle\triangleL I B }\triangle\triangleB\mathrm{ (i.e. library tape positioned properly)```
15	MJ	0	BR7	Alarm 7
(8)	RP	30170	CP20 $\}$	Transfer lst block library routines
	TP	TIl70	TI	from 2nd blk \rightarrow lst block tape image
	RJ	CR	CR1	Process STANDARD LIBRARY ROUTINES
$\begin{aligned} & \text { Switch } \\ & \text { (H) } \end{aligned}$	MJ	0	[CP22]	
	TP	5	Q	
	QJ	CP24 yes	CP25 no	Fixed library required?
	TV	RC26	CM22	Set switch (A) \rightarrow (A1) after lst segment
	QJ	CP26 yes	CP27 no	Standard library required?
	TV	RC30	CN12	Set switch(B) \rightarrow (B1) after lst segment
	TV	CP30	CP21	By-Pass preceding setups after lst segment
	$\begin{aligned} & \text { MJ } \\ & \text { CA } \end{aligned}$	0 CP31	CX	

IA CQ

(26)	0	SP	FA3	0	\# words 0p. File III \rightarrow Au
	1	SA	FCl	0	Add $\mathrm{j}=2$ to $\#$ words 0 p. File III to form jn
	2	TU	A	MU2	jn to search 0p. File III \rightarrow " RP " in Add. mod. rtn.
	3	TU	A	CR14	jn to search 0p. File III \longrightarrow " RP " in processor
	4	TP	FA6	TS7	\# lines in preface \longrightarrow " $u^{\text {n }}$ of Temp.
	5	TP	FA2	TS10	Segment No. \longrightarrow Temp.
	6	TP	FA4	TS12	\# lines statements and routines +2 \longrightarrow Temp.
(27)	7	TP	FA5	TSII	Address for "IP" jump to next segment \longrightarrow Temp.
	10	SP	FA3	25	\# words 0p. File III \longrightarrow " $\mathrm{v}^{\prime \prime}$ of A_{1}
	11	LT	0	A	\# words 0p. File III \rightarrow Ar
	12	DV	FC2	Q	\# words 0p. File $3 / 1708=$ \# full blks. Op. File III
	13	ZJ	CQ14 yes	CQ15 no	Is there partial blk?
	14	RA	Q	FC3	Adv. \# blks. by 1 to count partial block
	15	SP	Q	25	\# blks. Op. File III $\rightarrow A$ in tape codeword position
	16	AT	TC15	TH3	Codeword to read [N] blks servo $5 \rightarrow$ tape handler
	17	RJ	TH2	TH	Read 0p. File III from servo $5 \longrightarrow 0$ p. File III image
(28)	20	TP	TC21	TH3	Codeword to read 3 blks Gen. rtn. tape (4 or 7) \longrightarrow tape handler
	21	RJ	TH2	TH	Read 2 label blks and lst blk. gen. rtns \rightarrow tape image
	22	TP	TII70	A	1st word of 2nd label blk \rightarrow A
	23	EJ	TL2	CQ25 yes	Label $=\triangle$ SUBRO? (i.e. gen. rtn. tape positioned correctly?)
	24	MJ	0	BR11	Alarm 9
	25	RP	30170	CR1 \}	Trans. lst blk. gen. rtns. (incl.
	26	TP	TI360	TI	prelude,) from 3rd blk. \rightarrow lst blk. tape image
		CA	CQ27		

IA CS

(33)	0	TP	A	Q	Word following callword in 0 p. File III \longrightarrow Q
	1	QT	FC5	TS3	H.S.S. running add. rtn. to be modified \longrightarrow temp 3
	2	LT	10017	MII	H.S.S. running add. rtn. to be modified \longrightarrow input mod. rtn.
	3	QA	MC	MI6	H.S.S. running add. + \# lines in rtn. \longrightarrow "u" of temp.
	4	TP	TI2	Q	3 rd word or prelude \longrightarrow Q
	5	QT	FC4	TS	\# fixed constants \rightarrow temp. 0 in " v "
	6	LQ	Q	6	\# relative constants \longrightarrow Qu
	7	QT	MC2	MI2	```# relative constants }->\mathrm{ mod. rtn. input```
	10	LQ	Q	11	\# fixed constants \rightarrow Qu
(34)	11	QT	MC2	MI3	\# fixed constants \rightarrow mod. rtn. input
	12	LQ	Q	11	$\#$ fixed temporaries \longrightarrow Qu
	13	QT	MC2	MI4	```# fixed temporaries }\longrightarrow\mathrm{ mod. rtn. input```
	14	LQ	Q	11	\# working temporaries \longrightarrow Qu
	15	QT	MC2	MI5	$\text { \# working temporaries } \longrightarrow \text { mod. rtn. }$ input
	16	SP	MI6	0	Last address in running rtn. +1 $\longrightarrow \mathrm{Au}$
	17	ST	MI5	MI5	Initial running add. working temps \rightarrow input mod. rtn.
(35)	20	ST	MI4	MI4	Initial running add. fixed temps \rightarrow input mod. rtn.
	21	ST	MI3	MI3	Initial running add. fixed constants \rightarrow input mod. rtn.
	22	ST	MI2	MI2	Initial running add. relative constants \longrightarrow input mod. rtn.
(36)	23	RA	TS3	RC17	Form drum image address of modified routine \longrightarrow " V^{\prime} of temp 3
	24	TP	TIl	TS1	No. lines subject to add. mod. \longrightarrow temp 1 (counter 1)
	25	TP	RC34	CD	Preset add. lst line to be modified $\longrightarrow 7$ th line tape image
	26	TP	RC3	C04	Preset add. for lst modified line \longrightarrow 1st line tape image
(30)	27	TV	TS3	CU26	Preset drum image add. for rtn. to be modified
	30 31	TP	LV 0	${ }_{[30000]}$	Set current image limit $\rightarrow 1 \mathrm{blk}$.
Switch (D)		CA	CS32		

Special Setup For Library Routine Modification

(38)		IA	CT		
	0	TP	TI'	Q	Entrance line of library rin. \rightarrow Add. mod. rtn input
	1	RJ	MR	MR1	Modify entrance line
	2	TP	MI	TI6	Modified entrance line \longrightarrow routine heading
	3	RA	TI4	TI3	\# inputs + \# outputs
	4	AT	FCll	TI4	\# lines in lib. rtn hdg. (3) + \# inputs + \# outputs \longrightarrow Av
	5	AT	$\mathrm{CU4}$	CD 4	Adv. add. for next modified line by \# inputs $+\#$ outputs +3
	6	RS	TS1	TI4	Decrease \# lines subj. to add.mod. to exclude hdg. and inputs and outputs
	7	LA	TI4	17	\# inputs + \# outputs $+3 \rightarrow \mathrm{Au}$
(39)	10	AT	RCl	CT13	Setup jn of repeat to move hdg. \rightarrow Beginning tape image
	11	RA	Cu	TI4	Adv. add of next line to be modified to skip hdg. + inputs + outputs
Switch4440		RJ	NR	[NR1]	Library routine name \longrightarrow sent. no. List
	13	[0	30000	$30000]$	
	14	TP	TI6	TI $\}$	Move routine heading to beginning of tape image
		CA	CT15		

Process Lines Of Routine To Be Modified

Line to be modified \longrightarrow Q
0 p . code of line to be modified $\longrightarrow \mathrm{A}$
0 p . code $=10 ? \Longrightarrow$ increment last modified line by (u and v)
Modify line
Modified line \longrightarrow tape image
1 in " v " adv. \rightarrow add. for next modified line

Address for next modified line \longrightarrow Av
Add. next mod. line $=$ lst line tape image? Yes \Rightarrow last mod. line on drum H.S.S. address last line modified
$\rightarrow \mathrm{Au}$
Address of line following last modified line on drum $\rightarrow A v$ Drum address of last line modified $\longrightarrow \mathrm{Au}$
" u " and " v " of " 10 " line $\rightarrow Q$ with zero 0p. code
Add contents of " u " and " v " of " 10 " line \rightarrow last modified line
1 in "u" adv. \longrightarrow address of next line to be modified
Was this last line in current image load?
Determine \# modified lines $\rightarrow \mathrm{Av}$ Form jn of repeat to transfer modified lines \longrightarrow drum image
Preset jn of repeat
Transfer modified lines \longrightarrow drum image
Adv. add. in drum image by \# lines transferred
Read more lines of gen. routine \rightarrow tape image
Preset address next line to be modified \longrightarrow lst line tape image Preset address for next modified line \rightarrow lst line tape image Have all lines subject to address modification been processed? Address for next modified line in tape image $\longrightarrow \mathrm{Av}$

35	ST	RC3	TS4
36	SP	TS	0
37	ZJ CA	CV no	

\# modified lines not yet transferred to drum \rightarrow temp
Number of fixed (unmodifiable)
constants $\longrightarrow A v$
Number fixed constants $=$ zero?

IA CV
(46) $\left.\begin{array}{lllll}0 & \text { SP } & \text { LV2 } & 0 \\ 1 & \text { SS } & \text { CU } & 25 \\ & 2 & \text { LT } & 0 & \text { A } \\ & 3 & \text { TJ } & \text { TS } & \text { CV5 yes } \\ & 4 & \text { SP } & \text { TS } & 0 \\ & 5 & \text { TP } & \text { A } & \text { TS5 } \\ & 6 & \text { SP } & \text { TS4 } & 0 \\ & 7 & \text { ZJ } & \text { CV10 no } & \text { CV20 yes } \\ & 10 & \text { TU } & \text { CU } & \text { CV17 } \\ & 11 & \text { TV } & \text { CU4 } & \text { CV17 } \\ & 12 & \text { SP } & \text { TS5 } & 17 \\ & 13 & \text { AT } & \text { RC4 } & \text { CV16 }\end{array}\right\}$

Limit for current image load $\rightarrow \mathrm{A}$
Form \# lines in image not processed \longrightarrow "v" of A_{1}
Form \# lines in image not processed
$\longrightarrow \mathrm{Av}$
\# fixed constants > \# lines in image not processed?
\# fixed constants (all const. for $\mathrm{rtn}) \rightarrow \mathrm{Au}$
\# fixed constants in image to be transferred to drum \longrightarrow temp. 5 \# modified lines yet to be transferred to drum $\longrightarrow \mathrm{Au}$
\# modified lines yet to be transferred to drum $=$ Zero?
Preset address for lst fixed constant
Preset transfer add. for fixed const. \longrightarrow Add. for next mod. line

Preset jn to pack fixed constants with modified lines
\# modified lines + \# fixed const. = \# lines to be trans. to drum \longrightarrow temp.
Preset Add of lst line to be trans. to drum \longrightarrow lst line tape image

Pack fixed constants with modified lines in tape image
Set \# lines to be trans. to drum = \# fixed const. in tape image Preset add. of lst line to be trans. to drum \longrightarrow add. lst fixed const.

Preset $j n$ to transfer fixed const. and/or modified lines to drum Preset next available address in drum image

Transfer fixed constants and/or modified lines \longrightarrow drum image
Advance drum image address by \# lines transferred
Decrease \# fixed const. to be trans. by \# just transferred All fixed constants for routine transferred \longrightarrow drum image

IA CW

		IA	CX		
(9)	0	RA	TS11	RC17	Initial add. drum image + add. of "IP"jump to next seg. \rightarrow temp. 7
	1	TV	A	CX3	Preset drum image address for "IP" instruction
	2	TP	FAl	A	"IP" Jump to next segment from 2nd word 0 p. File III \longrightarrow " A "
	3	AT	FC3	[30000]	Add one to " v " address and transfer "IP" to drum image
	4	TP	TL5	TI	SEGMEN \longrightarrow 1st word in segment label block
	5	TP	TL6	TIl	$T \Delta \triangle \Delta \Delta \Delta \rightarrow 2$ nd word in segment label block
(10)	6	SP	TS10	25	Octal segment no. \longrightarrow " v " of " A " left
	7	LT	0	TT2	Octal seg. no. \rightarrow " v " of 3 rd word in seg. label block
	10	SP	TS7	71	```# lines in Preface }->\mathrm{ " v" of "A" right```
	11	TP	A	TI7	\# lines in Preface \longrightarrow " $\mathrm{v}^{\text {" }}$ of 8th line seg. lab. blk.
	12	DV	FC2	TI3	\# lines in Pref. (term) $/ 170_{8}=$ full blks term. $\rightarrow 4$ th line seg. lab. blk.
	13	ZJ	CX14 ${ }^{\text {yes }}$	CX15 ${ }^{\text {no }}$	Is there partial block?
$\begin{aligned} & \text { (11) } \\ & \text { (12) } \end{aligned}$	14	RA	TI3	FC3	Adv. \# blks. Termination by one to count partial blk.
	15	SP	TI7	0	\# lines in preface \longrightarrow Av
	16	AT	TS12	TSI	\# lines in Preface + \# lines stmts and routines $+2 \rightarrow$ temp 2
	17	DV	FC2	TI4	\# full blocks segment+Preface \rightarrow 2nd thru 5th octal digit po-
(13)	20	LQ	TI4		sitions of 5th line seg. lab. blk.
	21	TP	A	TI5	\# lines partial blk. seg. + Pref. \longrightarrow " v " of 6th line seg. lab. blk.
	22	TP	TS25	A	Seg. image address \rightarrow A
	23	AT	TS1	TS5	Seg. image add. + \# lines seg. + Pref. = add. line after Preface
(14)	24	SS	TI7	17	(A) - \# lines Pref. = Pref. Exit add. $\longrightarrow \mathrm{Au}$
	25	SA	TS5	0	Add. line following Pref. \rightarrow Av
	26	SS	FC20	0	(A) $-2=$ Pref. Ent. add. $\rightarrow \mathrm{Av}$
	27	AT	FC17	TI6	"RJ" inst. to execute Preface \rightarrow 7th line seg. lab. blk.
(15)	30	SP	TI5	17	$\# \text { lines partial blk. seg. }+ \text { Preface }$
	31	ZJ	CX32 ${ }^{\text {no }}$	CX34 ${ }^{\text {yes }}$	```# lines partial blk. seg. + Preface =zero?```

32	SA TS5	0	Address of line following preface 33	ST TI5 Av

		IA	CY		
	0	SP	TI3	25	\# blks. in pref. (term.) $\rightarrow \mathrm{A}$ in codeword position
	1	AT	TC15	TS	Codeword to read Termination from tape \rightarrow Temp.
	2	AT	FC7	TH3	Adv. by 1 to include 0 p. File III end entry blk.
	3	RJ	TH2	TH	Read Preface and/or 0p. File III end entry blk. \rightarrow File image
	4	TP	FA	A	lst word File image \rightarrow A
	5	EJ	TL3	CY7	lst word $=$ END $\triangle O F$? (i.e. tape positioned properly)
	6	MJ	0	BR12	Alarm \# 10
(17)	7	RA	TS7	FC15	Add 30000 to \# lines in Preface $\longrightarrow \mathrm{Au}$
	10	TU	A	CY13	Preset "u" of repeat
	11	RA	TS12	RC35	\# lines stmts. and rtns $+2+$ drum add. init. stmt. $=$ drum add. Preface
	12	TV	A	CY14	Preset drum add. for Preface
	13	RP	[30000]	CY15 $\}$	
	14	TP	FA170	[30000]	Preface \rightarrow Drum image
	15	RP	30170	CY17 $\}$	
	16	TP	TI	DI $\}$	Segment label block \rightarrow drum image
(18)	17	RA	TS1	FC2	Adv. \# lines segment by 1708 to count label blk.
	20	TU	RC11	CY26	
(19)	21	SP	LV5	0	\# lines in buffer (tape image + file image) $\rightarrow \mathrm{Av}$
	22	TJ	TS 1	CZ17 ${ }^{\text {yes }}$	$\begin{aligned} & \text { \# lines segment remaining }>\text { full } \\ & \text { buffer load? } \end{aligned}$
(21)	23	SP	TS 1	17	
	24	AT	RC7	CY25	Form jn of repeat \rightarrow NI
	25	[RP	30000	CY27] $\}$	
	26	TP	[30000]	TI $\}$	Segment + seg. label blk. \rightarrow buffer
	27	TP	MC	Q	$\text { "un mask } \longrightarrow \text { Q }$
	30	QT	DI5	Q	\# lines partial blk. seg. + Pref. $\longrightarrow \mathrm{Qu}$ and Au
	31	ZJ	CY32 no	CZl yes	$\begin{aligned} & \text { \# lines partial blk. seg. + Pref. } \\ & =\text { zero? } \end{aligned}$
	32	TP	RC10	A $\}$	
	33	ST	Q	CY36 $\}$	Form "RP" to fill rest of partial blk. with Z's
	34 35	TV	RC3	CY37	Preset " v " of "TP" to initial add. tape image
	35	RA	CY37	TS1	Adv. by \# lines segment + label \longrightarrow Add. for ${ }^{\prime}$'s in partial blk.
	36	RP	[30000]	CZ	
	37	TP	$\begin{aligned} & \text { TL } \\ & \text { CY40 } \end{aligned}$	[30000]	Z ${ }^{2} \mathrm{~s} \longrightarrow$ fill remainder partial block

IA CZ

IA DA
(23) $\left.\begin{array}{lllll} & 0 & \text { TP } & \text { TC13 } & \text { TH3 } \\ 1 & \text { RJ } & \text { TH2 } & \text { TH } \\ & 2 & \text { TP } & \text { TC16 } & \text { TH3 } \\ 3 & \text { RJ } & \text { TH2 } & \text { TH } \\ & 4 & \text { RP } & 10360 & \text { DA6 } \\ & 5 & \text { TP } & \text { TL } & \text { TI }\end{array}\right\}$
Rewind library tape (servo \#2)
Rewind corrected problem tape(servo \#5)
2 blks. of $Z^{\prime} s \rightarrow$ buffer
Write 2 blks. of Z 's on Binaryprogram tape
Rewind Binary program tape(servo \# 3 or 6)
\# blks. fixed library advanced
\# blks. adv. - total \# blks. fixedlibrary(A) $=$ Zero? Yes \Rightarrow servo 1positioned at listing phase setup blk.
\# blks. to move forward $\rightarrow \mathrm{A}$ Replace move backward codeword by move fwd. CW Move forward or backward codeword \rightarrow G.T.H.
Position servo 1 at beginning list- ing phase setup block

Subroutine to Count Blocks of Library (Fixed or Standard) Processed IA LC

> Tape handler codeword $\rightarrow Q$
> $\#$ blks. current routine to be read or moved
> Add \# blks. to move backward codeword for current tape
> \rightarrow tape handler

Subroutine to Count Blocks on Object (Binary) Program Tape

Switch (I)	IA	PC		Tape handler codeword \rightarrow Q
	MJ	0	[30000]	
	TP	TH3	Q	
(1) 2	QT	FCl6	A	\# blks. to be written on Binary prog. tape \rightarrow A
3	AT	TS13	TS 13	Adv. count of blks. Binary prog. tape by \# blks. to be written
4	TJ	LV11	PC	Limit \# blks. > current \# blks. Binary program tape
5	TP	T0	UP3	Parameter \rightarrow Uniprint
6	RJ	UP2	UP	Print warning
7	TP	PC10	PC 1	
10	MJ	0	PC	
	CA	PCII		

Subroutine to Build Sentence Number List

Fixed Constants

	IA	FC	
0	0	0	0
1	0	20000	0
2	0	0	170
3	0	0	1
4	0	0	777
5	0	0	77777
6	0	0	551
7	0	100	0
10	0	0	7
11	0	0	3
12	10	0	0
13	0	1	0
14	0	0	30000
15	0	30000	0
16	0	7700	0
17	37	0	0
20	0	0	2
21	07	77700	0
22	0	0	77
23	0	50000	0
24	0	23000	0
25	0	25000	0
26	0	26000	0
27	0	30000	0
30	0	3000	0
31	0	0	300
	CA	FC32	

Relative Constants

Relative Constants				
	IA	RC		
0	0	0	DI	
1	RP	30000	CU33	D1 in "v"
2	TP	TI	Q	
3	TP	MI	TI	
4	RP	30000	CV22	
5	RP	30000	CV27	
6	RP	30000	CR27	
7	RP	30000	CY27	
10	RP	10170	CZ	
11	0	DI	0	
12	0	0	LL	Initial address lib. name list in core
13	TP	TI5	ND	
14	TP	TI5	ND1000	
15	TP	TI5	ND2000	
16	TP	TI5	ND3000	
17	0	0	[DI170]	Chged. by program to drum add. for segment - H.S.S. add. for run. seg.
20	0	0	LC5	
21	0	0	LC2	
22	AT	TC2	TC2	
23	AT	TS23	TS23	
24	0	0	CT	D2 in " V "
25	0	0	CR7	
26	0	0	CN	A1
27	0	0	CN12	A2
30	0	0	CP	B1
31	0	0	CP21	B2
32	0	0	CR27	E1
33	0	0	CW21	E2
34	TP	TI6	Q	
35	0	0	DII70	Segment image address for first statement of segment
36	0		CT13	
	CA	RC37		

Tape Handler Codewords

IA TC

0	$0[0$	$017] 00$	0
1	$3[0$	$000] 01$	0
2	$[4[0$	$000] 01$	$0]$
3	$4[0$	$000] 01$	0
4	$5[0$	$001] 01$	TI
5	$5[0$	$000] 01$	TI
6	$3[0$	$000] 02$	0
7	$4[0$	$000] 02$	0
10	$5[0$	$001] 02$	TI
11	$5[0$	00202	TI
12	$5[0$	$000] 02$	TI
13	10	00002	0
14	$5[0$	$001] 05$	FA
15	$5[0$	$000] 05$	FA
16	1×0	00005	0
17	$3[0$	$000] 04$	0
20	$5[0$	$001] 04$	TI
21	$5[0$	$003] 04$	TI
22	$5[0$	$000] 04$	TI
23	10	00004	0
24	71	000003	TI
25	71	$000] 03$	FA
26	71	00003	TI
27	71	$002] 03$	TI
30	10	00003	0
	CA	TC 31	

```
# blocks of fixed library
Move forward [n] blocks servo l
Move backward codeword with count
of fixed library advanced
Move backward [n] blks servo l
Read forward l blk servo l
Read forward n blks servo l
Move forward n blks servo 2
Move backward n blks servo 2
Read forward 1 blk servo 2
Read forward 2 blks servo 2
Read forward n blks servo 2
Rewind servo 2
Read forward l blk servo 5
Read forward n blks servo 5
Rewind servo 5
Move forward [n] blks servo 4 or 7
Read forward l blk servo 4 or 7
Read forward 3 blks servo 4 or }
Read forward n blks servo 4 or 7
Rewind servo 4 or }
Write [n] blks servo 3 or 6
Write [n] blks servo 3 or 6
Write full buffer servo 3 or 6
Write 2 blks servo 3 or 6
Rewind servo 3 or 6
```

Tape Labe1s

	IA TL						
0	74	74747	47474	Z	Z Z	Z Z	Z
1	31	34463	00106	F	I L	E \triangle	3
2	01	65672	55451	\triangle	S U	B R	0
3	30	50270	15131	E	N D	$\triangle 0$	F
4	01	01463	42501	\triangle	$\triangle \mathrm{L}$	I B	\triangle
5	65	30324	73050	S	E G	M E	N
6	66	01010	10101	T	$\triangle \triangle$	$\triangle \triangle$	\triangle
	CA	TL7					

Typeout

Limiting Values

	IA	LV		
0	TP	TII70	Q	Limit for 1 blk image load
1	TP	II	Q	Limit for full image load $I I=$ $\mathrm{TI}+\mathrm{IL}$
2	TP	30000	Q	Limit for current image load
3	0	0	IL	
4	0	0	FL	
5	0	0	BL	
6	0	BB	0	Shift to codeword position - \# blks in buffer
7	0	IB	0	Shift to codeword position - \# blks tape image
10	0	BL	0	\# lines in buffer
11	0	PB	0	Limit \# blks. Binary prog. tape $\left(2501_{10}\right)$ in codeword position
	CA	LV12		

Address Modification Control Subroutine

Modify Address Subroutine

IA MT

(60)	0	SS	MD	0	Address relative $1000_{8}-10008=$ rel. loc. in rtn. \rightarrow Au
	1	SA	MII	0	Rel. loc. in rtn. + base running add. of rtn. = abs. add. $\rightarrow \mathrm{Au}$
	2	MJ	0	MS	
(61)	3	SS	MD1	0	$10-$ CW $-10000_{8}=$ rel. loc. in rel. const. reg. $\rightarrow \mathrm{Au}$
	4	SA	MI2	0	Rel. loc. + base running add. rel. const. reg. $=$ abs. add. $\rightarrow \mathrm{Au}$
	5	MJ	0	MS	
(6)	6	SS	MD3	0	$\begin{aligned} & 20-C W-20000 g=\text { rel. loc. in } \\ & \text { fixed const. reg. } \longrightarrow \mathrm{Au} \end{aligned}$
	7	SA	MI3	0	Rel. loc. + base running add. fixed const. reg. $=$ abs. add. $\rightarrow \mathrm{Au}$
	10	MJ	0	MS	
(63)	11	SS	MD10	0	$60-\mathrm{CW}-60000_{g}=$ rel. loc. in fixed temp. reg. $\rightarrow \mathrm{Au}$
	12	SA	MI4	0	Rel. loc. + base running add. fixed temp. reg. $=$ abs. add. $\rightarrow \mathrm{Au}$
	13	MJ	0	MS	
(6)	14	TP	MC1	Q	Mask (2 digits of " $u^{\prime \prime}$) \rightarrow Q
	15	QT	A	A	Rel. loc. in pseudo 0p. input reg. $\longrightarrow \mathrm{Au}$
	16	SA	MC26	0	Rel. loc. + base running add. pseudo 0p. input reg. $=$ abs. add. $\longrightarrow \mathrm{Au}$
	17	MJ	0	MS	
(65)	20	TP	MCl_{1}	Q	Mask (2 digits of " ${ }^{\prime \prime}$) \rightarrow Q
	21	QT	A	A	Rel. loc. in function input region $\rightarrow \mathrm{Au}$
	22	SA	MC25	0	Rel. loc. + base running add. function input reg. $=$ abs. add. $\rightarrow A u$
	23	MJ	0	MS	
(66)	24	TP	MC2	Q	Mask (3 digits of " $u^{\prime \prime}$) \rightarrow Q
	25	QT	A	A	Rel. loc. in non-subs. var. region $\longrightarrow \mathrm{Au}$
	26	SA	7	0	Rel. loc. + base running add. nonsubs. var. region $=$ abs. add. $\longrightarrow A u$
	27	MJ	0	MS	
(67)	30	ST	MD15	Q	$\underset{\text { constant pool } \longrightarrow \mathrm{Qu}}{67-\mathrm{CW}-6700 \mathrm{~g}_{8}}=\text { rel. loc. in }$
	31	SP	10	17	$\xrightarrow{\text { Base running add. constant pool }}$ $\rightarrow \mathrm{Au}$
	32	SA	Q	0	Rel. loc. + base running add. constant pool $=$ abs. add. $\rightarrow \mathrm{Au}$
	33	MJ	0	MS	

(68) | 34 | SS | MD16 | 0 | |
| :--- | :--- | :--- | :--- | :--- |
| 35 | SA | MI5 | 0 | |
| | | | | |
| | 36 | MJ | 0 | MS |
| | | CA | MT37 | |

$70-\mathrm{CW}-70000_{8}=$ rel. loc. in working temporary region $\longrightarrow A u$ Rel. loc. + base running add. working temp. reg. = abs. add. $\longrightarrow \mathrm{Au}$

IA MU

(69)	0	SS	MD16	0	71-- CW $-70000_{8}=$ abs. add. $\rightarrow \mathrm{Au}$
	1	MJ	0	MS	
(69A)	2	RP	[30000]	BR13	No \Rightarrow alarm 11
	3	EJ	FA	MU4	Callword in 0p. File III
	4	SN	Q	17	$-\mathrm{jn}+\mathrm{r} \rightarrow \mathrm{Au}$
	5	SA	MU2	0	$+\mathrm{r} \rightarrow \mathrm{Au}$
	6	SA	MU3	0	Address of word following callword in 0 p. File III $\rightarrow \mathrm{Au}$
	7	TU	A	MU10	
	10	TP	[30000]	A	```Word following callword in 0p. File III }->\textrm{A```
	11	TJ	MC23	MO14	$(A)=I P(14)$ command (i.e. flagged cross reference)?
	12	TP	A	MI	IP (14) instruction to reference other segment \rightarrow output
	13	MJ	0	MR	Exit from add. modification routine
	14	SP	A	17	H.S.S. running add. for referenced routine $\rightarrow \mathrm{Au}$
	15	MJ	0	MS	Exit

Modification Constants

	IA	MC	
0	0	77777	0
1	0	77	0
2	0	777	0
3	17	0	0
4	22	0	0
5	45	0	0
6	56	0	0
7	61	0	0
10	63	0	0
11	75	0	0
12	76	0	0
13	77	0	0
14	31	0	0
15	32	0	0
16	33	0	0
17	34	0	0
20	54	0	0
21	55	0	0
22	05	0	0
23	14	0	0
24	57	0	0
25	0	FI	0
26	0	PI	0
	CA	MC27	

Base add. function input region \equiv init. add. term. buffer Base add pseudo 0p. input region $\equiv 1310^{\text {th }}$ add. term. buffer

	IA	MD	
0	0	1000	0
1	0	10000	0
2	0	11000	0
3	0	20000	0
4	0	21000	0
5	0	22000	0
6	0	30000	0
7	0	40000	0
10	0	60000	0
11	0	61000	0
12	0	62000	0
13	0	63000	0
14	0	64000	0
15	0	67000	0
16	0	70000	0
17	0	71000	0
20	0	72000	0
21	0	75000	0
22	0	76000	0
23	0	77000	0
	CA	MD24	

Explanation of Modification Routine Inputs (MI)

MIO	$[0$	0	$0]$	Output = modified word 1		
0	$[30000]$	0	H.S.S. running address for routine Initial running address relative constant region			
3	0	$[30000]$	0	Initial running address fixed con- stant region		
4	0	$[30000]$	0	$[30000]$	0	Initial running address fixed temp-
:---						
5						

Explanation of Temporary Storage Region (TS)

TSO	0	0	30000	\# fixed constants with rtn. in "v"; Codeword to read Termination then \# blks. Term. in codeword position
1	0	0	30000	\# lines subj. add. modification in " v "; \# lines in segment in " v^{\prime}
2	0 [x	$\mathrm{xxx}] 00$	0	\# blks. prelude and rtn. - 1 in codeword position; \# full blks. seg. + pref. in position
3	0	30000	30000	Routine callword in " u " $\mathrm{W} /$ zero fill; H.S.S. running add. rtn. in " v " W/zero fill
4	0	0	30000	\# lines to be trans. to drum image in " v "
5	0	0	30000	\# fixed const. in image to be trans. to drum in " v "; Add. following running Preface in " v "
6	0	0	30000	\# lines prelude and routine in " v "; initial add. running segment in " v "
7	0	30000	0	\# lines in Preface in "u"
10	0	30000	0	Segment \# in "u"
11	0	0	30000	Address for "IP" jump to next segment in "v"
12	0	0	30000	\# lines statements and routines (running program) +2 in " v "
13	0 [x	xxx] 00	0	Count of blks. binary prog. tape in codeword position
14	0	0	[30000]	Index for count of \# library routine names in library list
15	0	0	[30000]	Index for \# library routines processed in segment
16	50	00004	TI	Codeword to read [n] blks. current tape
17	50	00104	TI	Codeword to read 1 blk. current tape
20	50	00404	TI	Codeword to read full image load current tape
21	30	00004	0	Codeword to move forward [n] blks. current tape
22	0	0	0	\# library rtns. for problem-1 in " v "
23	0	0	0	Count of blks. advanced on library tape
24	0	0	0	Working temp.
25	0	0	0	Add. running segment in "v"
26	0	0	0	Routine callword (temp 4)

VII. PROGRAM LISTING PHASE

VII. PROGRAM LISTING PHASE

The function of this phase is to provide a record of the Object Program (absolute computer instructions), produced in response to the sentences of the Source Program (pseudo code sentences). The listing gives the absolute instructions which make up each segment of the Object Program, together with the sentence number or library routine name associated with each group of instructions. The instructions are listed four to a line and read from left to right, and down, in order of increasing High Speed Storage address. The first instruction of a routine, i.e., the group of instructions representing one sentence or one library routine, is positioned in the first line, such that, each instruction whose octal address ends in zero, will appear in the leftmost column of instructions in the listing. Each address ending in zero is listed to the left of the associated instruction. The first address of a routine is also listed in this column of addresses on the line with the first instruction. It is enclosed in parenthesis if it does not end in zero.

The listing also includes, in the same format as above, the pool of constants for the program, and the preface and termination instructions for each segment. The variables for the problem are listed in a different format. The symbol for each non-subscripted variable is listed together with its assigned High Speed Storage address. Initially, the symbol for each subscripted variable (array) is listed together with the range of drum addresses assigned to the array. In addition, each subscripted variable is listed in each segment in which it is referenced, together with the range of High Speed Storage addresses assigned to the array for the particular segment.

The title of the program, the subscripted variables on the drum, the nonsubscripted variables, and the constant pool, are listed first, in that order.

Then in turn, each segment of the Object Program is listed. Each segment consists of the Preface (if any), the sentences and Library routines, the subscripted variables in High Speed Storage (if any), and the Termination (if any).

The listing is produced on magnetic tape edited for listing on the High Speed Printer. It is produced on Uniservo 7 if 7 Uniservos are being used and on Uniservo 5 if 5 Uniservos are being used. If the listing exceeds an arbitrary 1200 blocks, the current listing tape is terminated at the end of a page, with the statements, CURRENT LISTING TAPE FULL. PUT NEW 1500 FOOT TAPE ON SERVO --m. START TO CONTINUE LISTING, typed on the on-line Flexowriter. This allows the computer operator to change tapes and restart to continue the listing on a new tape. In addition, the statements, MOUNT NEXT LISTING TAPE ON PRINTER. DO NOT CHANGE POSITION OF PAPER., is included on the tape being terminated, together with a Printer Stop symbol. This informs the High Speed Printer operator that the listing is continued on another tape and allows him to mount the tape and continue. The statement, END OF LISTING., and a Printer Stop is included on the final tape of the listing to inform the printer operator of the end of the listing. The order in which the tapes are to be listed, in order to get a continuous listing, is the responsibility of the computer operator.

When the listing is completed the statements, PROGRAM LISTING ON TAPE ---. and END OF COMPILATION., are typed out. The computer then comes to a "56" stop.

The pages of the listing are numbered thru 999, after which the word CONTINUED is used in lieu of a page number.

The instructions of the Program Listing Phase are divided into four
groups. All four groups are read from the UNICODE System Tape into High SpeedStorage; Groups II and III are then transferred to the drum. The inStructions in Group I remain in High Speed Storage throughout the execution of this phase and consist of constants, temporaries and certain subroutines referenced by the instructions in the other groups.

The Group IV instructions produce the initial part of the listing, consisting of the program title, the subscripted variables on the drum, the nonsubscripted variables, and the constant pool. When this part of the listing has been completed, these instructions are overlayed. In listing the subscripted variables on the drum, the information is obtained from the modified Dimension List, which contains the initial drum address and XS3 symbol for each subscripted variable, in order of increasing drum address. The modified Dimension List is assumed to be on the drum when the phase is referenced. In listing the non-subscripted variables, the XS3 symbols for the variables are obtained from the Symbol List, which contains these symbols in order of the increasing High Speed Storage addresses assigned to the variables. The High Speed Storage address associated with the first symbol in the list is obtained from fixed location 00007; the address for each succeeding variable is obtained by adding one to the address of the preceding variable. The Symbol List is read from Uniservo 5 to the List Buffer in this phase. Similarly, the Constant Pool, containing the constants in order of their increasing High Speed Storage address, is read from Uniservo 5 to the Dimension List region in the core. The High Speed Storage address of the first constant is obtained from fixed location 00010 and that of each succeeding constant is obtained by adding one to the address of the preceding constant. The program title is listed just as it appears on the UNICODE (source) Program Tape; hence, only
printable High Speed Printer characters should be used in the title.
The Group II instructions, lists, etc., initially overlay the Group IV instructions and, thereafter, overlay the Group III instructions and lists. The Group II instructions are read from the drum to core whenever a new segment is to be listed and, finally, when the listing phase is to be terminated. The instructions in this group build Op. File IV for the segment to be listed and store it on drum; then they are overlayed by the Group III instructions, lists, etc. The information to build 0p. File IV is obtained from 0p. File III for each segment and from the Sentence Number List, which is produced by the Processor Phase and stored on the drum as input to this phase. 0p. File III for each segment is read from Uniservo 5 to the File Buffer. The Group II instructions also terminate the final listing tape, rewind all tapes not yet rewound, and produce the Flexowriter typeouts at the completion of the phase.

The Group III instructions produce the listing of the segments. The Preface and Termination instructions for the segment to be listed are obtained, for listing, from Uniservo 5 following the 0 p. File III for the segment. The Preface is read from Uniservo 5 to the Input Buffer. The initial High Speed Storage address for the Preface is obtained from the seventh word of the Segment Label Block on the Object Program Tape, and the number of lines in the Preface is obtained from the eighth word. With these as inputs, the Preface is edited and written on the listing tape in the prescribed format, by an editing routine which is common for the Preface, Termination, Constant Pool, Sentences, and Library Routines. In listing the sentences and the library routines, the number of routines in the segment being listed is obtained from Temporary (CT5) which is set up by the routine which builds Op. File IV for the segment. The XS3 sentence number or library routine name for
a routine to be listed, the number of lines in the routine, and the initial High Speed Storage address of the routine are obtained from 0p. File $T V$ and provided as iputs to the common editing routine which edits and writes each routine on the listing tape. The sentences and library routines appear in 0 p. File IV in order of increasing High Speed Storage address. The Termination is read from Uniservo 5 to the Input Buffer prior to the listing of the subscripted variables in the core. In listing these variables the High Speed Storage address, in the segment being listed, is obtained in order, from the instructions of the Termination. The modified Dimension List is then searched for the drum address in order to find the XS3 symbol for the variable. The variables are then edited and listed in the prescribed format by an editing routine used in common to list the subscripted variables on the drum and in the core. The Termination is listed by sections, each representing one block of the Termination. The total number of lines in the Termination is obtained from the eighth word of the Segment Label Block. The initial High Speed Storage address of each section is merely the initial address of the Termination Buffer which is a constant. The number of lines in each section is 170 octal except for the last section which is the number of lines in the partial block remaining. Again, the common editing routine is used.

Because of the overlaying involved in the execution of the Program Listing Phase, considerable care should be exercised in making changes in the addresses or lengths of routines, lists, etc.

> OP. FILE IV

Where:
$\begin{aligned} & \text { Number of lines }= \begin{array}{l}\text { The number of instructions, including constants and } \\ \\ \text { temporaries, in the routine in the Object Program } \\ \\ \text { associated with the preceding XS3 sentence number or } \\ \\ \text { name. }\end{array} \\ & \text { H.S.S. Address = } \begin{array}{l}\text { The High Speed Storage running address of the routine } \\ \text { in this segment of the Object Program. }\end{array}\end{aligned}$

The Op. File IV for each segment is built by the Program Listing Phase just prior to the listing of the segment. The information for the iist is obtained from Op. File III for the segment and from the Sentence Number List.

Entries are made in 0 p. File IV for only those routines which are included in the segment to be listed. Sentence numbers, for which a callword appears in 0p. File III followed by an "Interpret" instruction, are omitted from Op. File TV. The "Interpret" instruction indicates the routine is in another segment but is referenced from the segment being listed.

The Library Routine entries have a 748 in the 0 . code of the second word to indicate that they are Library Routine entries. All other entries have a 00 .

Modified Dimension List

Where:
Drum Address $=$ Initial address of array on drum during running of Object Program.

XS3 symbol = XS3 symbol for subscripted variable (array) to which preceding drum address applies.

The modified Dimension List is built by a routine which operates during the Allocation Setup Phase. Information to build the list is obtained from the original Dimension List in the Combination List, which is still available at this time.

Fixed location 00010 is changed at the time the modified Dimension List is built to describe this new list.

The last entry in the list must always be the address following the last address of the last array on drum. If, therefore, the last address of the last array were $7^{7777}{ }_{g}$, the next address would be 100000 . Although this is not a legitimate address, in this case it would have to be included as the last entry in the list.
Sentence Number List
$0 \mathrm{p} . \quad \mathrm{u} \quad(\mathrm{ND}=$ Regional Address of List on Drum $)$

XS3	Sentence	Number
XS3	Sentence	Number
	etc.	

XS3 Library Routine Name XS3 Library Routine Name etc.

ND - Section for sentence numbers associated with $26 \cdots, 27-m$, and $22-$-- type callwords. (Maximum of $512{ }_{10}$ such callwords)
$\mathrm{ND} 1000_{8}$ -
ed with $24-$ type callwords.

imum of $512{ }_{10}$ such callwords)

$$
\begin{gathered}
\mathrm{ND} 2000_{8} \text { - } \\
\text { ed with for sentence numbers associat- } \\
\\
\text { imum of } 512{ }_{10} \text { such callwords) }
\end{gathered}
$$

$\mathrm{ND}_{2} 000_{8}$ - Section for sentence numbers associated with 4-m-m type callwords. (Maximum of $64{ }_{10}$ such callwords)

The Sentence Number List is built by a routine which operates during the Processor Phase, where the Prelude of each routine is still available. The callword of each routine, and the associated XS3 sentence number or Library Routine name, are obtained from the Prelude of the routine.

The entries in each section of the list are stored within the section relative to the last three octal digits of the callword, except for 4-an and 5--m type callwords. For the 4 xxx - and $5 x x$-- type callwords, the digits marked " X " are used.

The sections of the list always remain at the same relative distances from the beginning of the list, as shown on the preceding diagram; hence the list is always 41008 locations long.

SYMBOL LIST FORMAT

Where:
XS3 SYMBOL = XS3 Symbol for each of the non-subscripted variables of the problem

This list is built and written on Uniservo 5 by routines which operate during the "End of Tape" generation phase. The list contains the XS3 symbols for all the functions ($66-$ - callwords), floating point non-subscripted variables (65-m callwords), and fixed point variables (64-m- callwords) of the problem. The symbols are in the list in order of the increasing High Speed Storage addresses assigned to the variables.

```
Program Listing Phase Setup Block
            Regional Assignments:
```

RE	TN20
RE	TH21
RE	UP421
RE	FP653
RE	PK2547
RE	LS7230
RE	LT7260

Setup Block

	IA	LS		
0	SP	TN	0	
1	ZJ	LS2	LS3	```(A) = zero? \Longrightarrow 5 servos; (A) # 0\Longrightarrow7 servos```
2	RA	LTIl	LS24	Adv. servo \# in printout by 3 to set obj. prog. tape $\#=6$
3	TP	LT	UP3	
4	RJ	UP2	UP	Typeout: COMPUTER CODING PRODUCED ON TAPE 3 or 6
5	TP	LT12	UP3	
6	RJ	UP2	UP	Typeout: IF PROGRAM LISTING IS NOT DESIRED, SET A NOT $=0$. START.
7	SP	LS25	0	Set $A=0$.
10	MS	0	LS11	
11	ZJ	LS17	LS12	Program Listing desired?
12	TP	LS26	TH3	
13	RJ	TH2	TH	Read program listing phase from servo l to core
14	TP	LS27	TH3	
15	RJ	TH2	TH	Rewind servo l
16	MJ	0	PK	Jump to program listing phase
17	TP	LS27	TH3	
20	RJ	TH2	TH	Rewind servo l
21	TP	LT25	UP3	
22	RJ	UP2	UP	Typeout: COMPILATION COMPLETED.
23	MS	0	LS23	
24	0	0	300	
25	0	0	0	
26	50	01201	FP	Tape codeword to read listing phase to core
27	10	$\begin{aligned} & \mathrm{l} \\ & \mathrm{LS} 30 \end{aligned}$	0	Tape codeword to rewind servo 1

Listing Setup Typeout

	IA	LT		
0	0	LT1	11	
1	01	01010	10101	$\triangle \triangle \triangle \Delta \Delta \Delta$
2	01	01010	10101	$\triangle \triangle \triangle \triangle \triangle \Delta$
3	01	01010	10101	$\triangle \triangle \triangle \Delta \Delta \triangle$
4	01	26514	75267	$\triangle \mathrm{C}$
5	66	30540	12651	T E R $\quad \triangle \mathrm{C} 0$
6	27	34503	20152	D I $\quad \mathrm{N}$ G \triangle P
7	54	51276	72630	R $\quad 0 \quad \mathrm{D}-\mathrm{J} \quad \mathrm{C}$ E
10	27	01515	00166	D $\triangle 0 \sim \triangle T$
11	24	52300	10622	A P E $\triangle 3$
12	0	LT13	12	
13	34	31015	25451	I F $\quad \triangle \begin{array}{llll}\text { P }\end{array}$
14	32	54244	70146	G R A M \triangle L
15	34	65663	45032	I. S T I I N G
16	01	34650	15051	$\triangle \mathrm{I}$ S $\triangle \mathrm{N} 0$
17	66	01273	06534	$T \triangle$ D E S I
20	54	30272	10165	R E D , \triangle S
21	30	66012	40150	E T \triangle A \triangle N
22	51	66017	60322	0 T $\Delta=0$
23	01	01656	62454	$\triangle \triangle$ S T A R
24	66	22777	77777	T • 77777777
25	0	LT26	7	
26	01	01010	10101	$\triangle \Delta \triangle \Delta \Delta \triangle$
27	01	01010	10101	$\triangle \triangle \triangle \triangle \Delta \triangle$
30	01	01010	10101	$\triangle \triangle \triangle \triangle \triangle \triangle$
31	01	26514	75234	$\triangle \mathrm{C}$
32	46	24663	45150	L A T T I $\quad 0$
33	01	26514	75246	\triangle C $\quad 0 \begin{array}{lllll}\text { l }\end{array}$
34	30	66302	72277	E T \quad E \quad D . 77
	CA	LT35		

Box-2

(LS) Locate segment label block for first segment on object program tape

(FR) Op. File III Control Routine

Box-7		$\rightarrow \begin{aligned} & \begin{array}{l} \text { XS3 symbol for sub- } \\ \text { scripted variable } \\ \text { from Dimension List } \\ \text { to second output line } \end{array} \\ & \hline \end{aligned}$
Drum address for next subscripted variable from Dimension List to first output line	\rightarrowsub- Advance Dimen- sion List ad- dress in Box 7 by one	
		\downarrow
	Modulus for this subscripted variable to third output line	Subtract drum address for this variable from drum address of next variable to get modulus

(BB) Subroutine to terminate current listing tape

(OC) Output control subroutine

(OD) Page Heading Control Subroutine

(CA) Convert octal address to XS3
Input $=$ Octal address \quad Output $=$ XS3 address

$\stackrel{\rightharpoonup}{\circ}$

First output line $=$ op. code in XS3 Second output line $=$ "u" address in XS3 Third output line $=$ "v" address in XS3

(HC) Heading Routine for Constant Pool, Preface, Sentence, Library Routine, and Termination Sections

(EC) Edit octal coding or constants and write on listing tape Input - Initial object program running address of section to be edited

Box-9

(126)

(ES) Edit XS3 Variable Symbol for Octal 77's
Input $=$ XS3 symbol packed left with octal 77 fill Output = XS3 symbol packed right with octal zero fill

Program Listing Phase Regions

RE	PN2660
RE	P02741
RE	CL2756
RE	LS2767
RE	ES3000
RE	LB3327
RE	DL5037
RE	OB3040
RE	FB2170
RE	SB2360
RE	RB2550
RE	NL2740
RE	FL2557
RE	IB2747
RE	DD40101
RE	ND42102
RE	FD46202
RE	RF47202
RE	D252472
RE	ZZ655
RE	DP53400
RE	YY220
RE	TB610
RE	BL2260

List Buffer
Modified Dimension list in core Output buffer
File buffer
Statement buffer
Routine buffer
Sentence number list in core Op. File IV list in core

Input buffer
Modified Dimension list on drum
Sentence number
Op. File IV on drum
Routine file for 0 p. File IV
Group III instructions on drum
Length of Group III
Group II instructions on drum Length of Group II

Initial address of termination buffer
Listing tape block limit

		Memory L	yout			
	TH 21	GP．IV	PK2547			三 BR
	400		PL2565			三 BR12
	UP 421		PM2625			三 BR12
	216		PN2660			三 BR10
	EP 537		P02741		YP	三 BR12
			CL2756			三 BR12
			LS2767			三 BR12
			ES3000		ZP	引 BR10
GP．I	FP 653					
	TL 732			－Not	inclu	on region tape
	TC 746				ref	aced only by
	XS 772	GP．IV	LB3327		rint．	
	XT1072	（Lists E	1510			
	FC1146	buffers）	DL5037	$\bigcirc \mathrm{FC}$	40001	
	RC1252		2001		100	
	CT1316				40101	Dimension List
	0D1342		$0 B 7040$ 740		2001	
	NP1363		740		42102	Sentence number
	BA1415		10000			list
	BB1432				4100	
		GP．II （Lists \＆	FB2170 170			Op．File IV on drum
		buffers）	SB2360		$\frac{1}{47} 202$	
GP．II	PP1452 PT1467		$\begin{array}{r}170 \\ \hline 8250\end{array}$			drum
	PT1467 BF1510		RB2550		3270	
	BF1510		170		52472	Group III on
	BG1611		NL2740			drum
			4100 087040	ZZ	655	Length Group III
GP．III	PQ1672		10000			
	PR1725			DP	53400	Group II on drum
	PS1770	GP．III	FL2557		220	Length Group II
	EV2030	（Lists E	170			
	EC2064	buffers）	IB2747			
	ED2125		2070			
	EF2177		DL5037	TB	610	Termination buffer
	FR2203		2001			address
	IR2211		0B7040	BL	2260	Listing tape block
	DS2241		740			limit
	0C2311		10000			
	BD2335					
	HV2352					
	HC2407					
	CA2470					
	CW2521					

Program Listing Phase
$\left.\begin{array}{rlll} & \text { IA } & \text { PK } & \\ 0 & \text { TP } & \text { FP } & \text { UP3 } \\ 1 & \text { RJ } & \text { UP2 } & \text { UP } \\ 2 & \text { RP } & 10024 & \text { PK4 } \\ 3 & \text { TP } & \text { FC } & \text { CT } \\ 4 & \text { TP } & \text { XS11 } & \text { CT10 } \\ 5 & & & \\ 6 & \text { TP } & \text { XS12 } & \text { CT11 } \\ 6 & \text { TP } & \text { XS } & \text { CT12 } \\ 7 & \text { TP } & \text { XS11 } & \text { CT13 } \\ 10 & \text { TV } & \text { RC24 } & \text { NP4 } \\ 11 & \text { TV } & \text { RC25 } & \text { NP7 } \\ 12 & \text { RP } & \text { YY30000 } & \text { PK14 } \\ 13 & \text { TP } & \text { PP } & \text { DP } \\ 14 & \text { RP } & \text { ZZ30000 } & \text { PL } \\ 15 & \text { TP } & \text { PQ } & \text { DQ }\end{array}\right\}$

Program listing setup
Parameter \rightarrow uniprint
Print: LISTING OF PROGRAM
Zeroize temporaries
Preset lst page no. word (assume no number list page)
Preset 2nd page no. word
Preset 1st segment no. word
Preset 2nd segment no. word
Preset one shot jump in Page no. rtn. Preset one shot jump in Page no. rtn.

Program Load II \rightarrow drum
Program Load III \rightarrow drum

Program Listing (Title Section)

		IA	PL		
(1)	0 1	RP TP	10740 XS 11	$\left.\begin{array}{l}\text { PL2 } \\ \mathrm{OB}\end{array}\right\}$	Fill output buffer with space char. Fast feed 1 sym \rightarrow sheet hdg. blkt.
	2	TP	XS	OB	
	3	RP	30004	PL5	
	4	TP	XT40	0B10	PROGRAM \triangle LISTING \rightarrow Sheet Hdg. blkt.
	5	TP	TC	TH3	Codeword \rightarrow G.T.H.
	6	RJ	TH2	TH	Read 1 blk. corrected problem tape \rightarrow list buffer
	7	RJ	CL	CL1	Check corr. prob. tape label (i.e. UNICODEAPROGRAM)
(2)	10	RP	30144	PLI2	Prog. title \rightarrow 3rd - 7th blkts in output buffer Preset output buffer address Preset line count (15_{8}) for lst entry following title \# blks preceding XS3 sym. list $\mathrm{lab} \longrightarrow \mathrm{Av}$ Decrease by 1 to exclude tape label blk. $\longrightarrow Q_{V}$ \# blks. Const. Pool (incl. lab. blk. \mathcal{E} End blk.) \longrightarrow "v" of temp. \# biks. to move tape to position at begin XS3 sym list lab. Dec. by \# blks. Const. Pool to get \# blks. to move to begin const. pool Codeword \longrightarrow G.T.H. Move corr. prob. tape forward to begin Const. pool (or XS3 sym. list if no C.P.) MJ1 off $\Longrightarrow 5$ servos; MJ1 on $\Longrightarrow 7$ servos 0 bj . prog. servo $\#=3 \rightarrow Q$ (5 servos) Set listing tape \# = 4 in flex. prints Set listing tape \# = 4 in flex. prints Set listing tape $\#=7$ in flex. prints Set listing tape $\#=7$ in flex. prints Obj. prog. servo \# $=6 \longrightarrow Q$ (7 servos)
	11	TP	LB24	0B50	
	12	TP	RC3	CT6	
	13	TP	FC7	CT7	
	14	SP	14	0	
	15	ST	FCl	Q	
	16	LT	3	CT16	
	17	QT	FC32	A	
	20	SS	CT16	25	
	21	AT	TC3	TH3	
	22	RJ	TH2	TH	
	23	MJ	10000	PL30	
	24	TP	TC21	Q	
	25	TP	FP55	FP20	
	26	TP	FP55	FP47	
	27	MJ	0	PL33	
	30	TP	FP56	FP20	
	31	TP	FP56	FP47	
	32	TP	TC22	Q	
	33	RP	30010	PL35	

34	QT	TC6	TC6	Servo. no. \longrightarrow Obj. prog. tape codeword
35	RA	0	FC2	$\text { Program listing servo no. } \rightarrow 0$ $(1 \text { in "u" adv.) }$
36	RP	30003	PM	
37	QT	TC16	TC16	Servo no. \longrightarrow program listing tape codewords
	CA	PL40		

(3)		IA	PM		
	0	TV	6	CT2	\# 77--- CW ${ }^{\text {* }}$ ¢ \longrightarrow Index C_{2}
	1	IJ	CT2	PM3 yes	Are there subscripted variables?
	2	MJ	0	PM15	No
	3	TP	6	A	jn for Dim.List of form 2-- \rightarrow Au
	4	AT	FC77	5	jn for Dim. List of form 3-m $\longrightarrow " u "$ of loc. 5
	5	TU	A	PM6 ${ }^{\text {a }}$	
	6	RP	[30000]	PM10 $\}$	Dimension list from drum \longrightarrow core
	7	TP	DD	DL	
	10	TU	RC33	DS4	Preset init. add. dim. list
	11	TV	RC42	EV7	Preset Dim. List rtn. ref. \longrightarrow subs. var. (drum) entry
	12	TV	RC5	Ev32	Preset hdg. rtn. ref. \longrightarrow subs. var. (drum W/cont.) entry
	13	RJ	HV	HV1	Init. subs. var. (drum) hdgs. \longrightarrow sect. hdg. blkt.
	14	RJ	EV	EVI	Edit subs. var. (drum) \mathcal{E} write on listing tape
(4)	15	SP	CT16	25	\# blks const. pool (incl, lab. \& end blks.) $\longrightarrow A$ in codeword position
	16	ZJ	PM17 ${ }^{\text {yes }}$	PN ${ }^{\text {no }}$	Is there const. pool?
	17	AT	TC5	TH3	Codeword \longrightarrow G.T.H.
	20	RJ	TH2	TH	Read const. pool (incl. lab.G end) from corr. prob. tape \rightarrow Dim. List region
	21	TP	DL	A	$\xrightarrow[\mathrm{A}]{\text { lst word const. pool lab. blk. }}$
	22	EJ	TL13	PN	1st word const. pool lab. blk. = C $0 \mathrm{~N} \quad \mathrm{~S}$ A?
	23	MJ	0	WP	Alarm 10
	24	TP	14		\# blks XS3 sym. list incl. lab. E end blks. (If no sym, list, only
	25	QT	FC50		Lab. blk. appears \mathcal{E} count $=1$) $\rightarrow \mathrm{A}$ in position for codeword
	26	AT	TC23	TH3	Codeword to read sym. list to list buffer \longrightarrow G.T.H.
	27	RJ	TH2	TH	Read XS3 sym. list (or lab. blk. if no list) \longrightarrow List buffer
	30	TP	LB	A	$\underset{\text { list word XS3 sym. list lab. }}{\text { bla }}$ $\mathrm{blk} \longrightarrow \mathrm{~A}$
	31	EJ	TLA	PN3	lst word XS3 sym. list lab. $\mathrm{blk}=\mathrm{S} \quad \mathrm{Y} \quad \mathrm{M} \quad \mathrm{B} \quad 0 \quad \mathrm{~L}$?
	32	MJ	$\begin{aligned} & 0 \\ & \text { PM33 } \end{aligned}$	WQ	Alarm 10

Non-Subscripted Variable Section

(5)		IA	PN		
	0	SP	7	0	Init. running add. non-subs. var. $\longrightarrow A u$, \# non-subs. var. $\longrightarrow A v$
	1	ST	FC3	CT	Decrease running add. \& \# non-subs. var. each by $1 \rightarrow$ temp
	2	SJ	P0 ${ }^{\text {no }}$	PM24 yes	Are there non-subs. var.? No \Longrightarrow const. pool section
(6)	3	TV	CT	CT2	\# non-subs. var. - $1 \longrightarrow$ index C_{2}
	4	TV	FC	CT	Zero $\longrightarrow " \mathrm{v}$ " of temp. containing non-subs. var. add. - 1
	5	RJ	OD	OD2	New page hdg, if required \longrightarrow output buffer
	6	TU	$\mathrm{RC12}$	PN37	Preset initial add. in XS3 sym. list
	7	TP	XS53	XS50	Setup section hdg.
	10	TV	CT6	PN12	Preset add. sect. hdg. blkt = output buffer add.
	11	RP	30005	PN13	
	12	TP	XS44	[30000]	"Non-subscripted $\Delta v a r i a b l e s "$ Hdg. \longrightarrow Section hdg. blkt.
(6A)	13	TU	RC10	PN21	Preset " u " of $\mathrm{TP} \longrightarrow$ Add. of stored col. hdgs.
	14	RJ	OC	0 C 21	Two space blkts. \rightarrow output buffer
(7)	15	TP	FC20	Q	
	16	TV	CT6	PN21	Preset add. col. hdg. blkt. = output buffer add.
	17	RA	PN21	FC10	2 in " $\mathrm{v}^{\text {" adv. }} \rightarrow$ add. for lst col. hdg. (or underscore)
	20	RP	30003	PN22	
	21	TP	[30000]	[30000]	Column hdg. (or underscores) \rightarrow output buffer
	22	RA	PN21	FC21	5 in " $\mathrm{v}^{\mathrm{\prime}}$ adv. \rightarrow Add. for next column hdg.
	23	QJ	PN24 yes	PN20 ${ }^{\text {no }}$	All column hdg. (or underscores) \rightarrow output buffer?
	24	QJ	PN25 ${ }^{\text {no }}$	PN31 yes	Underscores transferred yet?
	25	RJ	BA	BAl	Adv. output buff. add. by $20{ }_{10}$
	26	TU	RCll	PN21	(248) Preset "u" of TP \rightarrow Add. stored underscores
	27	TP	FC22	Q	Switch04 00000 00000
	30	MJ	0	PN16	
	31	RJ	OC	OC21	Two space blkts \rightarrow output buffer
(8)	32	TV	CT6	PN41	Set assem. blkt. add. = output buffer add.
	33	RS	PN41	FCl	Dec. assem. blkt. add. by $1 \longrightarrow$ preset for lst var. sym.
	34	TP	FCll	CT1	Preset index $\mathrm{C}_{1} \longrightarrow$ \# variables/ blkt. - 1

(9)	35	RA	CT	FC2	1 in "u" adv. \longrightarrow running add. next var.
	36	RA	PN41	FCll	Adv. assem. blkt. add. by $3 \longrightarrow$ add. next sym.
	37	$\begin{aligned} & \mathrm{TP} \\ & \mathrm{CA} \end{aligned}$	$\begin{aligned} & {[30000]} \\ & \text { PN40 } \end{aligned}$	ES2	XS3 var. sym. packed left $\mathrm{W} / 77_{8}$ fill \rightarrow input edit $r t n$.
	40	IA	PN40	ES3	Pack symbol to right with zerog fill
	41	TP	ESl	[30000]	XS3 var. symbol packed right \rightarrow output buffer
(10)	42	RA	PN37	FC2	1 in "u" advance to address next var. symbol
	43	RA	PN41	FCl0	Adv. add. assem. blkt. by 2 in " v " \longrightarrow add. for next add. entry
	44	TV	A	PN47	Preset address for variable address entry
	45	TP	CT	CA2	Running add. for next var. \longrightarrow conversion routine
	46	RJ	CA	CA3	Convert octal add. \longrightarrow XS3 W/zero 8 on right
	47	TP	CAl	[30000]	Running address for variable \longrightarrow output buffer
(11)	50	RJ	0 C	$0 \mathrm{Cl}_{1}$	
	51	MJ	0	PN35	\Longrightarrow same blockette - same sheet
	52	MJ	0	P0	\Longrightarrow new section
	53	MJ	0	PN55	\Longrightarrow new blockette - new sheet
	54	MJ	0	PN32	\Longrightarrow new blockette - same sheet
(12)	55	TP	XS54	XS50	Set up section hdg. to continue on new sheet
	56	TV	CT6	PN60	Preset address section hdg. blkt. = output buffer add.
	57	RP	30007	PN13	
	60	TP	XS44	[30000]	Non-subscripted \triangle variables -- continued \longrightarrow sect. hdg. blkt.

		IA	P0		
(13)	0	SP	10	17	Init. running add. const. pool $\longrightarrow{ }^{n} u^{n} \text { of } A$
	1	TU	A	ECl	Init. running add. const. pool \longrightarrow input edit routine
	2	LT	6	Q	jn for constant pool $\longrightarrow \mathrm{Qv}$
	3	QT	FC13	CT2	$\# \text { const. in const. pool } \longrightarrow \text { index }$ C_{2}
	4	IJ	CT2	P06 ${ }^{\text {yes }}$	Is there const. pool?
	5	MJ	0	P013	
	6	RJ	OD	0D2	New page hdg. if required \longrightarrow output buffer
(14)	7	TU	RC22	ED14	$\begin{aligned} & \text { Preset input buff. add. for 1st } \\ & \text { const. - } \end{aligned}$
	10	RJ	HC	HCl	Constant pool hdgs. \rightarrow output buffer
	11	TV	RC33	EF	Preset ent. add. for const. pool hdgs. (W/cont.)
	12	RJ	EC	EC2	Edit const. pool \mathcal{E} write on listing tape
(15)	13	RJ		$\begin{aligned} & \text { LSI } \\ & \text { PP } \end{aligned}$	Locate lst segment label blk.
	14	$\begin{aligned} & \text { MJ } \\ & \text { CA } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { P015 } \end{aligned}$	PP	

Segment Section

Address seg. lab. blk. \rightarrow "u" of NI lst word label blk. \rightarrow A
lst word label blk. $=Z$'s? i.e. is this end obj. prog.?
lst word label blk. = SEGMEN?
Alarm 8
" @SEGME" \longrightarrow 1st seg. no. word Adv. add. label blk. \longrightarrow Add. seg. no. (3rd line)
Preset add. seg. no. (3rd line lab. blk.)

3rd - 8th line lab. blk. \longrightarrow temps. Build 0p. File IV this seg. and \# sentences $\longrightarrow{ }^{\prime \prime} \mathrm{v}^{\prime \prime}$ of index C_{5}

Program load III \longrightarrow core

Preface Section

		IA	PQ		
	0	TP	CT16		0ctal segment no. \longrightarrow Av
	1	TJ	FC100	PQ7 ${ }^{\text {yes }}$	$12_{8}\left(10_{10}\right) \longrightarrow$ seg. no.?
	2	DV	FC100	Q	Divide seg. no. by 128 (NB -max. seg. no. $=63_{10}$)
	3	LQ	Q	6	Tens digit seg. no. left 6
	4	SA	Q	0	Two digit seg. no. \longrightarrow Av
	5	SA	FC101	6	Convert two digitio seg. no. \longrightarrow XS3 and position in A
	6	MJ	0	PQ10	
	7	SA	FC11	14	Convert one digitlo seg. no. \longrightarrow XS3 and position in A
	10	AT	XS10	CT13	$\mathrm{NT} \Delta$ [seg. no.] $0 \rightarrow 2$ nd seg. no. word
(18)	11	RJ	OD	0D1	```Sheet hdgs. (seg. no. E pg.no.) output buffer```
	12	SP	CT17	25	\# blks Pref. (Term) $\rightarrow A$ in codeword position
	13	ZJ	PQ14 ${ }^{\text {yes }}$	PQ26 ${ }^{\text {no }}$	Is there Preface?
	14	AT	TCl	TH3	Codeword \longrightarrow G.T.H.
	15	RJ	TH2	TH	Read Preface from corr. prob, tape \rightarrow input buffer
	16	RJ	HC	HC23	Preface hdgs \rightarrow output buffer
(19)	17	TU	CT22	ECl	Init. running add. Preface \longrightarrow input edit routine
	20	TV	RC34	EF	Preset ent. add. for Pref. hdgs. (W/continued) in edit rtn.
	21 22	TU RS	RC ED14		Preset input buff. add. \rightarrow init. add. - 1 in edit rtn.
	23	SP	CT23	0	\# lines Preface \longrightarrow Av
	24	ST	FCl	CT2	\# lines Preface - $1 \rightarrow$ index C_{2}
	25	RJ	EC	EC2	Edit Pref. and write on listing tape
(19A)	26	TP	CT21	Q	\# lines partial blk. this segment \rightarrow Q
	27	QT	FC23	A	$\begin{aligned} & \text { \# lines partial blk. segment }+ \\ & \text { Preface } \xrightarrow{\longrightarrow} \mathrm{u} \end{aligned}$
	30	TU	RC24	FR2	Preset initial add. 0p. File IV (drum) in Op. File IV control routine
	31	TU	RC40	PR14	Preset add. File list \longrightarrow limiting add. initially
	32	$\begin{aligned} & \mathrm{ZJ} \\ & \mathrm{CA} \end{aligned}$	$\begin{aligned} & \text { PR yes } \\ & \text { P033 } \end{aligned}$	PR1 ${ }^{\text {no }}$	Is there partial blk?

		IA	PR		
	0	SP	FC2	6	Set blk. count $=1$ in A in codeword position to count part. blk.
	1	AT	CT20	IR1	\# blks. (incl. part. blk.) seg. + Pref. \longrightarrow input fill buffer rtn,
	2	RJ	IR	IR2	Fill input buffer
	3	TU	RC	ED14 $\}$	
	4	RS	ED14	FC2 $\}$	Preset input buff. add. \rightarrow init. add - 1 in edit rtn.
(20)	5	IJ	CT5	PR10 ${ }^{\text {yes }}$	Are there more sentences this segment?
	6	SP	${ }^{\text {CTI7 }}$ yes	25 no	
(25)	7	ZJ	PR37	PS35	Is there Termination?
	10	RJ	OD	0D2	New page hdg. if required \rightarrow output buffer
	11	RA	PR14	FC2	Adv. add. File list by $l \rightarrow$ add. next sent. no.
	12	TJ	RC40	PR14	Limit add. file list \rightarrow current address?
	13	RJ	FR	FR1	Fill file list (core) from 0p. file IV (drum)
(21)	14	TP	[30000]	CT	XS3 sent. no. from file list \rightarrow temp.
	15	RA	PR14	FC2	Adv. add. file list \longrightarrow add. of word with \# lines \mathcal{E} running add. of sent.
	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & \mathrm{TU} \\ & \mathrm{TP} \end{aligned}$	$\begin{aligned} & \text { A } \\ & {[30000]} \end{aligned}$	$\left.\begin{array}{l} \text { PR17 } \\ A \end{array}\right\}$	\# lines this sent. $\longrightarrow A u$; running add. this sent. $\longrightarrow \mathrm{Av}$
	20	ST	FC2	Q	Decrease \# lines sent. by $1 \longrightarrow \mathrm{Au}$
	21	LQ	Q		Running add. this sent. (or lib.
	22	TU	Q		rtn.) \rightarrow input edit rtn.
	23	LQ	Q	6	
	24	TV	Q	CT2	$\begin{aligned} & \# \text { lines this sent. (or lib. rtn.) } \\ & \longrightarrow \text { index } C_{2} \end{aligned}$
(22)	25	SJ	PR32	PR26	$(+) \Longrightarrow$ sentence ; $(-) \Longrightarrow$ 1ibrary routine (CK. left most bitof $\mathbb{N F} 0$ word)
	26	TP	CT	XT3	Sent. no. \longrightarrow hdg.
	27	TV	RC4	EF	Preset add. sent. hdg. W/cont. in edit routine
	30	RJ	HC	HC33	Sent. hdgs. \longrightarrow output buffer
	31	MJ	0	PR35	
(23)	32	TP	CT	XT47	Library routine name \rightarrow hdg.
	33	TV	RC22	EF	Preset add. lib. rtn. hdg. W/cont. in edit. rtn.
	34	RJ	HC	HC51	Lib. rtn. hdgs. \rightarrow output buffer

35	RJ	EC	EC4	Edit sent. (or lib. rtn.) \& write on listing tape
36	MJ	0	PR5	Codeword to tape handler
37	AT	TCl	TH3	
	CA	PR40		
	IA	PR40	PR41	Preset jn of repeat to trans. Dim. List \rightarrow core
	TU	5		Dimension list from drum \rightarrow core

Subscripted Variables (core) and Termination Section

$\left.\begin{array}{llll}36 & \mathrm{RP} & \mathrm{YY} 30000 & \mathrm{PP} \\ 37 & \mathrm{TP} & \mathrm{DP} & \mathrm{PP}\end{array}\right\} \quad$ Program load II \rightarrow core

		IA	PT		
(31)	0	TV	CT6	PT1	Preset avail. add. output buffer
	1	TP	XS	[30000]	Fast feed 1 symbol \rightarrow output buffer
	2	TV	CT6	PT5	Preset avail. add, output buff.
		RA	PT5	FC4	108 in " v " adv. \rightarrow output buff. add. for "end of listing" blkt.
	4	RP	30004	PT6	
	5	TP	XT17	[30000]	END. \triangle OF \triangle LISTING blkt. \rightarrow output buffer
	6	RJ	BA	BA1	Adv. Output Buff. add. by ${ }^{24} 8\left(0_{10}\right)$ in " u " and " v "
	7	RJ	BB	BB1	Terminate listing tape and rewind
	10	TP	TC7	TH3	
(32)	11	RJ	TH2	TH	Rewind binary program tape
	12	TP	TC2	TH3	
	13	RJ	TH2	TH	Rewind corrected problem tape
	14	TP	FP10	UP3	Parameter \rightarrow uniprint
	15	RJ	OP2	OP	Print: PROGRAM LISTING ON TAPE [-].
	16	TP	FP21	UP3	Parameter \rightarrow uniprint
	17	RJ	UP2	UP	Print: COMPILATION COMPLETED
	20	MS	0	PT20	
		CA	PT21		

Build Op. File IV for Segment

		IA	BF		
	0	MJ	0	[30000]	
(33)	1	TP	TC4	TH3	Codeword \longrightarrow G.T.H.
	2	RJ	TH2	TH	Read 1 blk. Op. File III \rightarrow file buffer
	3	TP	FB	A	lst word file buffer \longrightarrow A
	4	EJ	TL2	BF6	lst word file buffer $=$ FILE $\triangle 3$? (Op. File III entry label)
	5	MJ	0	YP	Alarm 10
(34)	6	RP	34100	BF10	
	7	TP	ND	NL	Sentence No. (XS3) List \longrightarrow core
	10	TV	RC27	BF73	Preset init. add. Op. File IV (drum)
	11	TV	RC26	BF61	```Preset init. add. statement buff. (core)```
	12	TV	RC30	BG2	Preset init. add. routine buff. (core)
	13	TP	RC35	BG14	Preset init. add. routine file (drum)
(35)	14	TP	TC4	TH3	Codeword \longrightarrow G.T.H.
	15	RJ	TH2	TH	Read l blk. Op. File III \longrightarrow File buffer
	16	TP	FB	A $\}$	lst word File buffer $=$ END \triangle OF ?
	17	EJ	TL3	BG25	Yes \Rightarrow end Op. File III this segment
36	20	TU	BF16	BF21	Preset init. add. File Buff.
(37)	21	TP	30000	Q	$\xrightarrow{\text { Callword (or } Z^{\prime} \text { s) from File buff. }}$
	22	RA	BF21	FC2	1 in "u" adv. \rightarrow ADD. of INFO, word assoc. W/callword
	23	SP	Q	0	Callword (or Z's) $\rightarrow \mathrm{Ar}$
	24	TJ	FC60	BG20	$23000>\mathrm{CW}$? (pseudo 0p. sentence?)
	25	TJ	FC61	BF35	$25000>$ CW? (equat. for subs.var.?) $\mathrm{NB} \rightarrow$ end of tape callword not in Op. File III
	26	TJ	FC62	BF37	26000 > CW? (equat. for non-subs. var.?)
(38)	27	TJ	FC63	BF52	```30000 > CW? (statement of main prog.?)```
	30	TJ	FC64	BF41	50000 > CW? (pseudo operation Hdg?)
	31	TJ	FC65	BF45	$60000>\mathrm{CW}$? (library routine?)
	32	QJ	BG21-	BF76 +	$(+) \Rightarrow 77-$ CW; (-) \Rightarrow word of Z's (end of information)
	33	TP	RC15	A	
	34	MJ	0	BG	
(39)	35	TP	RCl 6	A	
	36	MJ	0	BG	
(40)	37	TP	RC17	A	
		CA	BF40		

Build 0p. File IV (cont.)
IA $\quad \mathrm{BF} 40$

(41)	40	MJ	0	BG	
	41	QT	FC50	A	Designating bits of pseudo 0p. $\mathrm{CW} \longrightarrow \mathrm{A}$
	42	LT	36	A	Designating bits \longrightarrow " u " of Ar
	43	SA	RC20	0	Add. base add. pseudo 0 p. sect. in sent. no. list
(42)	44	MJ	0	BGI	Add. info. word $\longrightarrow^{n \prime \prime}$ of NI Lib. rtn. ind. $\left(76_{8}\right) \longrightarrow 0$ p. code of info. word Designating bits lib. rtn. C.W.$\longrightarrow \mathrm{Qu}_{\mathrm{u}}$
	45	TU	BF21	BF46	
	46	RA	[30000]	FC34	
	47	LQ	Q	41	
	50	TP	RC21	A	
	51	MJ	0	BG	Add. info. word \longrightarrow " u " of NI Info. word $\longrightarrow A$ Does info. word have "IP" flag? Yes \Rightarrow omit from file Last 3 digits of C.W. \longrightarrow Au Add. base address statements in sent. no. list
(43)	52	TU	BF21	BF53	
	53	TP	[30000]	A	
	54	TJ	FC25	BF56 ${ }^{\text {no }}$	
	55	MJ	0	BF76	
	56	QT	FC54	A	
	57	SA	RC15	0	
	60	TU	A	BF61	Add. of XS3 sent. no. corresponding to $\mathrm{CW} \longrightarrow$ " u " of NI XS3 sent. no. \longrightarrow statement buffer
	61	TP	[30000]	[30000]	
	62	RA	BF61	FC1	Adv. add. in stmt. buff. by 1 in ${ }^{\mathrm{V}} \mathrm{V}$ "
	63	TV	BF61	BF65	Preset next add. stmt. buff. Info. word \longrightarrow stmt. buff. Information word \rightarrow stmt. buff. Adv. add. in stmt. buff. by 1 in " V "
	64	TU	BF21	BF65	
	65	TP	[30000]	[30000]	
	66	AT	FCl	BF61	
	67	TP	A	Q	
	70	QT	FC32		Next add. in stmt. buff. \rightarrow Av Statement buffer full?
	71	TJ	RC36	BF76 ${ }^{\text {no }}$	
	72	RP	30170	BF74	
	73	TP	SB	[30000]	Stmt. buff. \longrightarrow Op. File IV (drum) Adv. add. Op. File IV (drum) by 1708
	74	RA	BF73	FC56	
	75	TV	RC26	BF61	Preset add. stmt. buff. \longrightarrow init. add.
(45)	76	RA	BF21	FC2	Adv. Address file buff. by 1 in " u " More entries in file buff. to be processed?
	77	TJ	RC23	BF21 ${ }^{\text {yes }}$	
	100	MJ CA	$\begin{aligned} & 0 \\ & \mathrm{BF} 101 \end{aligned}$	BF 14	

Build Op. File IV (cont.)

Build Op. File IV (cont.)

	IA	BG40		
40	TP	RB	[30000]	Part. routine buff. \rightarrow routine file (drum)
41	SP	BG32	0	Add. Op. File IV \longrightarrow Av
42	SA	BF61	0	Adv. add. Op. file IV by \# lines part. stmt. buff. \rightarrow Av
43	TV	A	BG54	Preset add. 0p. file IV
44	SS	FCl	17	Add. of info. word for last stmt. of seg. $\longrightarrow \mathrm{Au}$
45	TU	A	BG46	Preset drum address of last stmt. info. word
46	RA	[30000]	FC24	Ady. \# lines last stmt. Rtn. by 2 in "u" to count "Ip" and blank
47	RS	BG14	RC35	\# lines routine file \rightarrow Av
50	AT	BG2	Q	\# lines routine file + \# lines part. buff. = total \# lines routine file
51	SA	FC57	17	jn to trans. routine file to 0 p . file IV $\longrightarrow \mathrm{Au}$
52	TU	A	BG53	
53	RP	[30000]	B655	
54	TP	RF	[30000] $\}$	Routine file (drum) $\rightarrow 0$ p. file IV (drum)
55	RS	BG54	RC27	\# lines Op. file IV (drum) before addition of routine file $\rightarrow \mathrm{Av}$
56	QA	FC32	A	```# lines Op. file IV + # lines routine file = total # lines of Op. file IV }->\mathrm{ Q```
57	LT	43	CT5	(\# lines 0 p. file IV) $/ 2=\#$ sentences this segment $\longrightarrow " \mathrm{v}$ " of C_{5}
60	MJ CA	${ }_{\text {BG61 }}$	BF	

Locate 1st Segment Label B1k. on Obj. Prog. Tape

		IA	LS		
(55)	0	MJ	0	[30000]	
	1	TP	FC36	CT2	$368 \rightarrow$ index C_{2} Preset initial add. seg. lab. blk \longrightarrow lst word list buffer
	2	TU	RC42	CT	
	3	TP	TC15	TH3	Read 1 blk. Object Prog. tape \longrightarrow list buffer 1st word list buffer $\longrightarrow A$ (A) = SEGMEN ? (i.e. is blk. lst seg. label blk.?) 378 blocks checked?
(56)	4	RJ	TH2		
	5	TP	LB	A yes	
	6	EJ	TL1	LS ${ }^{\text {yes }}$	
	7	IJ	CT2	LS4 ${ }^{\text {no }}$	
	10	MJ	0	BR10	Alarm 8
		CA	LS11		

Check Label Corrected Prob. Tape

		IA	CL		
(53)	0	MJ	0	[30000]	
	1	TP	FC24	Q	Switch \longrightarrow Q (S.t. go back to begin loop 23_{8} times)
	2	TU	RC42	CL3	Preset "u" of NI \longrightarrow Init. add. input buff.
(54)	3	TP	[30000]	A	Next ward from corr. prob. title blkt. \longrightarrow A
	4	RP	20006	CL6	
	5	EJ	TL5	CL	Is this partial corr. prob. title?
	6	RA	CL3	FC2	Adv. add. in title blkt. by 1 in ${ }^{n}{ }^{\mathbf{n}}{ }^{\mathbf{n}}$
	7	QJ	CLI0 ${ }^{\text {yes }}$	CL3 ${ }^{\text {no }}$	Was this last word in title blkt.?
	10	MJ	0	YV	Alarm 10
		CA	CLI1		

Op. File IV Control Routine

(58)		IA	FR		
	0	MJ	0	[30000]	
	2	$\begin{aligned} & \mathrm{RP} \\ & \mathrm{TP} \end{aligned}$	30170 [30000]	$\left.\begin{array}{l} \text { FR3 } \\ \text { FL } \end{array}\right\}$	Fill file list in core from Op. File IV on drum
	3	RA	FR2	FC55	Adv. Op. File IV drum add. by 170_{8} in "u"
	4	TU	RC25	PR14	Preset XS3 sent. no. add. \rightarrow init. add. file list
	5	$\begin{aligned} & \text { MJ } \\ & \text { CA } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { FR6 } \end{aligned}$	FR	

Dimension List Search Routine

		IA	DS	
	0	MJ	0	[30000]
	1	0	30000	0
	2	0	30000	30000
	3	0	30000	0
(59)	4	TP	[30000]	DSI
	5	RA	DS4	FC2
	6	TU	A	DS7
	7	TP	[30000]	DS2
	10	AT	FC2	DS4
	11	TU	A	DS12
	12	SP	[30000]	0
	13	ST	DS1	DS3
	14	MJ	0	DS
(60)	15	TP	[30000]	Q
	16	QT	FC23	DS 1
	17	LQ	Q	17
	20	QT	FC23	CT15
	21	RP	[30000]	EP
	22	EJ	DL	DS23
(61)	23	SN	Q	17
	24	SA	DS21	0
	25	SA	DS22	0
	26	TU	A	DS27
	27	TP	[30000]	DS2
	30	SA	FC2	0
	31	TU	A	DS32
	32	SP	[30000]	0
	33	ST	CT15	DS3
	34	TJ	FC77	DS44
	35	TJ	FC102	DS41
	36	RA	DS15	FC103
	37	RS	CT2	FC10
		CA	DS40	

		IA	DS40		
(618)	40	MJ	0	DS	Advance by $4 \longrightarrow$ address of next array trans. by Termination Decrease index by 1 in " v "
	41	RA	DS15	FC37	
	42	RS	CT2	FCl	
(610)	43	MJ	0	DS	
	44	RA	DS15	FC24	Advance by $2 \rightarrow$ address of next array trans. by Termination
	45	MJ	0	DS	
		CA	DS46		

Input Buffer Routine
IA IR

(62)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { SP } \\ & \text { TJ } \end{aligned}$	$\begin{aligned} & \text { IR1 } \\ & \text { FC71 } \end{aligned}$	$\mathbb{I R 1 0}^{0} \text { yes }$
	4	ST	FC66	IRI
	5	TP	TC12	TH3
	6	RJ	TH2	TH
	7	MJ	0	IR
(63)	10	AT	TC11	TH3
	11	RJ	TH2	TH
	12	TP	FC34	IR1
	13	MJ	0	IR
(64)	14	TP	IR1	A
	15	SJ	IR26 ${ }^{\text {yes }}$	IR16
	16	SP	CT17	25
	17	SA	IR1	0
	20	AT	TC6	TH3
	21	RJ	TH2	TH
	22	TP	TC10	TH3
(65)	23	RJ	TH2	TH
	24	TP	RC	CT
	25	MJ	0	IR
	26	SP	CT17	25
	27	$\begin{aligned} & \mathrm{MJ} \\ & \mathrm{CA} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \text { IR30 } \end{aligned}$	IR20

		IA	BA		
	0	MJ	0	[30000]	Exit
(6)	1	RA	CT7	FC1	Adv. line count by 1 in " $\mathrm{V}^{\prime \prime}$ \rightarrow next avail. line no.
	2	RA	CT6	FC6	Adv. output buff. add. by 24_{8} (2010) in "u" \mathcal{E} " v "
	3	TJ	RC41	$\mathrm{BA}^{\text {yes }}$	Limiting output buff. add. > Current buff. add?
(6)	4	RA	CT14	FC5	Adv. listing tape block count by \# blks. (4) output buff.
	5	TJ	FC73	BA10 ${ }^{\text {yes }}$	25308 ($1368_{10}>$ curr. \# blks. on listing tape?
	6	TV	RC7	OD4	Set switch $(B \rightarrow$ B $)$ (end current listing tape at end next page)
	7	TP	FC	CT14	Listing Tp. blk. count $=$ zero to render test on blk. count ineffective
(68)	10	TP	TC16	TH3	Parameter \rightarrow G.T.H.
	11	RJ	TH2	TH	Output Buffer \longrightarrow listing tape
	12	TP	RC1	CT6	Preset output buff. add. \longrightarrow initial value
	13	RP	10740	BA $\}$	Fill output buff. W/XS3 space
	14	TP	XS11	0B	characters and exit
		CA	BA15		

Terminate Listing Tape Routine
(6)

IA BB
9)

0	MJ	0	[30000]
1	TV	CT6	BB2
2	TP	XT37	[30000]
3	RA	CT6	FC6
4	ST	RC1	Q
5	QT	FC32	CT6
6	TP	TC20	Q
7	TJ	FC31	BB13 7
10	RA	Q	FC72
11	RS	CT6	FC56
12	MJ	0	BB7 $]$
13	TP	Q	TH3
14	RJ	TH2	TH
15	TP	TC17	TH3
16	RJ	TH2	TH
17	MJ	0	BB
	CA	BB20	

Exit
Preset output buffer address
Fast feed 1 \& printer stop
\rightarrow output buffer
Ady. output buff. add. by 248
$\left.{ }^{(20} 10\right)$ in ${ }^{n} u^{n}$ \& " v^{m}
\# words in partial output buff. $\longrightarrow{ }^{\prime \prime} u^{\prime \prime} \varepsilon^{" V} V^{\prime \prime}$ of Q
\# words in partial output buff. \longrightarrow "v" of A \& temp. 6
Codeword to write 1 blk . output buff. \longrightarrow Q
$171_{8}>$ \# words partial output buffer?
Adv. count blks. in part. output buffer?
Decrease \# words part. output buffer by 1

Parameter \rightarrow G.T.H.
Partial output buffer \rightarrow listing tape

Rewind listing tape

		IA	BD		
(70) (B2)	0	TV	CT6	BD1	Preset avail. output buff. add. Fast feed $1 \rightarrow$ output buffer Preset avail. output buff. add. Adv. output buff. add. \longrightarrow add. for MOUNT \triangle NEXT \triangle LISTING \triangle TAPE, etc.
	1	TP	XS	[30000]	
	2	TV	CT6	BD5	
	3	RA	BD5	FC5	
	4	RP	30014	BD6 $\}$	
	5	TP	XT23	[30000] \}	MOUNT \triangle NEXT \triangle LISTING \triangle TAPE \triangle ON \triangle PRINTER.,etc., \rightarrow output buffer
	6	RJ	BA	BA1	$\begin{aligned} & \text { Adv. output buff. add. by } 24_{8}\left(20_{10}\right) \\ & \text { in " } u^{\prime \prime} \varepsilon_{"_{v}} \end{aligned}$
	7	RJ	BB	BBI	Terminate current listing tape and rewind
	10	TP	FC	CT14	```Reset count of blks. on listing tape = zero```
	11	RJ	BA	BA12	Fill output buffer with XS3 space characters
(70)	12	TP	FP31	OP3 $\}$	Type: CURRENT LISTING TAPE FULL PUT NEW 1500 FT. TAPE ON SERVO START TO CONTINUE LISTING.
	13	RJ	UP2	UP J	
	14	MS CA	$\begin{aligned} & 0 \\ & \text { BD15 } \end{aligned}$	0D5	

		IA	OC		
	0	M $\overline{\text { J }}$	0	[30000]	
(71)	1	IJ	CT2	0 Cl 10	Are there quan. left this section?
	2	RJ	BA	BA1	No; ady. output buff. add. by 20_{10} and line count by 1
	3	RA	OC	FCl	Adv. exit add. by 1 in ${ }^{\prime 2} \mathrm{v}^{\prime} \Longrightarrow$ new section
	4	TP	CT7	A	Line count \rightarrow A
	5	TJ	FC67	OC21 no	Was this 55th line on sheet or beyond when new section next
	6	TV	RC6	OD2	Set switch $(\mathbb{A}) \rightarrow$ (A2)
	7	MJ	0	OC	
(72)	10	IJ	CT1	$0 \mathrm{C}{ }^{\text {no }}$	Was this last entry in blkt? No \Longrightarrow same blkt. - same sheet exit
	11	RJ	BA	BA1	Yes; adv. Output buff. add. by 2_{10} and line count by 1
	12	TP	CT7	A	Line count \longrightarrow A
	13	TJ	FC70	$0 \mathrm{Cl} 7^{\text {no }}$	Nas this 63rd line on sheet or beyond when same section next
	14	RA	OC	FC10	Yes; adv. exit add. by 2 in " V " \Longrightarrow new sheet exit
	15	RJ	OD	OD1	New page heading \rightarrow output buffer
	16	MJ	0	OC	\rightarrow Exit
(73)	17	RA	OC	FC11	Adv. exit add. by 3 in ${ }^{n n} \Rightarrow$ new blkt.-same sheet exit
	20	MJ	0	0 C	
(74)	21	RJ	BA	BA1	Adv. output buffer by 20_{10} and line count by 1 (space blkt.)
	22	RJ	BA	BA1	Adv. output buffer by 2010 and line count by 1 (space blkt.)
	23	MJ	$\begin{aligned} & 0 \\ & 0 \mathrm{C} 24 \end{aligned}$	OC	

Page Heading Control Subroutine

		IA	CA		
	0	MJ	0	[30000]	
	1	0	30000	30000	Output $=$ XS3 address
	2	[0	30000	30000]	$\begin{aligned} & \text { Input }=0 \text { ctal address in }{ }^{n} u^{n} \\ & W / \text { zero (octal) fill } \end{aligned}$
(80)	3	RJ	CA30	CA22	Convert address
	4	LT	6	CA1	XS3 add. W/octal zeros on right \rightarrow output
	5	MJ	0	CA	
(81)	6	RJ	CA30	CA22	
	7	LT	0	CAI	XS3 address W/actal zeros on left \longrightarrow output
	10	MJ	0	CA	
(82)	11	SP	FC26	6	XS3 hyphen \longrightarrow rightmost digits A_{L}
	12	RJ	CA30	CA23	
	13	LT	0	CAl	Converted address W/hyphen left \longrightarrow output
	14	MJ	0	CA	
(33)	15	RJ	CA30	CA22	Converted address $\rightarrow A_{L}$ packed right
	16	SA	XS5	6	Add. close parent. following XS3 address
	17	LT	0	CA1	XS3 address $W /$ close parent. \longrightarrow 1st output
	20	TP	XS3	CA2	Open parent. \rightarrow 2nd output
	21	MJ	0	CA	
(84)	22	TP	FC	A	Zeroize A
(85)	23	TP	FC34	CT3	Set index $=4$
	24	LQ	CA2	3	Next digit octal input add. $\rightarrow \text { Qop }$
	25	QA	RC43	A	Add. next digit to be con- verted \longrightarrow Aop $\left\{\begin{array}{l}\text { Con- } \\ \text { vert }\end{array}\right.$
	26	SA	FC74	6	$\{$ Convert digit to XS3 and Ad-
	27	LQ	CT3	1	shift $\rightarrow A_{L}$
	30	QJ	CA24 no	[30000]yes	$\left\{\begin{array}{l} \text { All } 5 \text { digits converted? Yes; } \\ \text { subexit. XS3 address in "An } \\ \text { left packed right } \end{array}\right.$
		CA	CA31		

		IA	CW		
	0	MJ	0	[30000] ${ }^{-}$	
	1	0	30000	30000	Output - XS3 Op. code
	2	0	30000	30000	Output - XS3 "u" add.
	3	0	30000	30000	Output - XS3 "v" add.
	4	0	30000	30000	Input - octal computer word
(86)	5	TP	FC47	CW 1	$\triangle \Delta \Delta \Delta$ W/zero fill \rightarrow lst word output
	6	TP	FC25	CW2	\triangle W/zero fill \longrightarrow 2nd word output
	7	TP	FC25	CW3	\triangle W/zero fill \longrightarrow 3rd word output
	10	TP	RC14	CW20	Preset add. lst output word
	11	TV	FC35	CW17	Preset shift count $\rightarrow 148$
	12	TP	FC46	Q	
(87)	13	RS	CW 17	FC27	Decrease shift count by 6
	14	SP	CW4	3	Next octal digit input word \longrightarrow Ist digit A_{L}
	15	LT	10000	CW4	Shifted input word (A_{r}) \longrightarrow input line
	16	LT	0	A	Digit to be converted \longrightarrow rightmost digit A_{r}
	17	SA	FC11	[30000]	Conv. octal digit \rightarrow XS3 and shift to position in A
	20	[AT			Converted digit \longrightarrow output word
	21	QJ	CW22 yes	CW13 no	Output word full?
	22	QJ	CW23 ${ }^{\text {no }}$	CW yes	Entire octal input word converted?
	23	RA	CW20	FC3	1 in " $u^{n} \in{ }^{\prime \prime} V^{\prime \prime}$ adv. \rightarrow add. next output word
	24	TV	FC36	CW17	Reset shift count $\longrightarrow 368$
	25	MJ	0	CW 13	
		CA	CW25		

Heading Rtn. for Const. Pool, Preface, Sentence and Termination
IA HC

(88)	0	MJ	0	[30000]	
	1	TP	XS70	XS65	```Setup const. pool sect. hdg. w/o continued Preset add. sect. hdg. blkt = out- put buffer```
	2	TV	CT6	HC4	
	3	RP	30003	HCII	
(89)	4	TP	XS63	[30000]	CONSTANT \triangle POOL \longrightarrow sect. hdg. blkt. Setup Const. Pool sect. hdg. W/ continued Preset add. sect. hdg. blkt. = output buffer
	5	TP	XS71	XS65	
	6	TV	CT6	HC10	
	7	RP	30005	HC11	
	10	TP	XS63	[30000]	CONSTANTA POOL - CONTINUED \longrightarrow sect. hdg. blkt.
(90)	11	RJ	OC	0 C 21	$\underset{(508)}{\text { AdV. })} \text { output buff. add. by } 4010$
	12	TV	CT6	HC14	
	13	RP	30002	HC15	
	14	TP	XS56	[30000]	ADDRESS \longrightarrow col. hdg. blkt. Adv. output buff. add. by 2010 (248)
	15	RJ	BA	BAI	
	16	TV	CT6	HC20	
	17	RP	30002	HC21	
	20	TP	XS61	[30000]	Underscores \rightarrow output buffer Adv. output buff. add. by 40_{10} (508)
	21	RJ	OC	0 C 21	
	22	MJ	0	HC	
(91)	23	TP	XS76	XS73	```Setup Preface sect. hdg. W/0 continued Preset add. sect. hdg. blkt = out- put buff. add.```
	24	TV	CT6	HC26	
	25	RP	30002	HCII	
	26	TP	XS72	[30000]	PREFACE \longrightarrow sect. hdg. blkt. Setup pref. sect. hdg. W/continued Preset add. sect. hdg. blkt. = output buff. add.
(92)	27	TP	XS77	XS73	
	30	TV	CT6	HC32	
	31	RP	30004	HC11	
	32	TP	XS72	[30000]	PREFACE - CONTINUED \rightarrow sect. hdg. b1kt.
(93)	33	TV	CT6	HC35	Preset add. sect. hdg. blkt. = output buff. add.
	34	RP	30004	HCll	
	35	TP	XT	[30000]	SENTENCE NUMBER [----] sect. hdg. blkt.
(94)	36	TV	CT6	HC40	Preset add. sect. hdg. blkt. = output buff. add.
	37	RP CA	$\begin{aligned} & 30006 \\ & \text { HC40 } \end{aligned}$	HC11	

```
Heading Routine (Cont.)
```

		IA	HC40		
(95)	40	TP	XT	[30000]	SENTENCE NUMBERE---子- CONTINUED \longrightarrow sect. hdg. blkt. Preset add. sect. hdg. blkt. = Output buffer add.
	41	TV	CT6	HC44	
	42	TP	XT15	XT12	
	43	RP	30005	HC11	
	44	TP	XT6	[30000]	Preset add. sect. hdg. blkt $=0 u t-$ put buffer add.
(96)	45	TV	CT6	HC50	
	46	TP	XT16	XT12	Setup stored hdg. W/continued
	47	RP	30006	HC11	TERMINATION (SECTION--) --
	50	TP	XT6	[30000]	CONTINUED \longrightarrow section hdg. blkt.
(97)	51	TP	XT52	XT50	```Set up library routine hdg. W/0 continued Preset add. sect. hdg. blkt. = Out- put buffer add.```
	52	TV	CT6	HC54	
	53	RP	30005	HC11	
	54	TP	XT44	[30000]	LIBRARY ROUTINE \rightarrow sect. hdg. blkt. Set up lib. rtn. hdg W /continued Set add. sect. hdg. blkt. = output buffer add.
(98)	55	TP	XT53	XT50	
	56	TV	CT6	HC60	
	57	RP	30006	HCII	
	60	TP	XT44 HC61	[30000]	

Heading Routine for Subscripted Variables

Edit Subs. Var. and Write on Listing Tape

		IA	EV		
(107)	0	MJ	0	[30000]	
	1	TV	CT6	EV12	Set assem. blkt. add. = Output buff. add. Dec. assem. blkt. add. \rightarrow Preset for lst sym.
	2	RS	EV12	FC5	
	3	TP	FCll	CT1	Preset index $\mathrm{C}_{1} \longrightarrow$ \# variables/ blkt. - 1
(108)	4	RA	EV12	FC21	Adv. assem. blkt. add. \longrightarrow add. lst part next sym.
	5	SA	FCl	0	1 in "v" adv. \longrightarrow add. last part next symbol
	6	TV	A	EV13	$\begin{aligned} & \text { Preset add. for last part symbol } \\ & \text { Dimension list rtn. }\left\{\begin{array}{l} \text { DS1 = Add. of } \\ \text { array in "u" } \\ \text { DS2 }=X S 3 \text { sym. } \\ \text { DS3 }=\text { modulus } \\ -1 \text { in "u" } \end{array}\right. \end{aligned}$
	7	RJ	DS	[30000]	
(109)	10	SP	XSII	44	```XS3 space char. \(\rightarrow A_{L}\) 1st part XS3 sym. \(\rightarrow A_{1}\); last part sym. \(\rightarrow \mathrm{A}_{\mathrm{r}}\) Ist part XS3 sym. \(\rightarrow\) output buff. (assem. blkt.)```
	11	SA	DS2	22	
	12	LT	0	[30000]	
	13	TP	A	[30000]	Last part XS3 sym. \rightarrow output buff. (assem. bikt.)
	14	RA	EV13	FC1	1 in " V^{*} adV. \rightarrow add. for initial add. entry
	15	TV	A	EV20	Preset "un of $\mathrm{TP} \longrightarrow$ add. for initial add. entry
	16	TP	DS1	CA2	Initial add. for array \rightarrow conv. routine
110	17	RJ	CA	CA6	Conv. add. (CA) w/0 hyphen. (CAI= XS3 add, packed to right)
	20	TP	CAI	[30000]	Add. entry \longrightarrow assem. blkt. Init, add. of array - $1 \rightarrow \mathrm{Au}$
	21	RS	DS 1	FC2	
	22	AT	DS3	CA2	Final add. of array \longrightarrow conv. routine
(11)	23	RJ	CA	CAII	Conv. address (CA) W/hyphen (CA1= XS3 add. packed to right)
	24	RA	EV20	FCl	AD . assem. blkt. add. by 1 in " v^{n} Next assem. blkt. add. $\rightarrow{ }^{n \prime \prime} \mathrm{~V}^{\prime \prime}$ of TP
	25	TV	A	EV26	
	26	TP	CAl	[30000]	Last address for array \longrightarrow assem. blkt.
	27	RJ	OC	0 Cl	\longrightarrow Output control Same blkt.; same sheet
	30	MJ	0	EV4	
	31	MJ	0	EV	New section
	32	RJ	HV	[30000]	New blkt.; new sht. \Rightarrow heading $W /$ continued \longrightarrow output buff.
	33	MJ CA	$\begin{gathered} 0 \\ \text { EV34 } \end{gathered}$	EV1	New blkt.; same sht,

Edit Coding or Constants Routine

IA EC

(113)	0	MJ	0	[30000]	Exit next section
	1	0	[30000]	0	Initial running add. this section Set MJ to by-pass TJ
	2	TP	RC32	EDI1	
	3	MJ	0	EC5	
$\begin{aligned} & 114 \\ & 115 \end{aligned}$	4	TP	RC31	EDII	Set TJ for input buff. check Preset add. assem. bIkt. = output buff. add. Adv. assem. bikt. add. \longrightarrow add. for add. entry
	5	TV	CT6	EC16	
	6	RȦ	EC16	FCl	
	7	TP	ECl	Q	Running add. 1st word this section
	10	QT	FC33	CT15	Last digit initial add. \longrightarrow " u^{n} temp. 2 and A
(116)	11	TP	$\mathrm{ECl}^{\text {no }}$		Init. add. \rightarrow input conv. routine Last digit init. add. = zero? Convert octal address W/parents.
	12	ZJ	ECl3 ${ }^{\text {no }}$	EC37 yes	
	13	RJ	CA	CA15	
	14	TV	CT6	EC15	
	15	TP	CA2	[30000]	0 pen parent. (if 5 digit add. W/ parents) or zeros \rightarrow output buffer XS3 address \rightarrow output buffer
	16	TP	CA1	[30000]	
(117)	17	TP	CT15	A	Last octal digit initial add. $\longrightarrow \mathrm{A}$ Preset assem. blkt. add. = output buffer
	20	TV	CT6	ED17	
	21	TJ	FC37	EC25 ${ }^{\text {yes }}$	$4>$ last digit init. add.? Zero \longrightarrow blkt. index C_{4} (i.e., odd line \Longrightarrow next line has add.)
	22	TP	FC	CT4	
	23	SS	FC37	0	Dec. last digit of add. by 4 in " u^{n} $\longrightarrow \mathrm{A}$
	24	MJ	0	EC26	
	25	TP	FC1	CT4	Set blkt. index $\mathrm{C}_{4} \rightarrow 1$ (i.e. even line \Longrightarrow next line has no add.)
	26	TP	ECl		Init. add. from input $\longrightarrow Q u$ $3>$ last digit add.? Adv. assem. blkt. add. \longrightarrow Preset for last entry in blkt.
	27	TJ	FC40	EC33 ${ }^{\text {yes }}$	
	30	RA	EDI7	FC35	
(118) (119)	31	TP	FC	CT1	Preset index for 1 entry in blkt.$2>$ last digit add.?
	32	MJ	0	ED6 ${ }^{\text {yes }}$	
	33	TJ	FC24	ED ${ }^{\text {yes }}$	
	34	RA	ED17	FC76	Adv. assem. blkt. add. \longrightarrow preset for 3rd entry in blkt.
	35	TP	FCl	CT1	Set index for 2 entries in blkt.
	36	MJ	0	ED6	
	37	RJ	CA	CA3	Convert octal address W/octal zeros on right
	40	MJ	0	EC16	
		CA	EC41		

Edit Coding or Const. (Cont.)

(120)		IA	ED		
	0	TJ	FC2	ED4	1 > last digit add.?
	1	RA	ED17	FCl0	Adv. assem. blkt. add. \rightarrow Preset for 2 nd entry in blkt.
	2	TP	FC10	CT1	Set index for 3 entries in blkt.
	3	MJ	0	ED6	
(121)	4	RS	ED17	FCll	Dec. assem. blkt. add. \longrightarrow Preset for add. lst entry in blkt.
(122)	5	TP	FCll	CT1	Set index for 4 entrys in blkt.
(123)	6	QT	FC41	CT15	```lst four digits init. add. }->\mathrm{ Temp. 2 (add. ctr)```
(124)	7	RA	ED17	FC21	Adv. assem. blkt. add. by 5 in " v " \longrightarrow add. for next entry
(125)	10	RA	ED14	FC2	Adv. input buff. add. by one
	11	[TJ	RC2	ED14]	Limiting value > input buff. add.
	12	RJ	IR	IR2	Fill input buff. from tape
	13	TU	RC	ED14	Preset input buff. add. \rightarrow initial add.
	14	TP	[30000]	CW4	Next word from input buff. \rightarrow Conv. routine.
	15	RJ	CW	CW5	Convert octal word \rightarrow XS3
(126)	16	RP	30003	ED20	
	17	TP	CWl	[30000]	XS3 entry (3 words) \longrightarrow assem. blkt.
	20	RJ	OC	0 Cl 1	\Longrightarrow Output control
	21	MJ	0	ED7	\Longrightarrow same blkt.-same sheet
	22	MJ	0	EC	New section
	23	MJ	0	EF	New blockette-new sheet
(12)	24	IJ	CT4	ED46	New blockette-same sheet \Rightarrow add. entry required next blkt?
	25	RA	CT15	FC43	$\begin{aligned} & \text { Yes; adv. ctr. (temp. 2) by } 10_{8} \\ & \text { in "u" } \end{aligned}$
	26	TP	FC75	Q	Mask \longrightarrow Q
	27	QT			Last 2 digits add. \rightarrow A
	30	ZJ	ED40 ${ }^{\text {no }}$	ED31 ${ }^{\text {yes }}$	Last two digits add. = zero?
	31	RJ	BA	BAI	Adv. output buff. add. by 20_{10} (24 g) (space blkt. \rightarrow buff.)
	32	RJ	BA	BAI	Space blkt \longrightarrow output buffer
(128)	33	TP	CT7		Line count \rightarrow A
	34	TJ	FC70	ED40 ${ }^{\text {no }}$	Was 2nd space bikt. 63rd line on sheet or beyond
	35	RJ	OD	OD1	New pg. hdg. blkt. \longrightarrow output buff. and reset line count $=4$.
	36	TV	EF	ED37	
	37	RJ	HC	[30000]	Sect. hdgs. W/continued \rightarrow output buffer
		CA	ED40		

Edit XS3 Variable Symbol for $77^{\text {'s }}$ s
IA ES
(132)

	IA	ES		
0	MJ	0	[30000]	
1	0	30000	30000	Output-XS3 symbol packed right W/0g fill
2	0	30000	30000	Input-XS3 symbol packed left W/778 fill
3	TP	FC21	CT3	Set index $\mathrm{C}_{3}=5$
4	TP	FC	ES1	Zero \longrightarrow output line
5	LQ	ES2		Next XS3 symbol \rightarrow rightmost digits of Q
6	QT	FCl2	A	Next XS3 symbol \rightarrow rightmost digits of A^{2}
7	TJ	FC12	ES11 ${ }^{\text {yes }}$	$778{ }^{\text {l }}>$ symbol?
10	MJ	0	ES	Exit on first 778 encountered
11	LQ	ESI	6	
12	AT	ESI	ESI no	Symbol \longrightarrow rightmost digits output
13	IJ	CT3	ES5 ${ }^{\text {no }}$	All XS3 char. of symbol checked?
14	MJ	0	ES	
	CA	ES15		

Tape Handler Codewords

IA TC

0	50	001	05	LB	Read l blk. corrected prob. tape \longrightarrow list buffer
1	5 [0	000]	05	IB	Read [0000] blks. corrected prob. tape \longrightarrow input buffer
2	10	000	05	0	Rewind corrected prob. tape
3	3 [0	000]	05	0	Move forward [0000] blks. corrected prod. tape
4	50	001	05	FB	Read l blk. corrected prob. tape \longrightarrow file buffer
5	5 [0	000]	05	DL	Read [0000] blks. corrected prob. tape \longrightarrow dim. list region
6	3 [0	000]	[77]	0	Move forward [0000] blks. obj. prog. tape
7	10	000	[77]	0	Rewind obj. prog. tape
10	50	001	[77]	IB	Read l blk. obj. prog. tape \rightarrow Input buffer
11	5 [0	000]	[77]	IB	Read [0000] blks. obj. prog. tape \longrightarrow input buffer
12	50	011	[77]	IB	Read 9 blks. obj. prog. tape \longrightarrow input buffer
13	50	007	[77]	LB	Read 7 blks. obj. prog. tape \longrightarrow list buffer
14	50	005	[77]	LB	Read 5 blks. obj. prog. tape \longrightarrow list buffer
15	50	001	[77]	LB	Read 1 blk. obj. prog. tape \longrightarrow list buffer
16	74	204	[77]	OB	Write 4 blks. output buff. on listing tape
17	10	000	[77]	0	Rewind listing tape
20	74	201	[77]	OB	Write 1 blk. output buff. on listing tape
21	77	777	03	77777	Object prog. Uniservo 3 for 5 Servo layout
22	77	777	06	77777	Object prog. Uniservo 6 for 7 Servo layout
23	$5[0$ CA	000] TC24	05	LB	Read [0000] blks. corrected prob. tape \longrightarrow list buffer

IA TL

0	74	74747	47474	Z	Z	Z	Z	2	Z	Word of Z's
1	65	30324	73050	S	E	G	M	E	N	
2	31	34463	00106	F	I	L	E	\triangle	3	
3	30	50270	15131	E	N	D	\triangle	0	F	
4	65	73472	55146	S	Y	M	B	0	L	
5	67	50342	65127	ס	N	I	C	0	D	
6	01	67503	42651	\triangle	U	N	I	C	0	
7	01	01675	03426	\triangle	\triangle	J	N	I	C	
10	26	51273	00152	C	0	D	E	\triangle	P	labels
11	34	26512	73001	I	C	0	D	E	\triangle	
12	50	34265	12730	N	I	C	0	D	E	
13	26	51506	56624	C	0	N	S	T	A	
	CA	TL14								

	IA	XS			
0	37	01010	10101	@ $\triangle \Delta \Delta \Delta \Delta$	Fast feed 1 symbol
1	00	00000	00004	$\begin{array}{llllllll}08 & 08 & 08 & 08 & 08 & 1\end{array}$	
2	00	00000	00014		
3	00	00000	00017	$\begin{array}{llllllllll}08 & 08 & 08 & 08 & 08\end{array}$	XS3 open parent
4	00	00000	01414	0808080899	
5	43	00000	00000		XS3 close parent
6	00	00001	41414	$\begin{array}{lllllll}08 & 08 & 08 & 9 & 9 & 9\end{array}$	
7	37	65303	24730	@ S E G M E	Segment
10	50	66010	0	N T \triangle - - -	number
11	00	01010	10101	$\triangle \triangle \Delta \Delta \Delta \Delta]$	setup
12	52	24323	00104	P	
13	01	01010	10152	$\triangle \triangle \triangle \triangle \triangle P$	
14	24	32300	10403	A G E $\triangle 100$	Page
15	01	01010	15224	$\triangle \triangle \triangle \triangle P \mathrm{~A}$	number
16	32	30010	40303	G E $\triangle 1$	setups
17	01	01012	65150	$\triangle \triangle \triangle C O N$	
20	66	34506	73027	T I I N U E D	
21	01	65672	56526	$\triangle \begin{array}{llllll}\triangle & \mathrm{S} & \mathrm{B} & \mathrm{S} & \mathrm{C}\end{array}$	
22	54	34526	63027	$\begin{array}{lllllll}\mathrm{R} & \mathrm{I} & \mathrm{P} & \mathrm{T} & \mathrm{E} & \mathrm{D}\end{array}$	
23	01	70245	43424	$\triangle \mathrm{V}$ A R I A	Subscripted
24	25	46306	50117	B L L E S S \triangle (Variables
25	0	0	0	$\left[\begin{array}{lllll}- & - & - & -\end{array}\right.$	Section
26	02	26515	06634	$-\begin{array}{llllll}\text { C } & 0 & \mathrm{~N} & \mathrm{~T} & \mathrm{I}\end{array}$	Heading
27	50	67302	70101	$N \quad \mathrm{O}$ E $\quad \mathrm{D} \quad \triangle \triangle$	
30	27	54674	74301	D R U U M) \triangle	
31	27	54674	74302		Setups for
32	26	51543	04301	C0 R E $)$	Preceeding
33	26	51543	04302	C $\begin{array}{llllll}0 & \mathrm{R} & \mathrm{E} & \text {) } & -\end{array}$	Heading
34	01	01016	57347	$\triangle \triangle \triangle$ S $\quad \mathrm{M}$]	
35	25	51460	10101	$\mathrm{B} \quad 0 \quad \mathrm{~L} \triangle \triangle \triangle$	Subscripted
36	01	01242	72754	$\triangle \triangle$ A D D R	Variable
37	30	65653	06501	E $\quad \mathbf{S}$	Column Headings
	CA	XS40			

IA XS40

40	01	01010	20202	$\Delta \Delta \Delta--$	
41	02	02020	10101	$-\mathrm{-}-\Delta \Delta \Delta$	Subscripted
42	01	02020	20202	$\Delta \Delta--1$	Variable
43	02	02020	20201	- - - - Δ	Underscores
44	01	50515	00265	$\triangle \mathrm{N} 0 \mathrm{~N}-\mathrm{S}$	
45	67	25652	65434	B S C R I	
46	52	66302	70170		
47	24	54342	42546	$\begin{array}{llllllll}\text { A } & \mathbf{R} & \mathrm{I} & \mathbf{A} & \mathrm{B} & \mathrm{L}\end{array}$	Non-Subscripted
50	0	0	0	$\left[\begin{array}{llllll}- & - & - & - & -\end{array}\right.$	Variables
51	50	66345	06730		Section Head-
52	27	01010	10101	D $\triangle \Delta \Delta \Delta \Delta$	ing
53	30	65010	10101	E S $\triangle \Delta \Delta \Delta$,	Setups for
54	30	65020	22651	E S - C 0 $\}$	Preceeding Heading
55	65	73472	55146	$\begin{array}{lllllll}\text { S } & Y & M & B & 0 & L\end{array}$	
56	01	01010	10124	$\triangle \triangle \triangle \triangle \Delta A$	Non-Subscript-
57	27	27543	06565	D $\quad \mathrm{D} \begin{array}{llllll}\text { R } & \mathrm{E} & \mathrm{S} & \mathrm{S}\end{array}$	ed Variable
60	02	02020	20202	- - - - -	column heading
61	01	01010	10102	$\triangle \triangle \triangle \Delta \triangle$ -	Non-Subscript-
62	02	02020	20202	- - - - - -	ed Variable
63	01	26515	06566	$\triangle \mathrm{C}$	Underscores
64	24	50660	15251	A N T $\mathrm{T} \triangle \mathrm{P}$	
65	0	0	0	$[-----]$	Constant Pool
66	50	66345	06730		section head-
67	27	01010	10101	D $\triangle \Delta \Delta \Delta \Delta$	ing
70	51	46010	10101	$0 \mathrm{~L} \triangle \Delta \Delta \Delta 7$	Setups for
71	51	46020	22651	0L--C0J	Const. Pool Sect. Hdg.
72	01	52543	03124	\triangle\begin{tabular}{llllll}	
\hline					
\end{tabular} P					
73	0	0	0	$[-\quad-\quad-\quad-1]\}$	Preface Section
74	50	66345	06730	$\begin{array}{llllll}\text { N } & \mathrm{T} & \mathrm{I} & \mathrm{N} & \mathrm{O} & \mathrm{E}\end{array}$	Heading
75	27	01010	10101	D $\triangle \Delta \Delta \Delta \Delta$	
76	26	30010	10101	C E $\triangle \triangle \triangle \Delta$,	Setups for
77	26	30020	22651	C E--C0$\}$	Preface Section
	CA	XS100			Heading

XS3 Codes (Cont.)

	IA	XT			
0	01	65305	06630	$\triangle \mathrm{S}$ E N T E	
1	50	26300	15067	N C E \triangle N U	
2	47	25305	40101	$M \quad B \quad E \quad \mathrm{~B} \quad \triangle \triangle$	
3	0	0	0	[Sent. no. in std.	form] Sentence
4	02	02265	15066	- - 0 N T	Section
5	34	50673	02701	I N U E D \quad D	Heading
6	01	66305	44734	$\triangle \mathrm{T}$ E R M I	
7	50	24663	45150	$\begin{array}{lllllll}\mathrm{N} & \mathrm{A} & \mathrm{T} & \mathrm{I} & 0 & \mathrm{~N}\end{array}$	
10	01	17653	02666	\triangle ($\quad \mathbf{S}$ E C T	Termination
11	0	0	0	[Section No.]	Section
12	0	0	0	$\left[\begin{array}{lllll}- & - & - & -]\end{array}\right.$	Headings
13	66	34506	73027	T I I N U E D	
14	34	51500	10003	I $0 \times \triangle 0$ N	
15	43	01010	10101) $\Delta \Delta \Delta \Delta \Delta$	Setups for
16	43	02022	65150) - - C 0 N	Preceding
17	01	01010	10130	$\triangle \triangle \triangle \triangle \triangle E$	heading
20	50	27015	13101	$N \quad \mathrm{D} \triangle \triangle \mathrm{O}$	
21	46	34656	63450	L I I S T T I	
22	32	01010	10101	G $\triangle \triangle \triangle \triangle \Delta$	
23	01	01475	16750	$\triangle \triangle M 0 \quad \mathrm{O}$	
24	66	01503	07266	T \triangle N E X \quad T	
25	01	46346	56634	$\triangle \mathrm{L}$ I S T I	
26	50	32016	62452	N G \triangle T A P	
27	30	01515	00152	E \triangle O N \triangle P	
30	54	34506	63054	R I N T T E R	
31	22	01275	10150	- \triangle D $0 \triangle N$	
32	51	66012	63324	0 O T \triangle C \quad H A	
33	50	32300	15251	$N \quad \mathrm{G}$ E $\quad \triangle \mathrm{P}$	
34	65	34663	45150	S I I T I O	
35	01	51310	15224	$\triangle \mathrm{O} F \mathrm{~F} \triangle \mathrm{P}$ A	
36	52	30542	20101		
37	37	60606	06060	$\Sigma \Sigma \Sigma \Sigma \Sigma \Sigma$	\{Printer
	CA	XT40			Stop Symbo 1

	IA	XT40	
40	01	01010	10152
41	54	51325	42447
42	01	46346	56634
43	50	32010	10101
44	01	46342	55424
45	54	73015	45167
46	66	34503	00101
47	0	0	0
50	0	0	0
51	66	34506	73027
52	01	01010	10101
53	01	02022	65150
	CA	XT54	

$\triangle \begin{array}{llllll}\triangle & L & I & S & \text { T } & \mathrm{I}\end{array}$	Listing
$\mathrm{N} \mathbf{G} \triangle \triangle \triangle \triangle$	
$\triangle \mathrm{L}$ I \quad B R A	
T I N E $\triangle \triangle$	Library Rou-
[Routine name.]	tine Heading
$\left[\begin{array}{lllll}- & - & - & -]\end{array}\right.$	
$\begin{array}{lllllll}\text { T } & I & N & \mathrm{O} & \mathrm{E} & \mathrm{D}\end{array}$	
$\triangle \triangle \Delta \triangle \Delta \Delta\}$	Setups for
$\Delta--C 0 N\}$	Lib. Routine

Flexowriter Printout

Flexowriter Printouts (cont.)
IA FP40

40	24	52300	13167
41	46	46220	15267
42	66	01503	07101
43	04	10030	30131
44	51	51660	16624
45	52	30015	15001
46	65	30547	05177
47	0	0	0
50	65	66245	46601
51	66	51012	65150
52	66	34506	73001
53	46	34656	63450
54	32	22010	10101
55	01	07220	10101
56	01	1220	10101
	CA	FP57	

	IA	FC		
0	0	0	0	Zero
1	0	0	1	1 in "y"
2	0	1	0	1 in $^{\text {" }}{ }^{\prime \prime}$
3	0	1	1	1 in " $u^{\prime \prime}$ \& " $v^{\prime \prime}$
4	0	0	10	
5	0	0	4	
6	0	24	24	${ }^{20} 10$
7	0	0	15	
10	0	0	2	
11	0	0	3	
12	0	0	77	Mask 1st XS3 digit
13	0	0	7777	Mask 1st \& 2nd XS3 digits
14	0	7	77777	Mask 1st, 2nd E 3rd XS3 digits
15	0	0	67	
16	0	0	6667	
17	0	0	22	
20	06	0	0	
21	0	0	5	
22	04	0	0	
23	0	77777	0	"un mask
24	0	2	0	
25	01	0	0	XS3 space
26	02	0	0	
27	0	0	6	
30	0	0	30	
31	0	0	171	
32	0	0	77777	
33	0	7	0	
34	76	0	0	
35	0	0	14	
36	0	0	36	
37	0	4	0	
40	0	3	0	
41	0	77770	0	
42	0	0	167	
43	0	10	0	
44	0	0	16	
45	0	0	11	
46	30	30200	0	
47	01	01010	10000	
50	0	7700	0	
51	0	07777	0	
52	0	166	10	\# const. allowed in lst blk. Const. Pool on obj. prog. tape (u). Minimum \# blks. preceding lst
53	0	167	1	
54	0	777	0	
55	0	170	0	

56	0	0	170
57	0	0	30000
60	0	23000	0
61	0	25000	0
62	0	26000	0
63	0	30000	0
64	0	50000	0
65	0	60000	0
66	0	1100	0
67	0	0	70
70	0	0	100
71	0	1200	0
72	0	100	0
73	0	0	BL
74	03	0	0
75	0	77	0
76	0	0	7
77	0	10000	0
100	0	0	12
101	0	0	303
	CA	FCIO2	

Max. \# blks. input buffer (9_{10} or 11_{8}) Limit for line count when new section next (5610) Limit for line count when same section next (64_{10})
Max. \# blks. $+1\left(10_{10}\right.$ or 128$)$ in input buffer

Listing tape block limit $\left(1200_{10}\right.$ per Univac sys. convention)

	IA	RC		
0	0	IB	0	Init. add. iniput buif.
1	0	OB	OB	Init. add. output buff.
2	TP	IB2070	CW4	Last add. input buffer + 1
3	0	0B264	OB264	
4	0	XS34	HC36	Add. stored subs. var. col. hdg.; ent. add. sent. hdgs $\mathrm{W} / \mathrm{cont}$.
5	0	XS40	HV7	Add. stored subs. var. underscores; ent. add. subs. var. drum W/cont.
6	0	0	OD4	To preset (A) \rightarrow (2
7	0	0	BD	To preset (B) \rightarrow (B2)
10	0	XS55	HC45	Add. stored non-subs. var. col. hdg.;ent. add. term. hdgs W/cont.
11	0	XS60	HV11	Add. stored non-subs. var. underscores; ent. add. subs. var. (core) hdgs. W/cont.
12	0	LB170	0	Init. add. XS3 Sym. list
13	0	IB1	0	
14	AT	CW 1	CW 1	
15	0	NL	0	```Base add. statements in sent. no. list```
16	0	NL1000	0	Base add. subs. var. EQ. in sent. no. list
17	0	NL2000	0	Base add. non-subs. var. EQ. in sent. no. list
20	0	NL3000	0	$\begin{aligned} & \text { Base add. pseudo Ops. in sent. no. } \\ & \text { list } \end{aligned}$
21	40	NL3100	0	```Base add. lib. rtns. in sent. no. list (Ind. bit in Op. code)```
22	0	DL167	HC55	Add. lst const. - 1 in input buffer
23	TP	FB170	Q	
24	0	FD	NP15	Init. add. 0p. file IV on drum; Preset one shot jump page no. rtn.
25	0	FL	NP22	Init. add. 0 p. file IV in core; Preset one shot jump page no. rtn.
26	0	0	SB	Init. add. statement buffer
27	TP	RF	FD	Init. add. Op. file IV (drum) buffer in " v "
30	0	0	RB	Init add routine buffer
31	TJ	RC2	ED14	
32	MJ	0	ED14	
33	0	DL	HC5	
34	0	TB	HC27	
35	TP	RB	RF	Init. add. routine file (drum) in
36	0	0	SB170	Limit value for statement buff. (1ast add. +1)
37	0	0	RB170	Limit value for routine buff. (last add. +1

40	TP	FL170	CT	Limit value file list (last add. +1 in "u")
41	0	0B740	0B740	Limit value output buff. (last add. +1)
42	0	LB	DS4	Init. add. list buffer
43	07	0	0	
	CA	RC44		
Explanation of Counters, Indexes, Temps.,Etc. (CT)				
CT0	[0	0	0]	Temp. l curr. subs. var. CW. running add. etc.
1	0	0	[0]	Index C_{1}
2	0	0	[0]	Index C2
3	0	0	[0]	Index C_{3}
4	0	0	[0]	Index C_{4}
5	0	0	[0]	Index C_{5}
6	0	[0]	[0]	Output buff. add. (next avail. blkt.)
7	0	0	[0]	Line count (next avail. line)
10	0	0	0	lst page no. word
11	0	0	0	2nd page no. word
12	0	0	0	lst segment no. word
13	0	0	0	2nd segment no. word
14	0	0	0	Count of blocks on listing tape
15	[0	0	$0]$	Temp. ${ }^{\text {Seg. no. (octal })}$
16	0	0	[0]	
17	0	0	[0]	Seg. no. (octal) \# blks. in Term.
20	0 [0	000] 00	0	\# full blks. seg. + Pref.
21	0	[0]	[0]	\# lines part. blk. and H.S.S. 3 3rdPref. exit and entry in " u " $\mathcal{E} 8$ th "v" Lines
22	RJ	[0]	[0]	
23	0	0	[0]	\# lines preface $\quad \int$ seg.
				lab. blk.

[^0]: No - advance Crpt by 2 in " u " and "v"
 FC3 Advance Crpt by 1 in " u " and "v"
 FC3 Advance Crct by 1 in " u " and "v"

